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Abstract: The target system of our research is a reverse logistics system with imperfect information of 
inventory variables. This system is affected by two independents and uncorrelated random variables that 
represent demand and return fluctuations. A Discrete-time, chance-constrained, Linear Quadratic Gaussian 
Problem under imperfect information of inventory systems (DCLQG) is formulated in order to develop an 
aggregate manufacturing and remanufacturing plan. Technically, an optimal closed-loop solution for this 
stochastic problem is possible, but it is not easy to get it, particularly for large size problems. Thus, an 
open-loop updating approach that provides a quasi-optimal solution is investigated here. This approach 
considers an equivalent deterministic problem to the DCLQG problem. It is based on the conditional mean 
value and on variances of inventory variables, which are estimated from a Kalman filter procedure. Such 
an approach allows managers to build an aggregated production plan, periodically revised, that helps them 
to make decisions. An open-loop updating approach is compared to a no-updating approach, which depends 
only on the initial condition of states of the system. An example shows the importance of information 
gathering to provide sub-optimal solutions for stochastic problems with imperfect information of states. It 
is also shown that sub-optimal production policies can improve the company’s profitability. 

 

1. INTRODUCTION 

Nowadays, the rational use of raw-material extracted from the 
environment is a vital issue that has been debated in academia 
and industry. The scarcity of raw material and pollution caused 
by the process of extraction and transformation justifies such 
a concern (Bouras et al., 2016). As a result, supply chains have 
included actions for recovering or recycling used products. 
Thus, planning the closed-loop supply chain has become an 
essential issue for companies reaching sustainability. Indeed, 
companies are more and more concerned about preserving the 
environment without, however, losing sight of their 
profitability; for such, they are reducing wastage and, 
simultaneously, recovering or recycling used products (Zhang 
et al., 2018). 

Conceptually, a reverse logistics system shifts products from 
their end destination to one where they can capture value or be 
appropriately disposed of. Some products get values by means 
of the remanufacturing process; they are our interest in this 
paper. An integrated reverse logistics system can be 
mathematically described through two different inventory 
balance equations: (1) a first equation to represent the forward 
channel, where products are made by original equipment and 
with available raw-material. They are stored in a serviceable 
storage unit before being moved to the marketplace; and (2) a 
second equation to describe the backward channel, where used 
products are collected from the marketplace and stocked in the 
recovery storage unit, before being remanufactured or 
discarded. It is worth mentioning that typical managerial 
activities applied to forward channels - such as production 
planning and control, scheduling, inventory control, etc. - can 
be easily replicated to the backward channel. 

Since the 90s of the last century, authors have proposed 
typologies to classify problems of reverse logistics. A small 
review is: Fleischmann et al. (1997) proposed a quantitative 
typology with three kinds of models: the first focus on the 
collection and transportation of used products, the second is 
related to the planning and scheduling of remanufacturing 
process, and the third consists in the planning of reusing items, 
parts, and products without remanufacturing; Chan et al. 
(2017) categorized problems of remanufacturing in different 
classes related to production planning, inventory control 
management, and manufacturing network design; and Abbey 
and Guide Jr (2018) introduced a typology based on industrial 
practices for strategical and operational activities of 
remanufacturing. Regard to these typologies is possible to 
classify this paper within the operational area related to the 
production planning and inventory control of remanufactured 
products.  

Many problems found in the literature have a stochastic nature, 
see, for instance, Govindan et al. (2015) and Zang et al. (2018). 
For part of them, the fluctuations of demand and return 
variables follow a normal distribution of probability (Modak 
and Kelle, 2019). Since linear balance equations usually 
describe inventory systems, these systems are Gaussian 
processes. Moreover, the inventory levels measured in the 
output of these systems can only be partially observed. 
According to Bensoussan et al. (2007), such an imperfect 
measure of inventory variables can be caused for several 
reasons, such as theft, depreciation, typos, wrong placement in 
the warehouse, etc. Note that the characteristics above 
described regard to inventory systems increase the difficulties 
of getting an optimal closed-loop solution for stochastic 
production planning problems enormously.  
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Some authors, as Bertesekas (2000), Bensoussan et al. (2007), 
Polotski and Kenne (2017), and Cheraghalikhani et al. (2019) 
have discussed approaches for solving stochastic inventory 
control problems with imperfect information of states. 
However, as mentioned above, providing an optimal aggregate 
production planning policy is not an easy task because of the 
complex nature of the stochastic problems. According to 
Bertesekas (2000), the certainty-equivalence principle and 
sufficient statistics concept can reduce the complexity of 
stochastic problems, and, as a result, a variety of sub-optimal 
approaches can be proposed. Such approaches provide sub-
optimal solutions that can be a good approximation for closed-
loop solutions obtained from original problems. 

In this paper, a sequential linear quadratic inventory-
production optimization problem for a class of discrete-time 
stochastic linear inventory systems affected by independent 
random perturbations is formulated. The inventory levels 
(states) of these systems are not perfectly observed, and they 
are subject to probabilistic constraints. The random 
perturbations are represented by seasonal models: one refers to 
the demand rate for new products, and the other refers to the 
return rate of used products that are discarded after their life 
cycle. For practical application, these random variables can be 
approximated by a Gaussian stochastic process, with mean and 
variance known over periods of the planning horizon. 
Gaussian approximation allows reducing all information 
required about the system in their first and second statistics 
moments (Graves, 1999). Thus, both inventory systems in the 
forward and reverse channels are described by Gaussian 
stochastic processes. Moreover, the measurement errors in the 
output of inventory storage unities of the forward and 
backward channels are also approximated by  Gaussian white 
noises. Since all random variables follow Gaussian 
distributions of probability, the resulting sequential stochastic 
problem belongs to the class of discrete-time, chance-
constrained Linear Quadratic Gaussian problems with 
imperfect information of states (DCLQG, as an acronym). 

In literature, inventory control and production planning 
problems based on non-constrained stochastic optimization 
models with perfect information of states are often found. 
However, a general class of discrete-time chance-constrained 
stochastic models under imperfect information on states is not 
so often. The reason is that many papers address only one or 
another characteristic associated with this class of stochastic 
problems; for instance: Soudjani and Majumdar (2018) discuss 
aspects related to chance-constrained on decision variables. 
On the other hand, Polotski and Kenne (2017) consider the 
problem with imperfect information on inventory and demand 
variables. In this paper, the DCLQG problem is considered. It 
encompasses many characteristics of the general class of 
stochastic problems. The assumption of the inventory systems 
is a Gaussian stochastic process allow reducing the DCLQG 
problem to an equivalent, but a deterministic problem. This 
equivalent problem is built by the conditional first and second 
statistical moments that are provided by the Kalman filter 
estimator. This strategy is possible due to the linearity and 
Gaussian nature of the system and the certainty-equivalence 
principle. The equivalent problem is easier to be solved than 
the stochastic one,  and  their  original  properties,  

 

Fig. 1. Diagram of the logistics system with two channels 
 

like linearity and convexity, are preserved. Different 
mathematical programming techniques can be applied to solve 
this deterministic problem. The main difference among them 
is the capacity to use the available information over the periods 
in order to update the optimal solution, see Bertesekas (2000) 

One purpose of this paper is to show that a feasible suboptimal 
solution for the DCLQG problem is possible by solving the 
equivalent deterministic problem in an open-loop updating 
approach. Such an approach consists of subdivided the 
planning horizon of the problem into a certain number of 
stages. At each stage, since the state of the stochastic system 
is measured, a sequence of control inputs are provided from 
the solution of the deterministic equivalent problem; however, 
only the first component this sequence is applied to the 
stochastic system, and a new state is observed. This procedure 
keeps on until the last stage of the planning horizon be reached. 
In literature, this approach is commonly named the "shrinking 
horizon," a kind of rolling horizon scheme, for more details, 
see Farahani et al. (2017). An example shows that the use of 
an approach with a simple feedback structure can improve the 
solution of the original stochastic problem significantly when 
compared to no-updating approaches.    

The next sections of the paper are distributed as follows: 
section 2 introduces a dynamic time-discrete model to 
represents forward-backward logistics systems. In sequence, a 
Chance-constrained, Linear Quadratic Gaussian Problem 
(DCLQG) is formulated. In section 3, the Kalman filter 
approach is considered to estimate serviceable and recovery 
levels of inventory by means of conditional first and second 
statistical moments. Based on such estimates, an equivalent 
deterministic problem is proposed.  In section 4, an open-loop 
updating approach is considered to provide an aggregated 
production plan. At last, section 5 presents a simple example 
to illustrate the use of an equivalent problem with an open-loop 
updating sub-optimal approach and to compare this kind of 
"closed-loop" solution with a "static" (i.e., no-updating) one. 
Section 6 concludes and introduces future works. 

2.  A LOGISTICS SYSTEM 

Fig. 1 illustrates the forward and backward channels of a 
make-to-stock company. Note that there are two storage units 
in this system: the first represents a serviceable inventory (unit 
1) containing manufactured and remanufactured products that 
should promptly meet the demand. The second describes a 
returnable inventory (unit 2), where the collected products are 
stored. After quality inspection, some of these used products 
can be moved to remanufacture processing, and others can be 
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disposed of. Note that there are two main reasons to disposal: 
(1) a low-quality of the used products, which makes them 
inappropriate for remanufacturing, and (2) the cost of 
maintenance of returnable inventory that reduces the 
profitability of the company.  

Some features of this logistics system are: 
− The demand and return rates are seasonal and follow 

independent, no correlated Gaussian distribution of 
probabilities.  

− Both manufacturing and remanufacturing unities have finite 
processing capacity. 

− There are minimum storage limits (i.e., safety-stocks) for 
serviceable and returnable inventory systems. 

− Serviceable and returnable Inventory levels are partially 
observed from output systems.   

− Output measurement errors associated with inventory units 
are Gaussian white noises. 

− Used products that do not pass the quality process are 
automatically sent to industrial waste, thus avoiding 
additional costs for the company. 

2.1. Inventory-production system 

The logistics system shown in Fig. 1 can mathematically be 
modeled by two interrelated discrete-time stochastic balance 
equations, which are constituted by two state variables that 
describe inventory levels in storage units 1 and 2; and three 
decision variables that are related to manufacturing, 
remanufacturing, and discard rates. There are also two outputs 
variables, from which the states of the system are observed. 
These set of equations are given by: 

x = x + u + u − d                       (1) 

x = x − u − u + r                       (2) 

    y = x +                                         (3) 

y = x +                                         (4) 

where, for each period k, the notation is given as follows: 

x  = serviceable inventory level; 
x  = inventory level of used products; 
u  = production rate of manufacturing machine; 
u  = production rate for remanufacturing machine; 
u  = disposal rate; 
dk = demand rate for serviceable products;  
rk  = return rate of used products; 
y  = partial observation of serviceable inventory level;  
y  = partial observation of inventory level of used products; 
  and   = white noises of output systems 1 and 2. 
k = denote the vector of available information of system 1 
and 2 at each period k, more details on section 3.1. 

The equation (1) describes the serviceable inventory system 
that represents the forward flow channel, where products must 
be available to meet demand promptly. On the other hand, 
equation (2) describes the returnable inventory system, which 
is related to used products waiting to be remanufactured or 
disposed of. Fluctuations of demand and return variables 
follow the Gaussian distribution of probabilities. This means 
that demand variables dk can be approximated by its mean 
value d  and finite variance σ ≫ 0. Similarly, the return 

variable rk can also be approximated by its first and second 
statistical moments, that is, r  and finite σ ≫ 0. Besides, 
according to Graves (1999), such an approximation makes it 
easier to deal with stochastic variables, without loss of 
generality. Note that the stochastic nature of systems (1) - (2) 
is necessarily Gaussian due to the linearity of the systems. 
Moreover, considering that the measurement errors of the 
outputs of these systems are white Gaussian noises, it is 
possible to estimate the states using the Kalman filter. 

2.2. The overall functional criterion  

For each period k of planning horizon N, a quadratic function 
is considered to describe the inventory/production costs for 
operating (1)-(2). The function, denoted by ℱ , is given by: 

ℱ (. ) = 𝐸{h (x ) + h (x ) |ℑ } 

                                     + c (u ) + c (u ) + c (u )        (5) 

where h1 and h2 are holding costs associated with serviceable 
and returnable inventory systems, respectively; c1, c2, c3 
denote, respectively, the production costs associated with 
manufacturing, remanufacturing, and discarding. The symbol 
E{.} is the expected value operator. The information 
vector  ℑ  contains all sufficient statistics measured from 
systems (1)-(2), at each period k (Bertesekas, 2000). At the end 
period k=T, the inventory cost is ℱ = E{h (x ) +
h (x ) |ℑ }. 

It is worth mentioning that other cost models can be used to 
represent ℱ (. ). However, quadratic costs have some 
advantages when compared to other costs, for instance: it is a 
convex and smooth function; It is easy to specify the break-
even point where the cost function should be minimized; and 
it gives to decision variables high penalties when they deviate 
too much from their source of origin and small penalties when 
minor deviations occur. In literature, production operations 
quadratic approximations are often used (Krajewski, 2017). 

2.3. Probabilistic physical constraints   

Serviceable and recoverable inventories – represented by 
storage units 1 and 2 in Fig. 1 – are physically limited spaces 
that receive manufactured-remanufactured products and used 
products collected from the marketplace, respectively. 
Usually, these physical storage spaces are designed to have a 
minimum and a maximum number of products, which satisfy 
the demand. In general, this minimum number of products is 
associated with a safety stock that reduces the risk of scarcity.  

The number of products to be repaired and returned is 
information extracted by two measuring devices, placed at the 
output of systems 1 and 2 (see Fig. 1). These devices record 
the value of output variables y   and y   that contain the states 
of systems x  and x . Note that devices  (3) and (4) have errors 
of observation that are described by normal white noises   
and  . Thus, systems (1)-(2) are stochastic processes under 
imperfect information of inventory state variables x  and x .  

The stochastic nature of systems (1)-(2) and output devices  
(3)-(4) make that lower bounds (i.e., safety stock) of the 
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observed levels of serviceable and returnable inventories can 
be violated at any period of planning horizon (Silva Filho and 
Andres, 2017). According to Jiang et al. (2019), this 
characteristic of stochastic systems has an important impact on 
the customer satisfaction level. More details on probabilistic 
constraints are added in the following. 

Based on the above, the lower bound of products in the 
serviceable storage unit (i.e., safety stock level x ) is used in 
order to guarantee that the demand will be satisfied anytime, 
even if unexpected events occur, such as a huge growth of 
demand. Usually, there is no upper bound since it is assumed 
that there is enough storage capacity in the serviceable storage 
unit. Similarly, in storage 2, where only returnable products 
are stored, a lower bound x  is also possible to be considered. 
Usually, x  is equal to zero, but for some companies, it may be 
interesting to maintain a level of safety stock in order to 
complement their production for remanufacturing products. 
However, there is a problem to be considered that is the 
stochastic nature of input-output systems (1)-(4). Such a nature 
implies in a real possibility of both observed inventory levels, 
that is, y  (serviceable) and y  (returnable), violated their 
lower bounds x  and x , respectively. Thus, to guaranty no 
violation of these physical constraints and also to preserve 
them explicitly in the formulation of the stochastic problem, 
they will be considered in probability as follow: Prob (y ≥
x | ℑ ) ≥ 1 − α   and Prob (y ≥ x | ℑ ) ≥ 1 − α . Note 
that Prob[∙ | ℑ ] is the conditional probability operator, the 
indexes α   and α  are probability indexes provided by the 
manager in the range [0,1).  

2.4. Formulating the stochastic problem 

A discrete-time chance-constrained linear quadratic Gaussian 
problem under imperfect information of states is here 
considered to provide an optimal sequential aggregate 
production plan {u1(k), u2(k), and u3(k); k = 0,1,2, …, T-1} for 
a reverse logistics problem of Fig.1. This problem, denoted as 
DCLQG, is formulated as follows: 

 Min ℱ(. ) = ∑ 𝐸
x

x

h 0
0 h

 
x

x
  

𝑎
ℑ
𝑎

  +

                         ∑

u

u

u

c 0 0
0 c 0
0 0 c

 

u

u

u

   

        such that,                                                                       (6) 

             
x

x
=

x

x
+  

1   1    0
0 −1 −1

u

u

u

+
−d
   r

   

            
y

y
=

x

x
+




 

               Prob (y ≥ x | ℑ ) ≥ 1 − α  

             Prob (y ≥ x | ℑ ) ≥ 1 − α  

             0 ≤ u  ≤ u ; u ≤ u ; u ≥ 0 
 

where Prob(∙) is the probabilistic operator, the indexes 1 and 
2 are percentages of probability provided by the manager in 

the range [0,1). Lower bounds on inventories variables (i.e., 
safety-stocks) are represented by x  and x , and upper bounds 
of processing capacities of manufacturing and 
remanufacturing variables are given by  u  and u . The finite 
planning horizon is described by N>0 periods. Note that the 
variables x  and x  are partially observed from output systems 
(3)-(4), and, consequently, the inventory costs give in (7) must 
be estimated for each period k with the base on the vector k. 
 

2.4. A suboptimal approach for (7) 

An optimal closed-loop solution for (6) is not a trivial task. The 
classical dynamic programming algorithm, proposed by 
Bellman, cannot be applied in reason of its large time-
consuming. Thus, Bellman's approach is “quasi-prohibitive” 
for the majority of practical applications. On the other hand, 
suboptimal approaches can be a good alternative to solve (6). 
Such approaches use statistical moments information to 
formulate equivalent problems to the original stochastic 
problem,  that are easier to be solved (Bertesekas, 2000). 
Considering that stochastic problem (6) assumes that all 
independent and dependent random variables follow Gaussian 
distributions, then all required information to convert this 
problem into a deterministic equivalent is the first and second 
statistical moments of them (Silva Fo. and Andres, 2017). 

3. Discrete-time Constrained Linear Quadratic Problem 

The first essential step to transform a stochastic problem into 
a deterministic equivalent one is to get all available statistical 
information extracted from the stochastic systems. Since the 
stochastic problem (6) is under imperfect state information, a 
previous necessary step is to estimate the statistics about these 
variables. These estimates are derived from mechanisms that 
use the information vector ℑ . This vector contains all 
information available about observed states and decision 
variables. As mentioned before, all variables of inventory 
systems (1)-(2) and output systems (3)-(4) are approximated 
by Gaussian random variables. As a result, these systems are 
completely driven by their first and second statistics moments 
(i.e., means and variances of random variables). As another 
important consequence, the estimations of inventory variables 
can be provided by using the Kalman estimator.  

Before formulating the deterministic problem, let us start 
estimating the states of systems (1)-(2). 

3.1. Estimating the Inventory Level by Kalman Filter 

The information vector k contains all current and past data 
related to output variables (i. e., y  and y )   and to decision 
variables (i. e. , u , u , u ). It is defined as follows: 
 
k = {u , u , u3, ..., u , u , u3, y , y … , y , y }  k-1   (7) 

 
From k, it is possible to compute the all-sufficient statistics 
required to estimate inventory variables. Based on these 
estimations, an equivalent deterministic problem to the 
stochastic problem (6) can be formulated.  
 
Thus, an estimator that uses the information vector k can 
produce expected values for inventory variables x  and x . 
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Due to the Gaussian nature of the problem (6), only the 
conditional first and second statistical moments of the 
inventory variables need to be calculated. As a result, such 
estimations can be calculated by the Kalman filter. The mean 
conditional inventory estimations are: 
 

𝑥 | = 𝑥 | + u + u − d + V
|

⋅ (V
|

+ 

       σ ) . [y − 𝑥 | − u − u + d ]      (8) 

 

𝑥 | = 𝑥 | − u − u + r + V
|

⋅ (V
|

+ 

       σ ) . [y − 𝑥 | + u + u − r ]      (9) 

and, conditional covariances evolutions (10) and (11): 
 

V
|

= V
|

− V
|

⋅ (V
|

+ σ ) ⋅ V
|

V
|

= V
|

+ σ         
(10) 

V
|

= V
|

− V
|

⋅ (V
|

+ σ ) ⋅ V
|

V
|

= V
|

+ σ         
(11) 

where  𝑥 | = E{x |ℑ }  and  V
|

= E{ x − 𝑥 | )   denote, 

respectively, the conditional estimates of mean and covariance 
of the inventory variables (i=1, 2). Note that σ ≥ 0 denotes 
the variance of white noise η.  

The initial conditions for (8)-(11) are given by: 

𝑥 | = x + V
|

⋅ (σ ) ⋅ (𝑦 − x )

V
|

= V − V ⋅ (V − σ ) ⋅ V
                (12) 

where x = E x  and V = E x − x  denote the mean 

value and variance of the initial state x , with i = 1 and 2. 

The inventory variable estimators, given by equations (8)-(12), 
are used to formulate the equivalent deterministic problem. 
Below are introduced each step of the transformation process. 

3.2. Constrained Linear Quadratic (CLQ) problem 

Based on conditional mean value and variance (i.e., equations 
(8)-(12)), the following transformations can be performed:  

3.2.a) Linear Quadratic (LQ) criterion:  

𝐸 (h ∙ x |ℑ ) = h ∙ 𝐸 x |ℑ = 

   = h ∙ 𝑓 x + 𝜏|ℑ  
∞

∞
⋅ 𝜌 (𝜏) ⋅ 𝜕𝜏 = 

        = h ∙ ∑ x + ∑ 𝐾                                  (13) 

 
where, for i=1,2 follows that: x = 𝐸 𝑥 | = 𝐸 𝐸 x |ℑ  
is the mean estimated value of inventory variables x  and x ; 

𝜌 (𝜏) = Φ (. ) is the probability density function of 

the random variable 𝛿 = 𝑥 | − x ; and the term 𝐾  denotes 
a partial integration constant of ith inventory cost at period k 
that depends on the temporal evolution of the conditional 

variance V | . Thus, the general constant is =∑ 𝐾 . 

3.2.b) Equivalent inventory systems  

Applying the principle of certainty equivalence, the random 
variables of systems (1) - (2), without any loss of generality, 
can be replaced by their respective first moments. Thus, 
considering dk=d   and rk=r , the equivalent deterministic 
systems are given by: 
 

x = x + u + u − d ;   x = E(x |ℑ )             (14) 
 

x = x − u − u + r ;   x = E(x |ℑ )             (15) 
 

It is assumed that {u = u , i = 1,2,3} with V   = V   = V   = 0. 
This means that decision variables of systems (14)-(15) are 
completely deterministic variables. Besides, output 
measurement systems (3)-(4) are given by y = x    and 
y  = x , because   and    are white noises, implying that 
𝐸{ } = 𝐸{ } = 0. 

3.2.c) Equivalent deterministic constraints 

The chance-constraints Prob. y ≥ x |ℑ ≥ 1 − α  can be 
rewritten as Prob. x ≥ x −  |ℑ ≥ 1 − α , for i=1,2. Then, 
using conditional estimations of mean and variance (8)-(12), 
the probabilistic operator can be mathematically handled in 
order to obtain the following deterministic inequalities: 
 

x ≥ x + V
|

⋅ Φε (α ) = x (k)               (16) 

x ≥ x + V
|

⋅ Φε (α ) = x (k)               (17) 
 

where   V |
≅ k. σ   and   V |

≅ k. σ  are variances of x  and 

x , respectively; and { x (k), i=1,2} denote safety-stock 
levels of serviceable and returnable storage units 1 and 2 (see 
Fig. 1). Note that magnitudes of x (k)  and x (k) tend to 
increase proportionally with the evolution of k over the 
planning horizon N. The reason is that systems (1)-(2) run in 
an open loop that is without any updating during each new 
period k. The probabilistic indexes 1∈ [0, 1), and 2∈
[0, 1) are chosen by the user and represent confidence levels 
of safety-stock for serviceable and returnable storage units.  
 

3.2.d) Equivalent deterministic problem – CLQ 
 

The purpose is to find an optimal sequence {u
∗
, u

∗
and u

∗
, 

k=0, ⋯ , N-1} that solves the following equivalent 
deterministic (CLQ) problem: 
 

Min 𝐹 = ∑  
x

x

h 0
0 h

 
x

x
 +

                    ∑

u

u

u

c 0 0
0 c 0
0 0 c

 

u

u

u

+      

      Such that                                                                       (18)     

             
x

x
=

x

x
+  

1   1    0
0 −1 −1

u

u

u

+
−d
   r

   

            x ≥ x (k); x ≥ x (k) 

            0 ≤ u  ≤ u ; u ≤ u ; u ≥ 0 
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At last, it is worth mentioning that problem (18) preserves the 
linearity and convexity characteristics of the original problem 
(6), and its solution is an open-loop solution for problem (6). 

4. A SUBOPTIMAL APPROACH 

Open-loop solutions for the problem (6) can be provided by 
solving the problem (18) through different sub-optimal 
approaches, see Bertesekas (2000) and Silva Fo & Andres 
(2017). Two of these approaches are briefly discussed below. 
 

Approach 1 – open-loop no-updating – considers that states of 
inventory systems (1)-(2) are estimated from outputs (3)-(4) 
only once at period k=0, that is, x = 𝑥 |  and x = 𝑥 | . 
Based on this initial information, problem (18) is solved 
without considering any additional information on the 
inventory levels of systems (1) - (2) over the remaining periods 
k of planning horizon N. This type of solution is known as 
"static” solution. It is an open-loop solution to the problem (6). 
 

Approach 2 – open-loop updating – considers that for each 
period k≥0, the current states of inventories are observed from 
(3)-(4) and their values estimated through Kalman filter, that 
is, 𝑥 |  and 𝑥 | . Follows then that x = 𝑥 |  and x = 𝑥 |  
are used as an initial condition, to provide an optimal 
sequential open-loop policy {(u

∗
, u

∗
, u

∗
),  j  [k, N-1]} that 

minimizes the CLQ problem (18). It is important to realize that 
only values of the optimal policy of period k, that is, 

u
∗
, u

∗
, u

∗
 are effectively used as input to systems (1)-(2). 

This means that the remaining sequence (i.e., u
∗
, u

∗
, u

∗
  

j  [k+1, N+1]) is completely ignored.  
 

As soon as new measures are taken from the outputs (3)-(4) of 
systems (1)-(2), the above procedure is repeated. As a result, 
the equivalent deterministic CLQ problem must be solved N 
times. It means that such an approach follows a “kind” of 
rolling horizon scheme, where the optimal open-loop 
production plan is provided by solving (18) in the following 
ranges: [0, N], [1, N], ⋯, [N-1, N].  
 

Fig. 2 illustrates the open-loop updating approach during a 
given period k of planning horizon N.  
 

 
Fig. 2: The open-loop updating approach  

5. USE CASE 

Consider a make-to-stock company whose products belong to 
the same family. After their life cycle, part of these products is 
collected from users and can be repaired or remanufactured. 
An example of a product with such a characteristic is a 
reusable container. Recently, the company implemented an 
efficient policy of reverse logistics, where the collected 
products are inspected before sending them to remanufacture 
or disposal. Besides, the unitary cost of remanufacturing is 
assumed to be slightly cheaper than the cost of manufacturing. 
Thus, it is expected that remanufacturing becomes an 
important alternative to reduce production costs and improve 
the company's profitability. Essentially, the company looks for 
an aggregate production policy that optimizes its profitability 
by means of reducing operational costs.   

It is assumed that the company has the same production 
structure as detached in Fig. 1. The main drawback of this 
structure is that serviceable and returnable inventory variables 
are not perfectly measured over the periods of the planning 
horizon. However, under the supposition of the Gaussian 
process for systems (1)-(4), a Kalman filter estimator (8)-(12) 
can be used to determine the current state of these variables. 
By means of such estimations and from the data given in Table 
1, the CLQ-problem (18) is formulated. As a result, optimal 
open-loop solutions can be provided as an alternative to the 
closed-loop optimal solution of the original problem (6).   

5.1. Numerical data 

In this use case, seasonal forecasting models are considered to 
describe fluctuations of demand and return variables. These 
models are given by dk=d +10(sin(.k/3)+5.k) and rk = r -
5(sin(.k/3)+2.k), respectively. The k and k are error 
measures of forecasting described as white Gaussian noises. 
The demand and return rates, to be applied to systems (1)-(2), 
were generated from these forecasting models. Note that they 
are frozen for this application, as exhibited in Table 1. 

Table 1. Problem’s data 
 

 
 

x = x = 100; x = 75;  x = 17;  u = 300; u = 300 

N = 12 months     𝜎 = 15   and    𝜎 =  10 
 

Confidence indexes:  α = 95%  and  α = 95% 
 

Mean values of demand and return rates:  d = r = 500; ∀k 
 

Inventory cost: ℱ = 2. x + 3. x  
 

Production cost: ℱ = 0.60 u + 0.55 u + 0.35 u  
 

It is important to note that the choices of the holding inventory, 
production and disposal costs were all arbitrarily defined, but 
with some practical reasons, for instance: i) the holding cost of 
serviceable inventory (h1=2$) be less than the holding cost of 
returnable inventory (h2=3$), reflects the fact of this last one 
contains costs with used product collection and inspection 
processes; and ii) the fact of the cost of manufacturing 
products (c1=0,60$) is slightly higher than the cost of 

Months (k) 1 2 3 4 5 6 7 8 9 10 11 12

Demand (d) 537 509 508 507 500 513 543 531 511 499 518 504

Return (r) 473 477 476 497 495 480 465 484 473 488 483 487
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remanufacturing used products (c2=0,55$) expresses the 
company's interest in getting “value” from remanufactured 
products, which has direct implications for its sustainability 
and, perhaps, "green" image in relation to concurrence. 

5.2. Scenarios 1: open-loop updating approach 

Trajectories exhibited in Fig. 3 and Fig. 4 show the behavior 
of estimated serviceable and returnable inventory variables. 
Note that estimates inventory variables 𝑥 |  and 𝑥 |   follow 
their mean values x  and x , which are provided as a solution 
of problem (18)  at each new period k of planning horizon N.  
 
On the other hand, the trajectories exhibited in Fig. 5 illustrate 
the behavior of decision variables, that is, manufacturing (u ), 
remanufacturing (u ), and disposing of (u ). It is possible to 
observe the remanufacturing decision variable u  dominates 
the production process, with almost 100% of its total monthly 
capacity is being used (i. 𝑒. , u ≅ 300), while the 
manufacturing decision variable u   uses approximately 85% 
of total capacity (i.e., u  ≅ 250). The main justification for the 
intense use of the remanufacturing process is its slightly lower 
cost compared to the cost of manufacturing. Also, it is worth 
observing that 39% of returnable products are being discarded. 
Improper quality of these used-products or/and costs reduction 
policy can explain such a discard. In the next section, these 
results are compared to the static solution of the open-loop no-
updating approach. 

5.2. Scenarios 2: the open-loop no-updating approach 

This type of open-loop approach provides a "static" solution. 
The reason is that during the optimization process of the 
problem (18), only the estimated initial states of the systems 
(1)-(2) are available. Fig. 6 shows the state trajectories, that is, 
the serviceable and returnable inventory levels, and Fig. 7 
presents their respective decisions rates. 

5.3. Comparing suboptimal solutions 

Now solutions based on updating and no-updating solutions 
are compared with their trajectories of states and decision 
variables and also with their total costs.  From comparing Fig. 
5 and Fig. 7, it is possible to realize that the updated approach 
provides variations of decision variables smoothly, while the 
no-updating approach provides strong variations on these 
variables. The main reason is that the no-updating approach 
needs to maintain high levels of safety stock to reduce future 
uncertainties about demand and return fluctuation levels. 
Indeed, from Fig. 6, it is possible to see that serviceable and 
returnable inventory trajectories grow over periods of the 
planning horizon created large safety-stocks. Such a feature 
can be justified considering that safety constraints (16) and 
(17) are strongly affected by the evolution of their respective 
second statistic moments. As discussed in subsection 3.2.c), 
these variances increase when the systems (1)-(2) is running in 
open-loop operation, i.e.,  V ≥ V   and  V ≥ V . 
Consequently, the levels of safety-stock of the inventory 
variables also tend to increase proportionally, that is, 
x (k + 1) ≥ x (k) and x (k + 1) ≥ x (k). It is worth 
understanding that the purpose of the growth of inventory 

lower-boundaries is to try ensuring a feasible open-loop 
solution for the problem (18). Thus, it is possible to conclude 
that such growth has an impact on decision variables, causing 
instability in the decision-making process. This explains the 
strong variations observed in Fig. 7.  
 

 

 
Fig. 3. Serviceable inventory trajectories - updating approach 

 

 
 

Fig. 4. Returnable inventory trajectories - updating approach 
 

 
Fig. 5. Trajectories of decision variables – updating approach 

 
Fig. 6. Inventory levels trajectories – no updating approach 
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x  

𝑥 |  
x  
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u  
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Fig. 7. Decision rates trajectories – no updating approach 

 

 
At last, the total cost of each approach is compared. It was 
observed that the cost of open-loop updating was $ 1,281,309, 
while the cost of the no-updating approach was $ 1,428,569, a 
difference of $ 147,260.  This means that the use of an updating 
mechanism to get information about the system (1)-(2) can be 
an interesting managerial practice to help in the process of 
improving the profitability of the company. Besides, managers 
can develop different scenarios and obtain important insights 
into the aggregate production process. 

6. CONCLUSION 

A discrete-time Linear Quadratic Gaussian problem with 
chance-constraints has been proposed in order to provide an 
optimal aggregate production plan. The whole system 
considers two logistic channels under imperfect information of 
states (i.e., about their inventory variables). The Gaussian 
nature of these two channels allows using the Kalman filter to 
estimate their current inventory levels. The complexity of the 
stochastic problem leads to the application of the certainty-
equivalence principle in order to formulate an equivalent 
deterministic problem. An open-loop updating approach was 
considered to provide a suboptimal solution to the original 
stochastic problem. A simple example compared the open-
loop updating approach to the no-updating approach. In 
conclusion, it was possible to verify that the periodically 
revised solution allows the manager to obtain an aggregate 
production plan that can improve the profitability of their 
companies. Future studies must consider other suboptimal 
approaches of literature, as discussed in Bertesekas (2000), 
and more complex real examples. 
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