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Abstract: This paper studies the distributed fault detection problem for linear time-invariant
(LTI) systems with distributed measurement output. A distributed H−/L∞ fault detection
observer (DFDO) design method is proposed to detect actuator faults of the monitored system
in the presence of a bounded process disturbances. The DFDO consists of a network of local fault
detection observers, which communicate with their neighbors as prescribed by a given network
graph. By using finite-frequency H− performance, the residual in fault detection is sensitive to
fault in the interested frequency-domain. The residual is robust against effects of the external
process disturbance by L∞ analysis. A systematic algorithm for DFDO design is addressed
and the residual thresholds are calculated in our distributed fault detection scheme. Finally, we
use a numerical simulation to demonstrate the effectiveness of the proposed distributed fault
detection approach.

Keywords: Distributed fault detection, linear system observers, finite-frequency, L∞ analysis.

1. INTRODUCTION

Fault diagnosis has been intensively studied to improve
the reliability of modern control systems, see Isermann
(2006); Ding (2008); Chen and Patton (2012); Zhang
et al. (2012) and the references therein. The method of
observer-based fault detection is widely-used among the
existing model-based fault diagnosis techniques Xu et al.
(2019). A fault detection observer is designed to make
the residual have the fault sensitivity and disturbance
attenuation ability simultaneously. As a result, H−/H∞
fault detection has been intensively studied in the past
two decades (Hou and Patton, 1996; Zhong et al., 2003;
Li and Yang, 2014; Wang et al., 2017b). The concept of
H−/H∞ fault detection was first proposed and formulated
as a special type of constrained optimisation problem in
Hou and Patton (1996). In many practical systems fault
signals have fnite-frequency domains, e.g. in the case of
incipient fault. Therefore, it is important and practical
to design fault detection observers in the fnite-frequency
domain. The fault detection observer design problem in
fnite-frequency domain was proposed for the first time (Liu
et al., 2005). An effective finite-frequency domain H−/H∞
fault detection method was proposed for descriptor system
in Wang et al. (2017b). The L∞ performance describes
the peak-to-peak gain of systems. Compared with H∞
performance, the peak-to-peak gain is more reasonable
and useful in residual evaluation and calculation (Ding,
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2008). The concept of H−/L∞ fault detection was first
proposed for continuous-time systems in Wang et al.
(2017a) and was later extended to the discrete-time case
in Han et al. (2018). Based on L∞ analysis, time-varying
thresholds were obtained. However, most of the existing
fault detection methods developed up to now assume that
measurement outputs are obtained from sensors that are
centrally located.

As the size and complexity of systems increase, several
practical systems have become large-scale and/or physi-
cally output distributed. For these systems, research on
decentralized or distributed FDI was carried out in the
literature as well (Zhang and Zhang, 2012; Li et al., 2016;
Marino et al., 2017). In Huang et al. (1999) fault toler-
ant decentralized H∞ control for symmetric composite
systems was presented. In Sauter et al. (2006), a decen-
tralized FDI scheme was studied for a network system.
A multi-layer distributed FDI scheme was proposed for
large-scale systems in Boem et al. (2017). In addition,
a distributed fault detection approach for interconnected
second-order systems was studied in Shames et al. (2011).
The monitored plant discussed in the above literature can
be separated into several interconnected subsystems. Each
fault filter or observer is designed for the corresponding
subsystem. For large-scale systems that do not physically
consist of certain subsystems or can not be separated
into several interconnected subsystems, distributed fault
diagnosis was studied only in very few publications. For
a single monitored discrete-time system, a distributed
fault diagnosis algorithm was proposed by using average-
consensus techniques in Franco et al. (2006).

Motivated by the above, this paper studies the distributed
fault detection problem for continuous-time LTI systems
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Fig. 1. Framework of distributed fault detection observer

with actuator faults. The measured output of the original
plant is physically distributed and the proposed distribut-
edH−/L∞ fault detection observer consists of a network of
local fault detection observers with a priori given network
graph (see Fig. 1 for an illustration). Each local fault
detection observer has access to only a portion of the
output of the known monitored system, and communicates
with its neighboring fault detection observers. H−/L∞
criteria are used in distributed fault detection design. The
local fault detection observer at each node is designed to
generate a residual which is sensitive to low frequency-
domain faults and robust against process disturbances.
The gain matrices in the DFDO are obtained by solving
linear matrix inequalities (LMI’s). In addition, the residual
threshold calculation is achieved by using L∞ analysis.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

Notation: For a given matrix M , its transpose is denot-
ed by MT and M−1 denotes its inverse. The symmetric
part of a square real matrix M is sometimes denoted
by Sym(M) := M + MT . The rank of the matrix M is
denoted by rank M . The identity matrix of dimension N
will be denoted by IN . The vector 1N denotes the N × 1
column vector comprising of all ones. For a symmetric
matrix P , P > 0 (P < 0) means that P is positive
(negative) definite. For a set {A1, A2, · · · , AN} of matrices,
we use diag{A1, A2, · · · , AN} to denote the block diagonal
matrix with the Ai’s along the diagonal, and the ma-

trix
[
AT

1 AT
2 · · · AT

N

]T
is denoted by col(A1, A2, · · · , AN ).

The Kronecker product of the matrices M1 and M2 is
denoted by M1⊗M2. For a signal x(t) ∈ Rn, its L∞ norm
is defined as ∥x∥∞ = supt>0 ∥x(t)∥, where ∥x(t)∥ denotes

the Euclidean norm of x(t), i.e. ∥x(t)∥ =
√
xT (t)x(t).

In this paper, a weighted directed graph is denoted
by G = (N , E ,A), where N = {1, 2, · · · , N} is a finite
nonempty set of nodes, E ⊂ N ×N is an edge set of
ordered pairs of nodes, and A = [aij ] ∈ RN×N denotes
the adjacency matrix. The (j, i)-th entry aji is the weight
associated with the edge (i, j). We have aji ̸= 0 if and
only if (i, j) ∈ E . Otherwise aji = 0. An edge (i, j) ∈ E
designates that the information flows from node i to node
j. A graph is said to be undirected if it has the property
that (i, j) ∈ E implies (j, i) ∈ E for all i, j ∈ N . We
will assume that the graph is simple, i.e., aii = 0 for all

i ∈ N . For an edge (i, j), node i is called the parent node,
node j the child node and j is a neighbor of i. A directed
path from node i1 to il is a sequence of edges (ik, ik+1),
k = 1, 2, · · · , l − 1 in the graph. A directed graph G is
called strongly connected if between any pair of distinct
nodes i and j in G, there exists a directed path from i
to j, i, j ∈ N . The Laplacian L = [lij ] ∈ RN×N of G is
defined as L := D −A, where the i-th diagonal entry of

the diagonal matrix D is given by di =
∑N

j=1 aij .

2.2 Problem formulation

In this paper, we consider a continuous-time LTI system
subject to actuator faults and disturbances represented by{

ẋ = Ax+Bu+ Ff + Ed
y = Cx

(1)

where x ∈ Rn is the state, u ∈ Rr is the input, f ∈ Rq

is the fault, d ∈ Rl is the disturbance, and y ∈ Rm

is the measurement output. A ∈ Rn×n, B ∈ Rn×r, F ∈
Rn×q, E ∈ Rn×l, C ∈ Rm×n are constant matrices with
appropriate dimensions. We partition the output y as

y = col(y1, · · · , yN ), where yi ∈ Rmi and
∑N

i=1 mi = m.
Accordingly, C = col(C1, · · · , CN ) with Ci ∈ Rmi×n. Here,
the portion yi = Cix ∈ Rmi is assumed to be the only
information that can be acquired by node i in the DFDO.

Assumption 1. The communication graph is a strongly
connected directed graph. The pair (C,A) is observable.

Assumption 2. The disturbance d is unknown but bound-
ed, and ∥d∥∞ is bounded by some known constant.

Assumption 3. The fault f(t) belongs to the following low-
frequency range

Ωf = {ω : ∥ω∥ 6 ωl} (2)

where ωl is a known scalar.

Remark 4. Note that Assumption 1 is a basic assumption
in distributed estimation and is a sufficient conditions for
the existence of a distributed observer (Park and Martins,
2017; Wang and Morse, 2018; Han et al., 2019a). The
assumption is necessary to construct a distributedH−/L∞
fault detection observer as well in this paper. This paper is
interested in faults belonging to the low-frequency range.
Hence, the method mainly focuses on low-frequency faults.
It is noted that in practice faults are in the low-frequency
domain, see for example Zhang et al. (2012). Moreover, the
low low-frequency range condition can be easily expended
to middle-frequency and high-frequency range conditions.

We will design a H−/L∞ DFDO for the system given by
(1) with the given communication network. The DFDO
will consist of N local fault detection observers, and the
local fault detection observer at node i has the following
dynamics

˙̂xi = Ax̂i + Li(yi − Cix̂i) +Bu

+Mi

N∑
j=1

aij(x̂j − x̂i)

hi = yi − Cix̂i

, i ∈ N (3)

where x̂i ∈ Rn is the state of the local observer at node i,
hi ∈ Rm

i is the residual of the local fault detection observer
at node i, aij is the (i, j)-th entry of the adjacency matrix
A of the given network, and Li ∈ Rn×mi and Mi ∈ Rn×n

are gain matrices to be designed.
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To analyze and synthesize the observer (3), we define the
local estimation error of the i-th observer as

ei := x̂i − x. (4)

By combining (1) and (3) we find that the error of the i-th
local fault detection observer is represented by

ėi = (A− LiCi)ei − Ed− Ff

+Mi

N∑
j=1

aij(ej − ei)

hi = Ciei

, i ∈ N . (5)

Let e := col(e1, e2, · · · , eN ) be the joint vector of errors

and d̃ := 1N ⊗d be the extended disturbance vector. Then
we obtain the global error system{

ė = Λe−M(L ⊗ In)e− Ẽd̃− F̃ f,
hi = Ciei, i ∈ N .

(6)

where

Λ = diag{A− L1C1, · · · , A− LNCN},
M = diag{M1, · · · ,MN},
Ẽ = IN ⊗ E, F̃ = 1N ⊗ F,

It is noted that d̃ is bounded since d is bounded.

Here, we will discuss how to design gain matrices for the
H−/L∞ DFDO (3) so that error system (6) is internally
stable while increasing the sensitivity of the low-frequency
domain fault on the residual and attenuating the effect of
the extended disturbance signal on the residual. The fault
detection thresholds also are given by L∞ performance.
More specifically, we want to design a DFDO such that
the following specifications hold:

(i) The error system (6) is internally stable, i.e., it is
asymptotically stable if the extended disturbance
vector d̃ and the fault f are zero.

(ii) The error system (6) satisfies a givenH− performance
level βi > 0, i ∈ N , i.e., for all t > 0

∥Ghif (s)∥− > βi, ∀ω ∈ Ωf , ∀i ∈ N (7)

(iii) In fault-free condition, the error system (6) satisfies
a given L∞ performance level γi > 0, i ∈ N , i.e., for
all t > 0

∥hi(t)∥ 6 γi
√

V (0)e−αt +N∥d∥2∞ (8)

where V (0) = e(0)TPe(0), P > 0 is a positive definite
matrix to be specified, α > 0 is a given positive scalar
and N is the number of nodes.

Remark 5. Here the L∞ performance index in (8) is the
extension of peak-to-peak gain in Ding (2008). The peak-
to-peak gain mainly deals with zero initial condition and
the disturbance norm is assumed as 1 in Ding (2008). The
L∞ performance index in this paper considers non-zero
initial condition. The intervals of residual are able to be
generated based on the disturbance bound for distributed
fault detection. Similar L∞ performance definitions have
been used to achieve fault detection in our previous works
(Han et al., 2018, 2019b).

Before presenting main results, let us recall the following
finite-frequency H− performance and related lemma.

Definition 6. Considering the following linear system{
ẋ = Ax+ Bu
y = Cx+Du

(9)

with transfer function matrix G(s) = C(sI −A)−1B +D.

The linear system (9) is said to have a H− performance
index β in finite frequency domain Ω, if its transfer
function satisfies the following inequality:

∥G(s)∥Ω− := inf inf
ω∈Ω

σ[G(jω)] > β (10)

where σ is the minimum singular value of the transfer
function , Ω is the given finite frequency domain.

Lemma 7. (GKYP Lemma) (Iwasaki and Hara, 2005).
For a linear system 9, given a symmetric matrix Π, the
following statements are equivalent:

(1) The finite-frequency inequality[
G(jω)

0

]T
Π

[
G(jω)

0

]
< 0, ∀ω ∈ Ω (11)

where Ω is defined in Table 1 and Π is a free chosen full
rank matrix.

There exist Hermitian matrices P and Q satisfying Q > 0
and[

A B
I 0

]T
Ξ

[
A B
I 0

]
+

[
C D
0 I

]T
Π

[
A B
I 0

]
< 0, ∀ω ∈ Ω (12)

where Ξ is defined in Table 1 and ω̄c = (ω̄1 + ω̄2)/2.

Table 1. Ω and Ξ for different frequency ranges

Low-frequency Middle-frequency High-frequency

Ω ∥ω∥ ≤ ω̄l ω̄1 ≤ ∥ω∥ ≤ ω̄2 ∥ω∥ ≥ ω̄h

Ξ

[
−Q P
P ω̄2

l Q

] [
−Q P + jω̄cQ

P − jω̄cQ ω̄1ω̄2Q

] [
Q P
P −ω̄2

hQ

]

3. MAIN RESULTS

3.1 Distributed fault detection observer design

Based on the Lemma 7, we propose the following lemma
to guarantee the error system satisfy finite frequency H−
performance.

Lemma 8. Given finite frequency H− performance index
βi > 0, if there exist a symmetric matrix Pf ∈ RNn×Nn

and positive definite matrix Q ∈ RNn×Nn, Q > 0 such
that [

Θ (Λ−M(L ⊗ I))TQF̃ − Pf F̃

⋆ −F̃TQF̃ + β2
i I

]
< 0 (13)

where Θ = ω2
l Q + He(Pf (Λ − M(L ⊗ I))) − CT

i Ci, then
the error system (6) satisfies the finite frequency H−
performance.

Proof. For the i-th local fault detection observer, we
define Π = diag(−I, β2

i I), then the finite frequency in-
equality is

GT
hif (jω)Ghif (jω) > β2

i I, ∀ω ∈ Ωf (14)

We have ∥Ghif (jω)∥ > βi, ∀ω ∈ Ωf .

On the other hand, by the GKYP lemma, the finite
frequency inequality (14) holds if and only if
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[
Λ−M(L ⊗ I) F̃

I 0

]T
Ξ

[
Λ−M(L ⊗ I) F̃

I 0

]
+[

C̄ 0
0 I

]T
Π

[
C̄ 0
0 I

]
< 0

(15)

Here, Ξ is chosen for low frequency domain and substituted
into (15). Then we get the inequality (13). Hence the finite
frequency H− is satisfied.

Next, we give L∞ performance constrain condition.

Lemma 9. Given α > 0, if there exist positive scalar
τi > 0, positive definite matrix Pi ∈ Rn×n, Pi > 0,
matrices Wi ∈ Rn×mi , Yi ∈ Rn×n such that the following
linear matrix inequalities hold[

He(P (Λ−M(L ⊗ I))) + αP − PẼ
⋆ −αI

]
< 0, (16)

τiC
T
i Ci − Pi < 0, ∀i ∈ N , (17)

where P = diag(P1, · · · , PN ), then the distributed fault
detection observer satisfies L∞ performance in (iii). Here
γi =

1√
τi
.

Proof. Take the following Lyapunov function for error
system (6)

V (e1, · · · , eN ) :=
N∑
i=1

eTi Piei, (18)

The derivative of V (e) is

V̇ (e) =eT (P (Λ−M(L ⊗ I)) + (Λ−M(L ⊗ I))TP )e

+ eTPẼd̃+ d̃T ẼTPe
(19)

We get the following inequality by(16)

V̇ 6 −αV + αd̃T d̃

6 −αV + α∥d̃∥2∞
(20)

Hence the error system is internally stable.

V (e(t)) 6 V (0)e−αt + α∥d̃∥2∞
∫ t

0

e−α(t−τ)dτ

6 V (0)e−αt + (1− e−αt)N∥d∥2∞
6 V (0)e−αt +N∥d∥2∞

(21)

where V (0) = eT (0)Pe(0).

By the inequality (17), we have

∥hi(t)∥2 6 1

τi
eTi (t)Piei(t)

6 1

τi
eT (t)Pe(t)

6 1

τi
(V (0)e−αt +N∥d∥2∞)

(22)

Here γi = 1√
τi
. Hence L∞ performance index (8) is

satisfied. The conditions (i) and (iii) are both satisfied.

Based on lemmas 8 and 9, we give the following theorem
to design H−/L∞ distributed fault detection observer.

Theorem 10. Given positive scalars α > 0, βi > 0, δ1 > 0,
δ2 > 0, matrix V , if there exist positive scalar τi > 0,
symmetric matrix Pf ∈ RNn×Nn and positive definite Q ∈

RNn×Nn, Q > 0 Pi ∈ Rn×n, Pi > 0 matrices Gi ∈ Rn×n,
Wi ∈ Rn×mi , Yi ∈ Rn×n such that the inequality (17) and
the following inequalities hold[

Φ11 Φ12 Φ13

⋆ Φ22 Φ23

⋆ ⋆ Φ33

]
< 0 (23)

[
Ψ11 Ψ12 Ψ13

⋆ Ψ22 Ψ23

⋆ ⋆ Ψ33

]
< 0 (24)

where

Φ11 = ω2
l Q+ δ1He(Γ)− CT

i Ci

Φ12 = −δ1GF̃ + ΓV
Φ13 = −δ1G+ ΓT + Pf

Φ22 = β2
i I +He(V TGF̃ )

Φ23 = −V TG− F̃TGT

Φ33 = −Q−G−GT

Ψ11 = δ2He(Γ) + αP

Ψ12 = −δ2GF̃
Ψ13 = −δ2G+ ΓT + P
Ψ22 = −αI

Ψ23 = −ẼTGT

Ψ33 = −G−GT

Γ = diag(G1A−W1C1, · · · , GNA−WNCN )− Y (L ⊗ I)

P = diag(P1, · · · , PN ), G = diag(G1, · · · , GN ), W =
diag(W1, · · · ,WN ), Y = diag(Y1, · · · , YN ), then the error
system satisfies condition (i)-(iii). The gain matrices of
distributed fault detection observer are given as

Li := G−1
i Wi, Mi := G−1

i Yi, i ∈ N . (25)

Proof. Pre- and post-multiply the inequality (23) with
the following matrix and its transpose[

I 0 (Λ−M(L ⊗ I))T

0 I F̃

]
From Wi = GiLi, Yi = GiMi, the inequality (13) holds.
Hence the finite frequency H− is satisfied.

Similarly, Pre- and post-multiply the inequality (24) with
the following matrix and its transpose[

I 0 (Λ−M(L ⊗ I))T

0 I Ẽ

]
Then the inequality (16) holds with Wi = GiLi, Yi =
GiMi. Hence the L∞ performance is satisfied and the
system is internally stable.

3.2 Distributed fault detection scheme

For the residual evaluation, one of the commonly used
approaches is the so-called threshold method (Ding, 2008).
In this paper, we adopt the following logical relationship
for fault detection

Hi(t) ≤ Hthi(t) , ∀i ∈ N =⇒ fault free
Hi(t) > Hthi(t) , ∃i ∈ N =⇒ fault occurs

(26)

where the residual evaluation function at each node is
defined as the 2-norm of the vector hi, namely Hi(t) =
∥hi(t)∥. Different from the widely-used constant threshold,
a time-varying threshold is obtained by L∞ analysis.
Therefore we adopt the following time-varying threshold

Hthi(t) = γi

√
λmaxē20e

−αt +N∥d∥2∞
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Fig. 2. The communication graph among nodes

where ē0 ∈ R denotes the upper bound of ∥e(0)∥, λmax is
the maximum eigenvalue of P ∈ Rn×n, P > 0 which is
obtained by Theorem 10.

Based on the previous lemmas and theorem we have the
following algorithm to design H−/L∞ DFDO:

Algorithm 1 Distributed fault detection

1: For each i ∈ N , solve the LMI’s (23) and (24) for all
i ∈ N and get Pi, Gi, Wi, Yi.

2: Define

Li := G−1
i Wi,Mi := G−1

i Yi, i ∈ N
3: Calculate the local residual signal hi at each node i

using local fault detection observer (3).
4: Calculate the local time-varying threshold Hthi.
5: Make the fault detection decision by comparing the

residual evaluation function Hi(t) with time-varying
threshold Hthi(t) at each node i.

4. SIMULATION EXAMPLE

In this section, we will use a numerical example borrowed
from Saif and Guan (1992) to illustrate the effectiveness of
our approach. Consider a linear system (1) with coefficient
matrices given by

A =


−1 0 0 0 0 0
−1 1 1 0 0 0
1 −2 −1 −1 1 1
0 0 0 −1 0 0
−8 1 −1 −1 −2 0
4 −0.5 0.5 0 0 −4

 , B =


0
0
0
2
0
2

 , E =


0
1
0
1
0
0

 ,

C =

2 0 0 2 0 0
2 0 1 0 0 0
3 0 1 0 0 1
0 0 0 2 1 0

 =

[
C1

C2

C3

]
, F = B.

The communication network is given by the strongly
connected digraph in Fig. 2. The Laplacian of this graph
is given by

L =

[
1 −1 0
0 1 −1
−1 −1 2

]
.

It can be seen that none of the local systems (Ci, A)
is observable, but (C,A) is an observable pair. We will
apply the conceptual Algorithm 1 to design a distributed
H−/L∞ fault detection observer.

We choose α = 3. H− performance index is chosen as
βi = 1, By Algorithm 1, the L∞ performance index are
calculated as γ1 = 0.2183, γ2 = 0.3025 and γ3 = 0.2564.
The local observer gain matrices are calculated.
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Fig. 3. The residual evaluation function and its threshold
at node 1
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Fig. 4. The residual evaluation function and its threshold
at node 2
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Fig. 5. The residual evaluation function and its threshold
at node 3

In the simulation, the disturbance is chosen as random
noise with bound ∥d∥∞ = 0.6. In addition, we take the
following actuator fault:

f(t) =

{
0 0s 6 t < 10s
3 10s 6 t 6 20s

(27)

where the time units are seconds.
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In the simulation, the initial state of the observed system

is taken as x(0) = [1 3 −2 −3 −1 2]
T
. For each local fault

detection observer the initial state is taken to be zero.

Figs. 3–5 show the residual evaluation functions and their
time-varying thresholds associated with each local fault
detection observer. It can be seen that the residual eval-
uation functions at nodes 1 and 3 exceed their thresholds
when the fault occurs.

5. CONCLUSION

In this paper, we have presented a distributed observer-
based fault detection scheme for LTI systems with a
bounded process disturbance. A network of local fault
detection observers are built at each measurement node.
The information among the local fault detection observer-
s is exchanged by a known strongly connected directed
graph. The local fault detection observer at each node is
designed to detect the actuator fault of the monitored sys-
tem. By using H−/L∞ analysis, the residuals in distribut-
ed fault detection are sensitive to interested frequency-
domain fault and robust against external bounded distur-
bances. The local residual thresholds are calculated by L∞
analysis in our DFDO. A numerical simulation illustrates
the effectiveness of the proposed H−/L∞ DFDO design
method.
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