Glocal Traction Control for In-wheel-motor Electric Vehicles
- A Passivity Approach -

Binh-Minh Nguyen*, Koji Tsumura*, Shinji Hara**

*The University of Tokyo, **Tokyo Institute of Technology, Japan

Abstract: Although traction control of in-wheel-motor electric vehicles (IWM-EVs) has been studied for years, we still face the essential theoretical issue: How to assure the stability of the overall system while attaining both global and local control performances? This issue has been neglected by almost the works in the literature. The main reason is due to the nonlinearity and complexity in vehicle dynamics, especially the vehicle driven by multi-actuators. A new traction method is proposed in this paper in the glocal (global/local) framework to overcome this problem. The command to each local IWM includes two signals: (i) the local signal through anti-slip control in the lower-layer, and (ii) the global signal distributed from the driver or the upper-layer controller that managing the average wheel velocity. Stability of the whole system is guaranteed based on the fundamental passivity theory. The effectiveness of the proposed approach is verified by using Carsim/Matlab co-simulator.

Keywords: in-wheel-motor, electric vehicle, multi-agent system, traction control, passivity.

1. INTRODUCTION

Motion control of electric vehicles (EVs) has been an interesting topic for nearly two decades, thanks to the remarkable merits of in-wheel-motor (IWM) actuators (Hori, 2004). Various motion control methods have been proposed, such as side slip angle control (Nguyen et al, 2013) and range extension control (Fujimoto et al, 2015). This paper focuses on the most basic issue of EV motion control. It is traction control which prevents loss traction of driven road wheels. As shown in Table 1, traction control of EV includes four main groups, namely (I) wheel slip ratio control, (II) anti-slip control, (III) wheel velocity control, and (IV) wheel driving force control.

The number of IWM actuators has increased, from the two-IWM-COMS designed by Toyota to the eight-IWM-KAZ at Keio University (Shimizu, 2001). With the development of IWM technology (Sato et al, 2016), EVs driven by more than ten IWMs will be soon realized. This uptrend makes EV more powerful, flexible, and safer. An approach to utilize the benefit efficiently is to consider this kind of IWM-EV as a special type of multi-agent system (Nguyen et al, 2016a, 2017, 2019) as illustrated in Fig. 1. Each wheel is a local agent that physically interacts with each other to generate the global motion of the vehicle body as well as its local motion. Almost the previous researches that neglected the physical interaction face a non-trivial issue. That is how to theoretically guarantee the stability of the overall system by taking the nonlinearity of tire force characteristics properly.

The basic idea of this paper comes from the concept of “global (global/local) control,” in which the control actions are restricted locally while the purposes are to achieve both the local and global behaviours (Hara et al, 2015). This concept has been applied in EV motion control by different aspects as follows: We clarified the necessity of analysing the EV system as a whole based on “generalized frequency variable representation” (Nguyen et al, 2016b). A hierarchically decentralized motion control system was established based on “shared model set” (Nguyen et al, 2017). Recently, we presented a new hierarchical LQR strategy for optimal control of driving force (Nguyen et al, 2019a). However, the linearization of the vehicle dynamics is required for “generalized frequency variable” and “shared model set” approaches; and time-varying modelling is essential for our hierarchical LQR algorithm.

This paper contributes a more convenient design method for IWM-EV traction control based on passivity theory. The term passivity-based-control (PBC) was introduced thirty years ago as an approach to the adaptive control problem of rigid robots (Ortega et al, 1989). PBC has been attracted by control society worldwide, thanks to its convenience in system stabilization. In recent years, PBC has been applied in large scale dynamical control systems such as robot networks (Hatanaka et al, 2015) and electric power networks (Tsumura et al, 2018). This paper firstly shows that IWM-EV can be modelled as a hierarchically interconnected system. The lower-layer is composed of the local wheel dynamics, and the upper-layer is the vehicle body dynamics. The local wheels interact with each other through the aggregation and
distribution channels that connect two layers. Two traction control strategies, namely Strategies 1 and 2, are established utilizing this model. For the both strategies, a local controller C_{ij} is designed at each wheel. The output of C_{ij} is the local control signal T_{ij} for preventing the slip even if road condition varies. In Strategy 1, the actual IWM torque is the sum of T_{ij} and T_{ij} which is distributed from the driver’s driving command T_{cmd}. Unlike Strategy 1, the signal T_{ij} in Strategy 2 is distributed from a signal T_{i} which is the output of a upper-layer controller C_{g} that manages the average wheel velocities. The stability of Strategies 1 and 2 can be guaranteed by applying the passivity theory to the feedback systems. Note that stability of the overall system can be maintained even if a single wheel is disconnected from the traction control system. Moreover, by suitably distributing the torque from T_{cmd} or T_{i} to T_{ij}, additional control objectives can be attained. The traction control in this paper can be classified into group II in Table 1. The original idea was presented at IEEE VPPC 2019 (Nguyen et al., 2019b), in which the motion control system is completely decentralized and the linear tire force model is used for passivity analysis. This paper extends the PBC idea to the hierarchically decentralized control system, and the passivity is analysed using nonlinear tire force model.

2. MODEL OF IWM-EV

We consider an EV driven by N IWMs as shown in Fig. 1 (N is an even number). Let m be the total mass of the vehicle, I be the wheel inertia, and r be the wheel radius. T_{i} is the torque generated by IWM. The longitudinal force (driving force) and the vertical force at each wheel are denoted by F_{x} and Z_{i} respectively. F_{ar} represents the air resistance. The longitudinal velocity of the vehicle is v, while ω_{i} is the rotational velocity of the wheel. Let I_{v} be the all-one-column-vector of size N, and define the following vectors:

$$
T = [T_{1} \ldots T_{N}]^T, \quad F = [F_{x1} \ldots F_{xN}]^T, \quad \omega = [\omega_{1} \ldots \omega_{N}]^T
$$

The motion of the vehicle body (Ψ) is given by

$$
\dot{v} = I_{v}^T F - F_{ar} \tag{1}
$$

Neglecting the wind velocity, the air resistance is given by

$$
F_{ar} = \rho v_{x} |v_{x}|
$$

where ρ is the air resistance coefficient. On the other hand, the local motion of the wheel U_{i} is

$$
J \dot{\omega}_{i} = T_{i} - r F_{i} \tag{3}
$$

Let ϵ be a small number to avoid division-by-zero, the slip ratio of the wheel is defined as

$$
\lambda_{i} = \frac{r \omega_{i} - v_{x}}{\max\{r \omega_{i}, v_{x}, \epsilon\}} \tag{4}
$$

Fig. 2 describes the typical relationship between the driving force and the slip ratio (Jazar, 2008). The driving force gradually increases as the slip ratio increases from 0 to an optimal value λ'. Since the slip ratio exceeds λ', the driving force is decreased to a minimum value as the slip ratio approaches to 1. The tire force is usually modelled by an empirical function, namely “magic formula” (Pacejka, 2012):

$$
F_{i}(\lambda_{i}) = \begin{cases} f_{l}(\lambda_{i}) & \text{if } \lambda_{i} \geq 0 \\ -f_{l}(-\lambda_{i}) & \text{if } \lambda_{i} < 0 \end{cases} \tag{5}
$$

with

$$
f_{l}(\lambda_{i}) = A_{i} \sin \left[B_{i} \tan^{-1} \left(C_{i} \lambda_{i} - D_{i} \left(C_{i} \lambda_{i} - \tan^{-1} (C_{i} \lambda_{i}) \right) \right) \right]
$$

where $A_{i} = \mu Z_{i}$ with the friction coefficient μ. The friction coefficient and the shape factors B_{i}, C_{i} and D_{i} are identified.

Table 1. Review of traction control methods for electric vehicles

<table>
<thead>
<tr>
<th>Group</th>
<th>Objective</th>
<th>Scheme</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>Wheel slip ratio control</td>
<td>Nonlinear control (sliding-mode)</td>
<td>- Chattering problem - Physical interaction is neglected</td>
<td>Amodeo et al, 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear control by linearizing the tire slip dynamics</td>
<td>- Linearization is complex - Physical interaction is neglected</td>
<td>Hori et al, 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear control by hierarchical LQR</td>
<td>- Time-varying model is required - Physical interaction is considered</td>
<td>Nguyen et al, 2019a</td>
</tr>
<tr>
<td>(II)</td>
<td>Anti-slip control</td>
<td>Zero-slip-model following control</td>
<td>- Optimal traction is not assured - Physical interaction is neglected</td>
<td>Li et al, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum transmissible torque estimation</td>
<td>- Optimal traction is not assured - Physical interaction is neglected</td>
<td>Yin et al, 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Based on wheel velocity control</td>
<td>- The system is simple to implement - The physical interaction is neglected</td>
<td>Suzuki et al, 2010</td>
</tr>
<tr>
<td>(III)</td>
<td>Wheel velocity control</td>
<td>Driving torque distribution by local wheel velocity control</td>
<td>- Simple linearized model is required - Physical interaction is considered</td>
<td>Nguyen et al, 2016b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hierarchically decentralized control of vehicle and wheel velocity</td>
<td>- Simple linearized model is required - Physical interaction is considered</td>
<td>Nguyen et al, 2017</td>
</tr>
<tr>
<td>(IV)</td>
<td>Wheel driving force control</td>
<td>Direct driving force control based on PI controller</td>
<td>- Driving force dynamics is poorly modelled - Physical interaction is neglected</td>
<td>Amada et al, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Driving force control based on wheel velocity and virtual variable control</td>
<td>- Control configuration is complex - Physical interaction is neglected</td>
<td>Maeda et al, 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear control by hierarchical LQR</td>
<td>- Time-varying model is required - Physical interaction is considered</td>
<td>Nguyen et al, 2016a</td>
</tr>
</tbody>
</table>
3. PASSIVITY APPROACH TO IWM-EV

3.1 Fundamental of passivity theory

Consider a general system given by a state space equation

\[
\begin{align*}
\dot{x} &= f(x, u) \\
y &= h(x, u)
\end{align*}
\]

(6)

with input vector \(u(t) \in \mathbb{R}^p \), output vector \(y \in \mathbb{R}^q \), and the state vector \(x(t) \in \mathbb{R}^n \). The input is assumed to be piecewise continuous in \(t \) and to be bounded for all \(t \in \mathbb{R} \).

Definition 2 (Khalil, 2002): The system (6) from input \(u \) to output \(y \) is said to be passive if there exists a positive semidefinite function \(S: \mathbb{R}^n \rightarrow \mathbb{R} \), called storage function, such that \(\dot{S} \leq y^T u \) holds for all \(x \in \mathbb{R}^n \) and \(u \in \mathbb{R}^p \). In addition, (6) is input strictly passive if

\[
\dot{S} \leq y^T u - \delta_0 \|u\|^2
\]

for some \(\delta_0 > 0 \), and output strictly passive if

\[
\dot{S} \leq y^T u - \delta_0 \|y\|^2
\]

for some \(\delta_0 > 0 \).

Considering the interconnected system in Fig. 4, the fundamental passivity theorems are stated as follows.

Theorem 3-a: The feedback connection system shown in Fig. 4 is passive with the input \((\zeta_i, \xi) \) and the output \((y_1, y_2) \), if \(H_1 \) and \(H_2 \) are passive.

Theorem 3-b: If both subsystems \(H_1 \) and \(H_2 \) in Fig. 4 are output strictly passive, then the closed loop system \(H \) with input \((\zeta_i, \xi) \) and output \((y_1, y_2) \) has a finite \(\ell_2 \)-gain. Moreover, when \(\zeta_i = 0 \), the closed loop system with input \(\xi \) and output \(y_1 \) has a finite \(\ell_2 \)-gain if either (i) \(H_1 \) is passive and \(H_2 \) is input strictly passive, or (ii) \(H_1 \) is output strictly passive and \(H_2 \) is passive.

3.2 Passivity analysis of IWM-EV dynamics

Utilizing the Definition 2 with the notice to Remark 1, we have the following proposition. The proof is similar to that of Propositions 1, 2, and 3 in the author’s recent works (Nguyen et al, 2019b), so is omitted.

4. PASSIVITY BASED GLOCAL TRACTION CONTROL

Based on Proposition 4, we can simply design a motion control system for the IWM-EV, although it is a complex nonlinear system. For instance, we might design a strictly passive controller for feedback control of wheel velocities (Nguyen et al, 2019b). This paper will extend the PBC from wheel velocity control to anti-slip control, with the assumption that the vehicle velocity or its appropriate estimates are available.

4.1 Strategy 1-Decentralized traction control

This sub-section provides Strategy 1 for designing local controllers \(C_{ij} \) to guarantee the stability of total system. This control scheme is applicable when the torque command \(T_c = [T_{r,i} \ldots T_{r,N}] \) is distributed to each wheel based on the driver’s acceleration command \(T_{cmd} \), i.e:

\[
T_{r,i} = k_i \times T_{cmd}
\]

(7)

where the ratio \(k_i \) satisfies \(k_1 + \ldots + k_N = 1 \) and \(k_i > 0 \). The distribution vector is \(k = [k_1 \ldots k_N]^T \). The system is described in Fig. 5, in which a possible option of the local control law \(C_{ij} \) for anti-slip control is given by

\[
T_{r,i} = -K_{a,i}(r_\omega - v_x) \text{sign}(\omega_i) \text{sign}(r_\omega - v_x) - K_{o,i} \omega_i
\]

where \(K_{a,i} \) and \(K_{o,i} \) are the control gains.

Proposition 5: The anti-slip control system in Fig. 5 with the local controller \(C_{ij} \) given by (8) is output strictly passive from the input \(T_r \) to the output \(\omega \) if the control gains are selected such that \(K_{a,i} > 0 \) and \(K_{o,i} > 0 \).
Proof: Select the storage function \(S = S_v + \sum_{i=1}^{N} S_{w,i} \). Then, it is readily seen from (1) ~ (3) that the derivative is given by
\[
\dot{S} = m v \ddot{v} + \sum_{i=1}^{N} J_i \omega_i \dot{\omega}_i = \left(\sum_{i=1}^{N} F_i - \rho v |v| \right) v + \sum_{i=1}^{N} J_i \omega_i \dot{\omega}_i
\]
(9)

Note from Fig. 4 that we have
\[
\omega^T T_i = \omega^T (T - T_i) = \sum_{i=1}^{N} \omega_i (T - T_{ij})
\]
(10)

This together with (3) ~ (5) and (9) leads to
\[
\omega^T T_i - \dot{S} = \sum_{i=1}^{N} \left(\max |r \omega_i - v_i, \epsilon_i, \lambda_i, \Omega_i(\lambda_i) \right) + \left(\rho |v_i| \right) v_i^2 + \sum_{i=1}^{N} K_{w,i} \omega_i^2
\]
(11)

There exist four terms on the right-hand side of (11). It is clear from Remark 1 that the first and second terms are always non-negative. Let define \(\delta_0 \) be \(\min \{K_{w,i} \} > 0 \), then we can see that \(\omega^T T_i - \dot{S} \geq \sum_{i=1}^{N} K_{w,i} \omega_i^2 \geq \delta_0 (\omega^T \omega) \) holds. In other words, \(\dot{S} \leq \omega^T T_i - \delta_0 (\omega^T \omega) \) holds true, which implies that the system is strictly passive.

4.3 Strategy 2: Hierarchical traction control

Next, we consider the situation such that \(T_i \) is not distributed from the driver, but from the upper motion control layer, i.e., in the autonomous driving system. Thanks to the anti-slip control law in the lower-layer given by (8), the average of the wheel’s longitudinal velocity is quite closed to the vehicle velocity. Define the average rotational velocity of the wheels \(\bar{\omega} = \frac{1}{N} \omega \) / \(N \)

(13)

then, it is possible to control \(r \bar{\omega} \) in the upper-layer, and distribute the global control signal to the lower-layer suitably. The Strategy 2 is described in Fig. 6, where \(r \bar{\omega} \) can be treated as the reference of longitudinal velocity of the vehicle. The distribution vector \(k \) is defined similarly to the previous sub-section. Now, it is essential to investigate the lower-layer in Fig. 6. It is the system inside the red rectangular, with the input \(T_g \) and the output \(r \bar{\omega} \).

Proposition 6: The lower-layer system (inside the dashed rectangular with red color) in Fig. 6 consisting of \(\mathcal{U}_i \), \(C_{ul} \) \((i = 1, \ldots, N) \) and \(\mathcal{S}_i \) is output strictly passive from the input \(T_g \) to the output \(r \bar{\omega} \). Hence, the system depicted in Fig. 6 is stable if \(C_{ul} \) is output strictly passive.

Proof: Let \(T_i = \begin{bmatrix} T_{r,1} & \ldots & T_{r,N} \end{bmatrix} \), we have \(T_g = T_{r,i} / k_i = \ldots = T_{r,N} / k_N \) and: \(r \bar{\omega} \mathcal{T}_g = \frac{r}{Nk_i} T_{r,i} \omega_i + \ldots + \frac{r}{Nk_N} T_{r,N} \omega_N \). Since \(0 < k_i < 1 \), it is clear that \((1/k_i) > 1 \). Consequently, the following inequality holds true

\[
r \bar{\omega} \mathcal{T}_g > \frac{r}{N} (T_{r,i} \omega_i + \ldots + T_{r,N} \omega_N) = \frac{r}{N} \omega^T T_i
\]

(14)

As a result of Proposition 5, the lower-layer system in Fig. 6 is output strictly passive with the storage function
\[
S = \frac{r}{N} \left(S_v + \sum_{i=1}^{N} S_{w,i} \right)
\]

(15)

Following the Theorem 3, if \(C_{ul} \) is an output strictly passive transfer function, the stability of the overall system in Fig. 6 is assured. This completes the proof.

5. VERIFICATION BY SIMULATIONS

5.1 Simulation model

This paper utilizes Carsim/Matlab co-simulator to evaluate the proposed control methods. We selected the pickup vehicle model from the library of Carsim, although it is originally a gasoline vehicle model. To use this model for our purpose, it has been modified to be EV by establishing the IWM block in Matlab/Simulink, and the output torques of IWM are exported to Carsim through the ports IMP_MYUSM_*. The notation * represents the actuator index. By this way, we finally establish an electric pickup vehicle driven by four IWMs \((N = 4)\). The vehicle mass without load is \(m_o = 1998 \text{ kg} \), and the maximum load capacity is \(2000 \text{ kg} \). Each wheel’s inertia and radius are \(J = 3.2 \text{ kgm}^2 \) and \(r = 0.402 \text{ m} \), respectively.

5.2 Test1: Strategy 1 with energy management

Firstly, we evaluate the decentralized control system in Fig. 5. The driving command \(T_i \) is a vector of size \(4 \). It is distributed from the total driving command \(T_{cmd} \) of the driver model:
\[
T_{r,i} = k_i \times T_{cmd}, \quad i \in [1, 4]
\]

(16)

The distribution ratios updated in real-time in order to minimize the total output of the motors (Fujimoto et al., 2015). The driver accelerates the vehicle from the high friction surface \((\mu = 0.85)\) to the low friction surface \((\mu = 0.2)\) at \(t = 3.5 \) [s]. Notice that \(T_{cmd} \) is the same for two cases as follows:
The signal K_{a_i} is set smaller than K_{a_i} at every control period.

By trial-and-error, a pair of local control gains is chosen as \{ $K_{a_i} = 120$; $K_{a_i} = 0.002$ \}. This might not be the optimal design, but one of the suitable selections. Besides that, as described in Fig. 8(b), the motor torques are reduced suitably as the vehicle enter the slippery surface at 3.5 second. Consequently, the wheel velocities are always closed to the vehicle velocity, as shown in Fig. 8(a).

5.3 Test 2: Strategy 2 under the condition that an actuator is suddenly disconnected from the power source

Next, we will verify the hierarchically decentralized control system in Fig. 6. Unlike Test 1, the signal T_r is not distributed from the driver’s driving command but from the signal T_g generated by the upper-layer controller C_g. The lower-layer is designed similarly to that in Test 1. There exist various options of the upper-layer controller C_g that satisfying the statement of Proposition 6. In this simulation, we consider a possible candidate of C_g as follows

$$C_g(s) = -\frac{\eta_x}{s + \alpha_g}$$

(17)

By trial-and-error, a suitable pair of the global control gains is selected as \{ $\eta_x = 100,000$; $\alpha_g = 30$ \}. The vehicle is required to travel autonomously for 40 seconds on a hill with two corners, and the friction coefficient is $\mu = 0.45$. Similarly to Test 1, we apply the optimal torque distribution law proposed by Fujimoto et al again to update the distribution ratio k at every control period. To challenge the proposed system, we assume that the 3rd wheel lost the electric power (i.e., the electric wire is broken, or the wireless power transfer circuit is failure due to some reasons) at $t_f = 10$ second. We assume that this failure is diagnosed by the control system after $\Delta t = 0.1$ second. Since $t_f + \Delta t$, the upper-layer neglects the velocity measurement of the 3rd wheel; and it just aggregates the velocity measurement of the wheels numbered 1, 2, and 4. On the other hand, the global control signal is distributed to the wheels numbered 1, 2, and 4.

The simulation results of Test 2 are drawn in Fig. 9. As seen in Fig. 9(b), the motor torques are distributed to follow the desired velocity pattern and minimize the motor output energy. Right after t_f, the motor torque of the 3rd wheel (the pink-dash-line) is always zero. It should be emphasized that the stability of both global and local motions of the vehicle is maintained even for this kind of a big failure. As shown in Fig. 9(a), the longitudinal velocities of all wheels, and the longitudinal velocity of the car body can successfully follow their reference pattern. The velocity tracking errors slightly increase during the cornering due to the influence of the lateral motion to the longitudinal motion.
6. CONCLUSIONS

The contribution of this paper is twofold. Firstly, we proposed a hierarchically decentralized model to capture the nonlinear dynamics of IWM-EV. This is a useful model for designing the IWM-EV motion control with proper treatment of physical interaction. Secondly, this paper introduces two new strategies for traction control of IWM-EV based on the glocal (global/local) concept with passivity theory. We have confirmed that the traction control system using either strategy can achieve both local objective (anti-slip) and global objective (system stabilization). Additional global objective can be achieved, such as optimal energy consumption. Moreover, the control systems can tolerate the actuator failures which might happen in realistic world.

To the best of our knowledge, this research is one of the first theoretical efforts towards the stability of the overall traction system, because the PBC systems can be designed in a very simple way. The complicated calculations such as linearization around operating point, pole-placement, and time-varying LQR are not necessary in our framework.

In future, we will implement the proposed control system for real-time experiments. Besides that, we will compare the performances of our strategy with other traction control strategies in the literature. How to apply passivity to full vehicle model with respect to longitudinal, lateral, and roll dynamics is certainly a challenge and interesting issue.

ACKNOWLEDGEMENTS

This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology in Japan through Grant-in-Aid for Scientific Research (B) No. 19H02377.

REFERENCES

