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Abstract: Model Predictive Control has proven to be a universal and flexible method to control
complex nonlinear system with guaranteed constraint satisfaction. However, high dependency
on model quality often renders it inappropriate for hard to model systems. On the other hand,
machine learning methods show great performance when approximating functions based on data.
This capability for learning with poor a priori knowledge, however, comes at the cost of low
predictability and lack of safety guarantees. To overcome these drawbacks we illustrate how a
neural network can be setup as a nonlinear feedforward control that augments the MPC control
signal to approximate a desired control behaviour. For instance, it could aim to mimic the control
behaviour of a human driver, while the underlying MPC exploits prior knowledge. Moreover, to
preserve constraint satisfaction, we suggest to restrict the range of neural network outputs such
that it intrinsically satisfies control input constraints. Subsequently, we represent the neural
network control signal as a disturbance which enables the application of tube MPC to retain
state constraints satisfaction at the cost of introducing some conservatism. We demonstrate
these concepts via simulation, test and highlight both the advantages and the drawbacks of the
proposed control structure.

Keywords: Model predictive control; Machine learning; Neural networks; Constraint
satisfaction; Tube model predictive control.

1. INTRODUCTION

Continuous progress, great results in certain fields and
lowering barriers to entry for sophisticated machine learn-
ing techniques have boosted their application and at-
tracted widespread interest. Thus, control research com-
munity considers to incorporate established machine learn-
ing methods such as neural networks (NN) due to their
profound capabilities of approximating functions. Exam-
ples such as (Bojarski et al. (2016); Silver et al. (2016);
Levine et al. (2015)) confirm the potential of using machine
learning in control. However, these concepts often lack
approximation guarantees or worst case bounds. In fact,
NN can be vulnerable against attacks originating from
adversarial NNs that are trained to provoke failure of the
target NN with minimal effort (Huang et al. (2017)). Thus,
many researchers tackle this challenge combining NN with
advanced methods of classical control theory, which enable
guarantees on performance and stability. In particular,
model predictive control (MPC) is frequently combined
with machine learning approaches, as it allows to handle
constraints, well established theoretical results, as well as
its theoretical similarity to machine learning approaches.
For example, in (Bouffard et al. (2012)) a quadratic pro-
gram has been solved to control a quadrotor in real time.
The basic idea is to use a learned model to predict the
optimal control trajectory minimizing an unconstrained
? This work is supported by IAV GmbH

objective function, while guaranteeing constraints using a
nominal model. The use of a safety net, separating the
learned model for optimal performance and the nominal
model allows to provide such guarantees. It was further
expanded in (Bethge et al. (2018)) for the case of multiple
models to learn. Another approach has been proposed
by (Gros and Zanon (2019); Zanon et al. (2019)), using
Reinforcement Learning (RL) to tune parameters of the
MPC and safe scenario tree theory to assure constraint
satisfaction despite on-line adaptation of MPC param-
eters. Thus, the learning instance can be viewed as a
meta instance affecting the system indirectly by updating
admitted MPC parameters. In contrast, in (Wabersich and
Zeilinger (2018)) using a model predictive controller as a
filter has been proposed, which the control input signal,
given by a machine learning algorithm, has to pass before
being applied. This filter verifies its admissibility based on
a model to predict the resulting state trajectory and up-
dates the signal if needed. It allows for flexibility in choice
of the learning method used while constraint satisfaction
is guaranteed. However, similar to (Bouffard et al. (2012)),
it comes at the cost of increased conservatism. It also only
uses prior knowledge to filter unsafe control action and
therefore misses out possible enhancements utilizing prior
knowledge since the control performance is mainly deter-
mined by the learned controller. This as well as approaches
proposed in (Li and Bastani (2019); Zhang et al. (2019))
can be classified as post-posed shielding (Alshiekh et al.
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(2017)) whereas the approach presented in the current
work is characterized as preemptive shielding. Instead of
filtering the NN output signal, we already restrict the neu-
ral network output set to inputs which are considered to
be safe. Hereby, the learning instance acts as a feedforward
control modifying the MPC reference input signal. Such a
setup can be motivated by learning a controller that is too
time consuming to apply in real time or to approximate a
highly complex and unmodeled controller such as a human
driver, while certain optimality as well as safety constraints
are supposed to be incorporated. Our main contribution is
an approach to combine an a priori unsafe neural network
with a model predictive controller while preserving safety
guarantees at the expense of a robust thus conservative
Tube MPC. The remainder of the paper is structured as
follows: In Section 2 we formulate our considered problem
and continue in Section 3 describing how to incorporate
constraints. This is done in two steps: First, we assure
control input constraint satisfaction restricting the NN
output layer. Secondly, we employ Tube MPC to deal with
uncertainty caused by the NN. Subsequently we discuss
both steps using an illustrative example and complete by
summarizing the findings as well as give an outlook in
Section 5.

1.1 Definitions and Nomenclature

In the following we denote the set of non-negative integers
by N≥0 as well as the set of non-negative rational numbers
by R≥0. Furthermore we define the Minkowski set addition
given two sets A ⊂ Rn,B ⊂ Rn by A ⊕ B := {a +
b : a ∈ A, b ∈ B} and C := A 	 B if C ⊕ B = A. The

term ⊕i−1
j=0 denotes a series of Minkowski set additions.

Furthermore, we use the following definitions of (Borrelli
et al. (2017)): Consider a polyhedron P = {z ∈ Rnz |Hz ≤
g}, with H ∈ Rnp×nz , g ∈ Rnp and an affine mapping
f : z ∈ Rnz 7→ Az+b, A ∈ RnA×nz , b ∈ RnA . We define f ◦
P := {y ∈ RnA : y = Az+b ∀z ∈ Rnz , Hz ≤ g} and refer to
it using fP. Hence, the expression FA, with F being a real
matrix of compatible dimension, denotes the image of the
set A under F which is defined by FA := {Fa : a ∈ A}.
Moreover, with a ∈ Rna and Q ∈ Rna×na ‖a‖Q denotes the

seminorm ||a||Q := aTQa. In context of intervals we use
(·, ·) for denoting open intervals and [·, ·] are understood
as closed interval limits. The expression {v} with v ∈ Rn

denotes the set consisting of vector v. Lastly, a positive
invariant set Φ is a set such that for a given dynamical
system x+ = f(x) with constraints x ∈ X ⊇ Φ the
following holds: ∀x ∈ Φ⇒ x ∈ X ∧ f(x) ∈ Φ.

2. PROBLEM FORMULATION

The basic setup of our approach is depicted in Fig. 1.
The system consists of a suboptimal controller K and a
nonlinear plant Σ. Furthermore, it includes a NN which
receives some input data, x(k), xr(k), uc(k), uc(k − 1),
and updates the input signal of the normal controller
respectively to improve performance. The overall nonlinear
system including all subsystems is given by:

Fig. 1. Illustration of the considered control loop aug-
mented by a neural network acting as a dynamical
nonlinear feedforward controller.

control input : u(k) = uc(k) + uw(k), (1a)

baseline controller K : uc(k) = κ(xr(k)− x(k)), (1b)

NN : uw(k) = h(x(k), xr(k), uc(k), uc(k − 1)), (1c)

Σ : x(k + 1) = f(x(k), u(k)), x(0) = x0. (1d)

Here x(k) ∈ Rnx denotes the current state, x(k+ 1) is the
successor and x0 is the initial state. Furthermore, uc(k) ∈
U ⊂ Rnu is the control input and uw(k) ∈ Uw ⊆ Rnu

the NN update which is restricted to the set Uw (cf. Sec-
tion 3.1). The control policy κ(xr(k)− x(k)) is considered
to be given by a model predictive controller employing a
linear model. We assume the function f : Rnx×Rnu → Rnx

to be a discretized form of a locally Lipschitz continuous
function. Consequently, we can obtain a linear approxima-
tion of (1d) via a first-order Taylor polynomial around a
local operating point (xs, uc,s, uw,s).

Σl : x(k + 1) = Ax(k) +Buc(k), (2a)

x(0) = x0 (2b)

Since this approximation leads, in general, to model mis-
match and suboptimal control, the NN is injected to up-
date the MPC control input signal in order to compensate
for model inaccuracies. However, while the MPC is able
to consider state and input constraints x ∈ X and u ∈ U ,
applying arbitrary updates negates such guarantees. Thus,
the following sections outline how to regard constraints in
such a control structure, which we refer to as NN sup-
ported MPC. The basic idea is to limit the range of the NN
by constraining the maximal correction and viewing the
resulting influence as disturbance in a tube-based control
sense.

3. INCORPORATING CONSTRAINTS TO NN
SUPPORTED MPC

3.1 Guaranteeing input constraints and feasibility despite
NN based learning

The additional input uw(k) on Figure 1 is the outcome of
the NN that maps the tuple (x(k), xr(k), uc(k), uc(k − 1))
to a possible high dimensional latent space S and finally
passes it through an output layer onto a control input
set Uw ⊆ Rnu . How to choose this subset is essential
to the performance of the NN and thus for bounding
its effect on the state and control trajectory. The choice
directly affects closed loop guarantees. We introduce the
parameters p ∈ U , r ∈ R≥0 to define the set M with the
metric d(·, ·) as follows:

Uw := {ũ ∈M |d(ũ, p) ≤ r}︸ ︷︷ ︸
∆w

∩
(
U 	 {uc(k)}

)
. (3)

The set ∆w is designed to limit the range of admissible
inputs produced by the NN to a neighborhood of the
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point p (up to a ball with a radius r), while the set M
can incorporate other types of input constraints. Since
NN is supposed to provide an auxiliary control action,
one can additionally ensure that the set ∆w includes
the origin, as in this case the network is allowed to be
inactive. We formalize the link between these parameters
and satisfaction of the input constraints in the following
theorem.

Theorem 1. Suppose ∀k ∈ N≥0

i) uw(k) ∈ Uw,
ii) uc(k) ∈ U ,

iii) 0 ∈ ∆w, r ∈ R≥0, p ∈ U ⊇M ,

then uc(k) + uw(k) ∈ U .

Proof. From i) follows uc(k) + uw(k) ∈ {uc(k)} ⊕
(

∆w ∩(
U 	 {uc(k)}

))
=
(
∆w ⊕ {uc(k)}

)
∩ U . From ii) it follows

that neither of these sets are empty, thus it only leaves to
show that their intersection is not empty. Following iii),
∆w ⊕ {uc(k)} 3 0 + uc(k) = uc(k) ∈ U . 2

Thus far we augmented the MPC controlled system with
a feedforward control given by a NN such that input
constraints are satisfied. Guaranteeing state constraints
will require the use of prior knowledge about the NN in
the MPC.

3.2 Regarding State Constraints in NN Supported MPC

As seen in the previous section, input constraints can
easily be met since both inputs, uc and uw, do not have
any dynamics and can be chosen freely within the input
constraint set U . On the other hand, the states have to
adhere to their dynamics, which need to be modeled. Thus,
we employ tube based MPC to ensure satisfaction of state
constraints x(k) ∈ X ∀k ∈ N≥0.

3.3 Rigid Tube MPC

Tube based MPC is a collection of methods that enables
consideration of persistent but bounded disturbances.
Though its theoretical foundations are thoroughly covered
in the literature, we outline next its basic idea. Interested
readers are referred to (Mayne et al. (2005, 2006); Rakovic
et al. (2003, 2016); Langson et al. (2004)). In order to
represent our problem in the tube MPC setting we treat
the additional input signal uw produced by the NN as a
purposeful disturbance.
The basic idea is to provide a safety margin for state x
and control input u, enabling compensation of any possible
“disturbance” w ∈W from the NN. Fortunately the distur-
bance depends on the choice of Uw since W = BUw. Thus,
not only can we determine the set W, but additionally we
can decide about its extend: First we define the nominal
and disturbed linear system (4),(5)

ΣN : z(k+1)=Az(k)+Bv(k), z(0) = z0, (4)

Σw : x(k+1)=Ax(k)+Buc(k)+Buw(k)︸ ︷︷ ︸
w∈W

, x(0) = x0, (5)

where v ∈ V, z(k) denote the nominal control input as
well as nominal state governed by the nominal system (4).
We define an error coordinate e(k) = x(k) − z(k) and

subtract the nominal system (4) from the disturbed system
(5) which yields a difference equation governing the error
dynamics

e(k + 1) = Ae(k) +Buc(k)−Bv(k) + w(k). (6)

For the purpose of preventing unstable and therefore
unbounded error dynamics, we define uc(k) = v(k) +
Kz(x(k)− z(k)) and design an additional controller stabi-
lizing the error between the nominal and the actual state.
This yields

e(k + 1) = (A+BKz)︸ ︷︷ ︸
AK

e(k) + w(k). (7)

For w(k) ∈W ∀k ∈ N≥0 the reachable set can be computed
via

Φ(i) =⊕i−1

j=0A
j
K.W (8)

assuming e(0) = 0. From Theorem 1, iii) this is always
admissible. Hence, for i → ∞ it turns into the minimal
positive invariant set of e(k + 1). However, deriving an
infinite Minkowski-sum is not practical. Hence, we employ
an upper bound proposed by (Rakovic et al. (2003)):

Φ∞ ≤ (1− α̂)−1ΦN,with ΦN =⊕N−1

j=0 A
j
KW. (9)

Where α̂ ∈ (0, 1) can be chosen to be arbitrarily small.
Given the set ΦN, the nominal state constraint set can
be adjusted by Z = X 	 ΦN and since the additional
effort of the linear controller Kz also has to be taken into
account, the tighter nominal input constraint set is given
by V = U 	KzΦN. Finally in order to compute ΦN offline
we omit the intersection and simplify

B
(

∆w ∩
(
U 	 {uc(k)}

))
⊆ B∆w = W. (10)

Thus, conservatism is introduced in two places: First,
from the approximation in (9), which can mostly be
countered by choosing parameter α̂ sufficiently close to
zero. And second, the simplification in (10), which shrinks
the admissible state space Z of the nominal MPC.

The underlying optimization problem therefore takes the
following form:

min
z(k),v(k)

N∑
k=0

‖xr(k)− z(k)‖Q + ‖v(k)− v(k − 1)‖R (11a)

subject to

z(k + 1) = Az(k) +Bv(k), (11b)

z(k) ∈ Z ⊆ X , (11c)

v(k) ∈ V ⊆ U . (11d)

Note, that since we employ an MPC with a sufficiently
accurate linear model to guarantee state and input con-
straints, we can either preserve these guarantees by re-
stricting the range of NN output space (cf. Section 3.1) or
by enforcing state constraints using Tube MPC (TMPC).

4. ILLUSTRATIVE EXAMPLE

We provide two examples of NN augmented model pre-
dictive control to highlight possible advantages of these
approaches. We focus on ensuring constraint satisfaction
to show the effectiveness of applying TMPC. For both
types of controllers, MPC and TMPC, we consider the
problem of trajectory tracking. The controller brings a
Continuous Stirred Tank Reactor (CSTR) to time-varying
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state reference xr(k). The nonlinear plant is given in the
following form (Ozkan et al. (2002)):

∂x1

∂t
= −αx1h(x2) + q(x1,f − x1), (12a)

∂x2

∂t
= βαx1h(x2)− (q + σ)x2 + σu+ qx2,f , (12b)

y = x, (12c)

h(x2) = exp
( x2

1 + x2/γ

)
. (12d)

Here the states x1, x2 and input u denote the concentra-
tion, the temperature and the cooling jacket temperature.
The remaining parameters are constant and their values
are provided in Table 1. For solving the MPC, or NMPC
problem we use IPOPT (Wächter and Biegler (2006))
in combination with the CasADi framework (Andersson
et al. (2019)) implemented in Python. Furthermore, for
set operations we used the Mulit-Parametric Toolbox 3
(Herceg et al. (2013)).

Table 1. CSTR model constants

α β γ σ x1,f x2,f q

0.072 8.0 20.0 0.3 1.0 0.0 1.0

4.1 NN Supported MPC

We first show the advantage of using a NN as a feedforward
control in combination with a MPC. The linear model pre-
dictive controller solves an optimal control problem with
input and state constraints given by (13a) at each sampling
point, reacting to possible disturbances. Choosing xs =(

0.553
2.752

)
, uc,s = 0, uw,s = 0, Q =

(
0 0
0 10

)
, R =

(0.1) , N = 5 and the sampling time Ts = 0.05s, the MPC
problem takes the following form:

min
uc(k)

5∑
k=1

‖xr(k)−x(k)‖Q+

5∑
k=0

‖uc(k)−uc(k−1)‖R (13a)

subject to

x(k + 1) = Ax(k) +Buc(k), (13b)

x(k) ∈ X , (13c)

uc(k) ∈ U . (13d)

While the described concept generally admits on-line
learning, we choose to pre-train the NN to simplify the
example. The objective is to learn the difference between
the linear MPC (13a) based on the model (13b) and a de-
sired input u∗(k) which is derived from a Nonlinear Model
Predictive Controller (NMPC) κ∗(xr(k) − x(k)) = u∗(k)
based on (12). As a loss function we utilize the mean
squared error loss

MSE =

∑Nb

i=1(u∗i − ui)2

Nb
(14)

with Nb = 512 denoting the size of a batch containing
randomly sampled data points from a data set of ND =
212 values. This data consists of the current state xk,
a reference state xr,k as well as previous control inputs
uk−1, with the index k indicating time dependent variable
that this data element represents after the training. For
example, xr,k is replaced by xr(k) after training. The data
is generated by solving both the linear and the nonlinear

optimization problems for tuples (xk,j , xr,k,j , uk−1,j)j to
determine the corresponding labels (u∗k,j − uk,j) for j =
1, 2, ...ND. The NN is composed of fully-connected layers,
where an input with 6 neurons is followed by Nl = 3
hidden layers with 16 neurons each and a single neuron
for the output layer. For all but the last layer a ReLU -
function is chosen as an activation function. For training
we employ the ADADELTA algorithm proposed by (Zeiler
(2012)). To guarantee that assumption i) of Theorem 1
holds, we choose as output activation function similar
as in (Hausknecht and Stone (2018)) a saturating tanh-
function. The parameter p is set to zero and the input
set is U = [−4, 4]. Moreover, we choose ∆w = {u ∈
M | ‖u, 0‖∞ < 2.4} and the intersected set in (3) is
simplified to Uw(k) = [uw(k), uw(k)], where uw(k), uw(k)
denote lower and upper set boundaries. As a result, the
scaled NN output is given by (15) with the neural network
latent state, weights and biases sN,WN, bN of the last
hidden layer:

γ =
1

2
(uw(k)− uw(k)), (15a)

c = γ + uw(k), (15b)

σ(sN ) = γ tanh (WNsN + bN) + c, (15c)

Simulation Results and Discussion We simulated a
tracking experiment with three steps to illustrate the
varying performances at different points in state space
as shown in Fig. 2. Since the NN learned the difference
between the optimal control input u∗ and the input uMPC,
we first compare different control trajectories as shown
in Fig. 2b. Comparing the stand-alone MPC (depicted as
green dashed line) to the NN supported MPC (represented
as a blue line), we notice that our approach succeeds
in approximating the optimal NMPC control trajectory
(orange line) as steady state deviations as well as largest
oscillation are dampened. Furthermore, the red coloured
area in Fig. 2b (not to be confused with tubes of TMPC)
visualizes the set where the control trajectory uMPC+NN

can possibly lie due to the output scaling described in
Section 4.1. Note that this area is included within the
input constraints and therefore preserves them (cf. also
(3)). However, we also note that in particular for the begin-
ning of transients the performance of NN supported MPC
is worse since the NN does not receive future reference
signals. Even though this does not cause state constraint
violation, it shows the necessity for further coupling MPC
and NN to retain state constraint satisfaction. This leads
us to the second example – NN supported Tube MPC.

4.2 Tracking with NN supported Tube MPC

We now incorporate the knowledge about the output
constraint NN into the controller using Tube MPC. In
order to apply (11) we augment our nominal controller
by the error e(k) = x(k) − z(k) stabilizing controller Kz.
To do so a linear quadratic regulator is chosen with the

objective matrices Qz =

(
0 0
0 10

)
, Rz = (1). Given this

and setting r = 0.6, p = 0 we compute the set W using
(9) which we utilize to compute the tighter sets Z,V.
Considering the NN we replace uc with ũc = uMPC +
uKz so the NN receives additional information and learns
to compensate suboptimality of the MPC as well as the
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0 2 4 6 8
t in s

1

2

x
2

x2,r

x∗2
x2,MPC+NN

x2,MPC

(a) Tracking experiment: State trajectories of different control ap-
proaches

0 2 4 6 8
t in s

−2.5

0.0

2.5

u

(b) Tracking experiment: Control and input trajectories for different
set points

Fig. 2. Performance comparison: Step tracking experiment
to compare performance of NN supported MPC ver-
sus MPC

additional controller Kz. Moreover we substitute uc(k) in
(3) with ũc(k) to ensure input constraint satisfaction using
Theorem 1.

Simulation Results and Discussion In order to illustrate
the correct consideration of the potentially disturbing NN
influence using Tube MPC approach Fig. 3 shows an open
loop stabilization of the linearized plant. Here, we set the
horizon to N = 15, sampling time is Ts = 0.45s and the
initial state as well as the reference point are set to

x0 =

(
0.925
2.156

)
, xr =

(
0.906
0.902

)
, uk−1 = (2.639) .

Moreover, instead of the previous feedforward NN we use
a residual NN with the same structure of neurons and
layers. Since we only want to show robustness against dis-
turbances originating in a malfunctioning NN, we simulate
the trajectory with the simplified model, that is used by
the linear MPC. Hence, we cannot expect to exceed the
performance of the system controlled solely by the MPC.
This explains why zk as well as x∗, which use the exact
model, converge to the reference state xr, while the actual
state xk converges to another state induced by the NN.
However, the states stay within the admissible tube at all
times. Furthermore, the nominal state trajectory clearly
shows that constraints set zk ∈ Z (highlighted in grey),
as well as xk ∈ X are respected during the optimization,
since neither the nominal state nor the tube leave Z or
X . Thus, at the cost of conservatism from the Tube MPC
approach, we retain constraint satisfaction.

Fig. 3. Phase diagram showing MPC as well as Tube
MPC controlled state trajectory and the correspond-
ing tubes. It illustrates state constraint satisfaction
while stabilizing around reference point xr.

Next, Fig. 4 shows the same tracking experiment as in
Fig. 2 with MPC substituted for TMPC. While we observe
a slower convergence in the beginning of Fig. 4a, the
NN augmented Tube MPC outperforms the simple MPC
during the steady phase. This can be explained by the
input trajectories depicted in Fig. 4b. The allowed range
is smaller than in the previous experiment because the
tolerated interference is down scaled to r = 0.6. This
results in the optimal trajectory u∗ being located outside
of set U in the beginning. However, as soon as u∗ enters
Uw + uc, the NN augmented TMPC approximates the
optimal trajectory well and therefore the state approaches
the desired reference.

5. CONCLUSION AND OUTLOOK

We proposed a safe way of augmenting a model predictive
controller with a neural network by using latter as a non-
linear feedforward control such that the modified control
input signal approximates a desired input signal. To do so
we proposed to restrict the last layer of a neural network
in order to limit the range of its inputs. To satisfy state
constraints we suggested employing tube MPC. Finally, we
tested both control structures in simulation for tracking
performance in comparison to the nominal controller. In
future work we will investigate adaptable tubes whose
extends are dynamically given by the MPC. Moreover,
we aim to use this approach to safely approximate more
challenging controllers such as human drivers.
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F. (2006). Robust output feedback model predictive
control of constrained linear systems. Automatica, 42(7),
1217–1222. doi:10.1016/j.automatica.2006.03.005. URL
http://dx.doi.org/
10.1016/j.automatica.2006.03.005.

Mayne, D.Q., Seron, M.M., and Raković, S.V. (2005).
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