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Abstract: Detection and characterization of defects at micro- and nano-scale is one of the most important 

tasks of the production process control technologies at these scales. Examples include flat panel displays 

(FPD) and MEMS (defects at micro scale), and hard disk drive substrates up to 95 mm in diameter 

(defects at nano scale). Although different measurement technologies are applied, such as infrared 

thermography at micro-scale and Atomic Force Microscopy (AFM) at nano-scale, a similar technique of 

image-based defect recognition and location can be utilized, namely parametric pattern recognition, 

where the defect is defined by a specific set of inequalities in the space of selected measurable variables. 

We describe the technique and demonstrate it for the following applications: 1) mechanical defects (high 

friction) in MEMS; 2) electrical defect locations (shorts, opens) on FPD; and 3) nano-asperities on hard 

disk drive surfaces. The first two use infrared thermography, and the third uses multi-channel AFM 

scanning. Both large and small fields of view images are needed for analysis. 
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1. INTRODUCTION 

In the last few decades, micro- and nano-scale technologies 

made a significant progress in further increasing density of 

electrical and mechanical components. This progress, 

however, requires much stricter demands on defect 

identification, including overheating due to mechanical 

friction, electrical shorts and opens, debris of nanometer 

sizes, etc. At these small sizes, no direct measurements is 

possible, and techniques such as Infrared Thermography at 

micro-level for estimation of temperature or current, and 

Atomic Force Microscopy (AFM) at nano-level for locating 

nano-debris must be utilized. 

In this paper we describe some computational details behind 

patented test technologies in manufacturing of MEMS 

[Muhlstein, C.L., Brown, S.B., and Ritchie, R.O. (2001)] and 

[ Sharpe, N. Jr. (2002)]; Flat Panel Displays [Enachescu, M., 

and Belikov, S. (2005)] and [Belikov, S., and Enachescu, M. 

(2009)]; and disks for data storage [Belikov, S., Shi, J., and 

Su, C. (2008)] and [Su, C., and Belikov, S. (2011)]. 

2. INFRARED THERMOGRAPHY FOR RESONANT 

STRUCTURE TESTS 

The resonant structure used in the test of this section was 

described in [Sharpe, N. Jr. (2002): Fig. 3-10]. One of its 

applications can be found in [Muhlstein, C.L., Brown, S.B., 

and Ritchie, R.O. (2001): Fig. 1]. In this section we use the 

Infrared camera (FLIR Systems, Inc.) with high resolution 

shown in Fig. 1, on the right. We use some characteristics of 

this camera to measure temperatures based on infrared 

images. The infrared images of the structure under test 

[Muhlstein, C.L., Brown, S.B., and Ritchie, R.O. (2001)] are 

shown in Fig. 2. In section 2.1 we estimate the temperature 

experimentally by analysing the infrared images in Fig. 2, 

and in section 2.2 we calculate the temperature from 

theoretical model based on mechanics and heat transfer 

shown in Fig. 3. We will compare the results to justify both 

methods and use the infrared thermography for defect 

detection in section 4. 

Fig. 1. Two Mid-Wavelength InfraRed cameras (Merlin 

Mid InSb MWIR) with the large field of view (left) and 

the small one (right) with resolution 7.57[m/pixel]. 

Cameras can be moved vertically for changing fields of 

view and autofocusing. 
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2.1  Temperature Difference Estimation based on Infrared 

Images 

Infrared images with actuated and non-actuated comb drive 

built in the MEMS system, as shown in Fig. 2.a and 2.b, are 

very close and the discrepancy can be only seen in their 

difference. However, the difference of raw images also does 

not provide reliable information about the temperature 

difference because it is obscured by noise comparable with 

the difference. Images should be processed before calculating 

the difference. Averaging sequences of images and filtering 

reduces the noise and generates reliable information about 

temperature differences. Effects of nonlinear filtering on 

image enhancement are described in [Gonzalo, L., Paredes, 

L., and Mullan, J. (2000)]. Median filter of size 3x3 has been 

used for this application. This filter effectively eliminated bad 

pixels and smoothed images. The details of the calculation 

that enhanced the differential image, as shown in Fig. 2.c, can 

be found in [Enachescu, M., and Belikov, S. (2005)].  

A conventional model of the output of the infrared camera is 

described in [Sparrow, E.M., and Cess, R.D. (1978)] and 

[Belikov, S., et al. (1995)]. Simplified for constant total 

emissivity ε, total responsivity Rtotal, and assuming Stefan-

Boltzmann law, a theoretical approximation of the output of 

the infrared camera is  

      4, TTFTFRTS   total
                (1) 

where  

 S(T) [units] is the output of the camera in [units], i.e. 

in pixel values of the whole (12 bit) range ([-211, 

+211˗1] for this camera); 

 ε is total emissivity of silicon (assume ε≈0.06) 

[Timans, P.J. (1995)]; 

 T [K] is absolute temperature; 

 Rtotal [units/(W/m2)] is the change of infrared image 

value as a result of 1[W/m2] change of radiation 

energy from unit area of the target black-body 

source; 

 F(T) [W/m2] is a radiation law; 

 σ ≈5.67·10-8[W/(m2K4)] is the Stefan-Boltzmann 

constant. 

Pixel values in Fig. 2.a and 2.b are equal to S(T+ΔT) and S(T) 

respectively, T≈20oC, and ΔT is the difference between 

temperatures of the surface with and without comb drive 

actuation. For small ΔT 

    dTTdFRRTRS TT /,  totalunits/K  

where 

 RT [units/K] is the change of infrared image value as 

a result of 1oC temperature change of the target 

black-body source, called responsivity of the 

infrared camera. For the camera used in this 

experiment RT≈1275 [units/K]. 

The procedure to measure ΔT was the following. The 

neighbour points were selected at the images in Fig. 2 and 

pixel values were measured for both (processed) images with 

actuated and non-actuated comb drive respectively. The 

results are summarized in the table below. 

Table 1. Infrared measurements at 4 points 

Point # Pixel values at the image with 

comb drive 

Difference ΔI  

non-actuated actuated 

1 19,455 20,098 643 

2 19,134 20,088 954 

3 19,230 20,116 886 

4 19,259 20,110 851 

Av. 19,269 20,103 834 

The average difference ΔI=834 is the difference of image 

values scaled by the camera range [˗211, 211˗1]. Infrared 

image differences in [units] relates to ΔI by the formula 

   12/ 12

minmax  IIIS                            

where [Imax, Imin] is the selected range for current image 

acquisition. For this application 

 

          a.                             b.                                c. 

Fig. 2. Infrared images with actuated (a.) and non-actuated 

(b.) comb drive and their profiles along the green line; 

Original images do not show detectable difference, but their 

processed difference (c.) does. 

a. Infrared image with actuated comb drive and profile along 

the green line.  

b. Infrared image with non-actuated comb drive and profile 

along the green line. 

c. Processed difference between image a and b. 

 

  

Fig. 3. Models for heat calculations with actuated comb drive:  

a. Mechanical model for heat calculation with actuated comb 

drive; b. Geometry for model a. 

c. Air speed profile at the lower part of the bulk due to 

viscosity. 
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][2041000minmax units SII  

and, with ε≈0.06, estimated temperature difference is 

 KRST T 7.2/                       (2) 

In this derivation we ignored the image intensity loss due to 

the optical lensing system between the image and Focal Plane 

Array. 

2.2  Temperature Difference Calculation based on Heat 

Balance Model 

This model assumes the configuration shown in Fig. 3. Bulk 

at distance H from the substrate vibrates in the way that the 

points of radius R have maximum linear speed Vmax. The 

parameters used in the model are presented in Table 2. 

Table 2. Parameters of the heat balance model 
Parameter Notati

on 

Value Comments 

Viscosity of air 
air  










 

sm

kg5108.1
 

At 20˚C  [Thomas, 

L.C. (1993): p. 833] 

Convection 

coefficient of 

air 

airh  









Km

W
2

4030

 

For small forced 

convection: see 

Fig.4 

[Engineering 

ToolBox, (2003)] 
Distance 

between bulk 

and substrate 

H 2[μm] See Figure 3 

Length of bulk R 300[μm] See Figure 3 

Max speed of 

vibrating edge 

of the bulk 

maxV  5[m/s] See Figure 3 

Total 

emissivity of 

silicon at 20oC 

ε 0.06 For 20˚C: [Timans, 

P.J. (1995): p. 82, 

Fig. 30] 

Let φ [rad] be the maximum angle of vibrating bulk; R [m] 

the length (“radius”) of the bulk as shown in Fig. 3.a, 3.b; and 

ν [Hz] the frequency of vibration. The following relationship 

is true 

 RV /max                                (3) 

To prove this relationship, we calculate the average speed 

RV of the end of the bulk during the period of vibration: 





max

0

max

2
sin

1 V
tdtVVR                     (4) 

Another formula for the average speed is 

 RTRVR 2/2                          (5) 

where T is the period of the vibration. Relationship (3) 

follows from these two formulas. 

Figure 3 c. shows a conventional (Newton) model of air 

speed distribution due to viscosity. Shown is the cross-

section of beam-substrate system at the distance r from the 

center of rotation. Friction force Ffr(r) acting on a small area 

S at this location is 

  SvrF rgradairfr                         (6) 

where μair [kg/(m·s)] is the viscosity of air and 

HR

rV

H

V

dz

dv
v Rrr

r grad                    (7) 

Substituting this expression to (6) yields 

  S
HR

rV
rF R

airfr                         (8) 

Work made against this friction force during the cycle of 

vibration is  

    S
HR

rV
rrFrA R

2

airfrfr 22                (9) 

where over-score denotes average value over the period of 

vibration. The power dissipation during the period is  

 
 

  S
HR

rV
rA

T

rA
rW

2

max
airfr

fr 2
2 


       (10) 

Substituting φ from (3) yields 

  S
R

r
V

H
rW

2

2

max2

air4











                 (11) 

Formula (11) is the power dissipation from the lower side of 

the beam due to air viscosity. When calculating heat balance, 

only this power dissipation due to viscosity and the power 

due to convection from the upper side of the beam are taken 

into account. The following factors are neglected: air 

viscosity at the upper side of the beam (because the gradient 

is significantly higher at the lower side where air is “pulled” 

by two surfaces at 2μm from each other); convection from 

the lower part of the beam (because this convection is 

prevented by the small distances between the surfaces and 

viscosity of the air); heat conduction in xy direction (because 

period T is small); immediate heat transfer is assumed in z-

direction (because of small thickness of the beam); influence 

of comb drives (electro-static actuator and capacitive sensor) 

– this is actually causes some non-symmetry of infrared 

images, but may be neglected at central radial line. 

Fig. 4. Plots used for selection of convection coefficient hair 

in Table 2 [Engineering ToolBox, (2003)] 
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Thus, we assume the energy conservation in the form: [Power 

Dissipation from Friction] = [Power Loss by Convection], i.e. 

 
  airair TrTh

S

rW
                           (12) 

where Tair≈20oC is the temperature of surrounding air. 

Substituting W(r) from (11) yields 

  airair

22

max
air2

4
TrTh

R

r

H

V












                  (13) 

Then the formula for temperature difference at radial position 

R is 

  
H

V

h
TRT

2

max

air

air

2air

4 


                       (14) 

Calculations by this formula with the parameters from Table 

2 are presented in Table 3. 

Table 3. Calculations by Formula(14) 

The table is in agreement with formula (2). This agreement 

may be considered as a reasonable justification of both 

methods: experimental based on infrared imaging and 

theoretical based on simplified heat balance. 

2.3  Infrared Test of Acceptable Friction for Resonant 

Structures 

Theoretically normal temperature rise due to the friction was 

calculated and confirmed by infrared measurements. This 

allows us to design a test procedure for acceptable friction: 1) 

measure the temperature rise at the actuated beam location; 2) 

compare the measurement with nominal interval, e.g. [2.3oC, 

3.0oC] suggested by Table 3. The test is passed if the 

measured temperature is within the nominal interval. 

This test is relatively easy because the location of the beam is 

known a priori. More challenging is the defect location (e.g. 

electrical shorts at FPD pixels) that requires pattern 

recognition and will be described in section 4 after we review 

the parametric technique in section 3. 

 

3. IMAGE BASED PARAMETRIC PATTERN 

RECOGNITION 

This section presents detailed descriptions of the framework 

briefly outlined in [Belikov, S., Shi, J., and Su, C. (2008)]. 

The framework will be applied in section 4 to electrical 

shorts/opens detection using infrared thermography 

(described in section 2), and in section 5 to nano-asperity 

detection in data storage industry using multi-channel AFM 

images. In both applications, the defects can be easily 

confused with noise or image artefacts. Comprehensive 

understanding and definition of what a defect is allows 

separating defects from other singularities on the multi-

channel images.  

There are two approaches to pattern recognition and location 

on multi-channel images: template-based and parametric-

based. Template-based algorithms locate regions on the 

image that match an a priori reference pattern (template). 

Parametric-based algorithms can be applied when interested 

patterns are changing from image to image and cannot be 

characterized by an a priori image template. These changing 

patterns, however, can be identified by a set of measurable 

variables such as geometrical and regression properties that 

are restricted to a certain parametrized region in the measured 

variables’ space [Duda, R., Hart, P., and Stork, D. (2001)]. 

The patterns in the multi-channel images are identified by a 

set of thresholds i, (i=1,..,n). These thresholds divide the 

pixels on every related image channel into two regions (with 

pixel values below and above the thresholds) and define the 

particles on the images, i.e., connected regions of pixels with 

values above the thresholds. The coordinates of the pixel with 

predefined location (e.g., location of the peak value inside the 

particle or a well-defined corner of the particle) are called a 

location of the particle. Particles appeared in different 

imaging channels are called related particles if they satisfy 

certain conditions (including closeness of their locations). 

Besides locations, many other variables can be measured on 

the related particles including geometrical and regression 

variables. A set of related particles is called a pattern if a 

predefined system of inequalities  

  Fi niF ,,1,0, PV                           (15) 

holds for the measured vector V, and parameter vector P 

where  P=(P1,…,PnP), nP is the number of parameters. 

V=(V1,…,VnV) is the vector of measured variables, nV is the 

number of variables. In literature functions Fis are called 

discriminant functions [Duda, R., Hart, P., and Stork, D. 

(2001)]. 

In an illustrative example shown in Fig. 5, there is a two-

dimensional measurement vector V=(V1,V2). The shaded area 

can be described with inequalities 1V14, 1V24, V1+V26. 

With P=(1,4,1,4,6) the inequality functions in (15) for this 

example are the following: F1V1+P1, F2V1P2, , 

F3V2+P3, F4V2P4, F5V1+ V2P5. 

hair [W/m2K] T(R)˗20˚C [K] 

30 3.0 

35 2.6 

40 2.3 

Fig. 5. Geometry for the inequalities in the space of measured 

variables in the illustrative example 
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For particles in AFM images, V1, V2 can represent area and 

orientation of the particles, and parameters restrict the values 

of these variables. Other variables may be regression 

coefficients between related AFM images of different 

channels. 

The values of parameters can be optimized using training 

samples. Trained parameters along with the set of inequalities 

(15) describe the pattern. If a set of inequalities (15) does not 

hold, the set of related particles is classified as a false pattern. 

A criterion of optimization (loss function) is defined as loss 

due to pattern recognition errors. There are two kinds of 

errors:  

1. Classify true pattern as false (missed pattern), with  

represents the loss due to missing pattern; and 

2. Classify false pattern as true, with  as the loss due to false 

hit. 

Let us assume that there are N training samples (i.e. set of 

related particles) with measured vectors Vj, j=1,…,N, 

 







pattern false a is sample  if

pattern true a is sample  if

th

th

j

j
j

,0

,1
V                    

and 

   


 


otherwise ,0

,,1,0, if ,1
ˆ F

j

ij niF PV
VP

                         

Then the criterion of minimization is the following 

           
P

PP VVVVP minˆ1ˆ1
11

 


j
N

j

j
N

j

jj  (16) 

where the first term is the loss function due to missed 

patterns and the second is the loss function due to false hits.  

Let us continue the illustrative example in Fig. 5 with 6 

measured vectors shown as circular dots. Three black dots 

represent true patterns, and another three, shown as open 

dots, are false patterns. We have (1,2,1,4,7)=  (vertical 

line 1) because one measured vector related to the true 

pattern is out of the area described by the system of 

inequalities (one missed pattern). Similarly (1,3,1,4,7)=+ 

(vertical line 2) because there is one false hit and one missing 

particle, and (1,4,1,4,7)= (vertical line 3). It is not possible 

to make the criterion (2) smaller than min{α, β} by varying 

parameters 
51 ,, PP  value only. However, by defining 

527165 PVPVPF   and selecting P5=6, P6=P7=1, the 

inequality F50 describes the area on the left of line 4 in 

Figure 5 and   0,, 71  PP   because the shaded area 

separates true patterns from the false ones. 

Unfortunately, criterion (16) is not convex and the 

optimization problem is not likely to be solved by standard 

optimization methods. Heuristics based on specifics of the 

training samples as well as specifics of the set of inequalities 

(15) are required. An algorithm is based on selecting 

reasonable initial values of parameters and uses greedy 

approach, i.e., optimizes one parameter at a time. 

As training by samples is a continuing process, incremental 

learning is implemented. In this approach, as a new training 

sample VN+1 is available in addition to the previous N 

samples, the incremental greedy algorithm adds the value 

         1111

1
ˆ1ˆ1 

  NNNN

N VVVV PP   

to the current value of (P) and, if this value is positive, 

optimizes those constrains that can decrease N+1 without 

increasing Φ(P). For example, if VN+1 is a true pattern, i.e. 

(VN+1)1, but   0ˆ 1 N
VP , the algorithm tries to decrease 

only those  PV ,1N

iF  in (15) that are greater than zero to the 

point of minimum of overall criterion (16). Incremental 

greedy approach is especially simple if the constraint used by 

greedy algorithm includes only one parameter. In this case 

the one-dimensional optimization problem can be solved by 

golden search. 

4. INFRARED THERMOGRAPHY FOR ELECTRICAL 

MICRO-DEFECT LOCATION ON FLAT PANEL 

DISPLAYS 

Infrared thermography used for this application was 

described and justified in section 2, and the technology of 

defect location as well as test fixtures – in [Enachescu, M., 

and Belikov, S. (2005)]. An electrical short in a pixel 

connecting two lines (X and Y connectors in Fig. 6) increases 

current through those lines, and consequently elevates the 

temperatures of the lines. Thus the lines, though not 

defective, may nevertheless appear in the infrared image. The 

portion of the image that highlights the lines is termed the 

defect artefact of the short. Fig. 7.a shows three 

representative defect types: point-type (805), line-type (810), 

and corner-type (815). A point-type artefact is usually related 

to a strong short with resistance of the shorted pixel 

significantly higher than the resistance of connecting 

conductors, while line and corner types – when these 

resistances are comparable. 

The defect artefacts obscure the location of defects. The 

defect location should be defined differently for each type: 

for point-type it may be the centre of the particle (805 in Fig. 

7.a); for corner-type – intersection of horizontal and vertical 

lines (815 in Fig. 7.a). The most difficult task is to precisely 

locate the defect of line-type.  

[Enachescu, M., and Belikov, S. (2009)] describes an image-

processing technique to detect and classify defect artefacts by 

type. This technique includes a morphological analysis and 

definition of each type by systems of inequalities (15) in the 

space of parameters, although in the reference this system 

was not explicitly specified. Fig. 9.a demonstrates 

recognition of three line-type defect artefacts in the images of 

the infrared camera with large field of view (left in Fig. 1). 

This will be further discussed below. 

Defect location algorithm of line-type artefact (such as in Fig. 

7.b) is based on a set of thresholded binary images. Fig. 7.b 

includes a pair of line-type artefacts LA1 and LA2. As 

threshold levels increase, line-type artefacts become smaller 

and thinner, and may disappear or split into several 
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disconnected lines. In Fig. 7.c, for example, the defect 

artefact LA2 depicted as a single line in Fig. 7.b appears as a 

pair of line artefacts LB2 and LB3. The algorithm recognizes 

that LA2 contains LB2 and LB3. With further increased 

threshold, we get the image shown in Fig. 7.d with LB2 

contains LC2, and LB3 contains LC3 and LC4. 

To find the defect location of the line-type defect artefact 

LA2 (Fig. 7.b) we build the profile such as shown in Fig. 8. 

In this profile we plot the cross section of the threshold levels 

vs pixel intensities of the artefacts that belong to LA2, i.e. 

LA2>LB2>LC2 closest to the edge (LB3 is ignored), and 

LA1>LB1>LC1. A plot 1725 of Pixel Intensity along a slice 

of pixels in parallel with a bisecting the line type defect 

artefact of the grayscale image illustrates how pixel intensity 

generally increases as the defect artefact is encountered. 

Artefacts 1705, 1710, 1715, and 1720 represent slices of plot 

1725 taken at four threshold levels. The bold “+” signs 

indicate the y locations of the peak (i.e. tip) pixels of the 

respective defect artefacts for different threshold levels. 

We define the defect y-location as the maximum gradient of 

the peak profile (Fig. 8). With constant distance ΔTH 

between the thresholds, the gradient is grad = ΔTH/Δyi, 

where yi are the horizontal locations of the bold “+”s in Fig. 

8. A formal algorithm description with related data structures 

can be found in [Enachescu, M., and Belikov, S. (2009)]. 

Fig. 9.a demonstrates recognition of three line-type defect 

artefacts in the images of the infrared camera with a large 

field of view (left in Fig. 1). Algorithm described above was 

applied to these images to detect the location of the defect. 

Then the motion controller (Fig. 6) moves the stage to the 

position of this location under the high resolution infrared 

camera (right in Fig. 1). The high resolution infrared images 

in Fig. 9.b clearly locate the shorted pixel. 

5.  PARAMETRIC PATTERN RECOGNITION FOR 

NANOASPERITY DETECTION WITH AFM 

In this section we specify vectors V of measured variables 

and P of parameters for a practical problem of nanoasperity 

(NA) detection [Belikov, S., Shi, J., and Su, C. (2008)], [Su, 

     

                    a.                                  b. 

            

                      c.                                   d. 

Fig. 7. a. Infrared images exhibiting three types of electrical 

defects artefacts: point-type (805); line-type (810); and 

corner-type (815); b. Two line-type defects at low threshold; 

c. at intermediate threshold; d. at high threshold. [Enachescu, 

M., and Belikov, S. (2009): Fig. 14, 15]. 

 

 

Fig. 6. Inspection system for infrared detection of electrical 

micro-defects on OBJECT (FPD) [Belikov, S., and 

Enachescu, M. (2009): Fig. 1]. Photo of two z-stages with 

infrared cameras is shown in Fig. 1. 

 

 

 
a. Large field of view –low resolution 

 
b. Small field of view –high resolution 

Fig. 9. Infrared thermography images of inspected FPD 

 

 

 

Fig. 8. Illustrative peak profile showing the relationship 

between four defect artefacts (1705,1710, 1715, and 1720) for 

different threshold levels. [[Enachescu, M., and Belikov, S. 

(2009)]] 
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C., and Belikov, S. (2011)]. Two AFM channels of images 

are used in this example: height trace and height retrace.  

Let  xyI ,  and  xyJ ,  be the (y,x)-pixel values from the 

first image channel (height trace) and the second image 

channel (height retrace), respectively. 

Let  be a threshold level for both channels. The measured 

variables can be divided into two classes: geometrical and 

regression. Geometrical variables measure geometrical 

characteristics of the particles on thresholded images. 

Examples of geometrical variables defined for the particles of 

both channels are presented in Table 4. 

Table 4. Definition of geometrical variables 

Vi Definition min max 

V1 Heywood circularity factor 

)2/( AP  , where P is 

perimeter of the particle and A 

is its area 

1 10 

V2 Area A of the particle 200nm2  

V3 Orientation -45 +45 

 
Parameters “min” and “max” have been optimized using 

training samples. They are used to select the particles. They 

applied to both image channels (height trace I and height 

retrace J).  

Regression variables measure certain regression 

characteristics between different lines of the images in the 

vicinity of the particles. Let PI and PJ be related particles 

selected on the thresholded images I and J;  **

II
, PP xy  and 

 **

JJ
, PP xy  be the locations of the particles, i.e. by definition, 

 
 

 xyIxyI
Pxy

PP ,max,
I

II ,

**


                        (17) 

The same definition is true for  **

JJ
, PP xy . 

Fig. 10.a demonstrates a feature of a true NA that 

distinguishes it from false NA. To formalize this feature let 

us define  
II

, PP xy   as the largest peak location in the 

neighbouring lines, i.e. 

      ,1,1,max, **

IIII IPPPP PyyyxyIxyI        (18) 

and  
JJ

, PP xy   is defined by equivalent expression. Particle’s 

pixel values are higher than the threshold level at least for 

one image I or J. Although  
II

, PP xyI   or  
JJ

, PP xyI   may be 

lower than the threshold , they should be higher than the 

threshold multiplied by a minimal factor that is a parameter 

of the optimization problem. Variable V4 in Table 5 reflects 

his rule. 

Let 
I,Pda  be the slope of linear regression of the neighbouring 

lines, i.e. 

       
2

**

,
, IIIIII

,,minarg, 



d

d

i

ii

PPPP
ba

PPd bixyaIixyIba   (19) 

where di  is the parameter of the optimization problem 

(subscript d is for “direct” as opposite to “reverse” as will be 

described below).  

The variable V5 of Table 5 reflects the rule that the optimal 

slopes 
I,Pda and 

J,Pda  should be large enough: 
I,Pda  at least 

larger than a specified fraction of    **

IIII
,/, PPPP xyIxyI  , and 

similar for
J,Pda . The specified fraction is a parameter of the 

optimization problem. 

The variable V6 reflects the rule that regression coefficient 

    
     

 dd

PPPP

PPPP

Pd

ii

xyIxyI

xyIxyI
R

,,

,
,,

,,,cov
**

**

,

IIII

IIII

I








 where

 
               (20) 

(as well as
J,PdR ) should be large enough 

Variables V7 ≥0 (see below) and V8 are used for rejection 

related particles on images I and J that are not close enough. 

Fig. 10.b demonstrates two other features of true NA that can 

be used to filter out the false ones. The minimum value of 

variable V7 reflects the first rule that location of the NA on 

image I (trace) must be on the right of the location on image J 

(this caused by feedback of the scans in opposite directions: 

trace and retrace). The second feature is the “reverse” 

correlation of the scans as shown in Fig. 10.b. Similar to (19), 

(20), let 
JI ,, PPra  be the slope of linear regression between the 

lines on trace and retrace images where NA candidate is 

located, i.e. 

      
2

****

,
,,, IIJJJIJI

,,minarg, 



r

r

PP

i

ii

PP
ba

PPPPd bixyaIixyJba  (21) 

and equal to V9 that must be large enough. Similar, “reverse” 

regression coefficient 

    
     

 rr

PPPP

PPPP

PPr

ii

xyIxyJ

xyIxyJ
R

,,

,
,,

,,,cov
****

****

,,

IIJJ

IIJJ

JI








 where

 
               (22) 

Fig. 10. a. At least one of neighbouring lines strongly 

correlates with the line that contains NA location in the 

vicinity of the location; b. Comparison of trace (above) and 

retrace (below) scans of typical nano-asperity. The peak of 

retrace is on the left of the peak of trace; and one scan 

strongly correlates with another if reversed. 
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is equal to V10 that also must be large enough. ir is usually 

equal to id and indicates the number of points at either side of 

the peaks to use for regression calculations in the formulas. 

 

Table 5. Definition of regression variables for NA 

detection problem  
Vi Definition min max 

V4      /,,,min
JJII PPPP xyJxyI   0.5  

V5         
JJJJJIIIII

,/,,,/,min **

,

**

, PPPPPdPPPPPd xyJxyJaxyIxyIa 
 0.6 1 

V6  
JI ,, ,min PdPd RR  0.6 1 

V7 **

JI PP yy   0 60nm 

V8 **

JI PP xx   0 750nm 

V9 
JI ,, PPra  0.3 1 

V10 JI ,, PPrR  0.55 1 

Bold numbers are constants rather than parameters for 

optimization); the values of parameters are optimized by using 

training samples. 

The nano-asperity experiments used a DimensionTM 3100 

AFM. The challenge is to detect the nano-asperity without 

fault within the data with low signal to noise ratio. The 

parametric pattern measurement from multiple channels 

simultaneously provides a robust mechanism in catching the 

asperities. Figure 11 is a demonstration of the process. Figure 

11.a is a survey scan with combined channels for analysis. 

The circles mark all the qualified patterns with descending 

asperity height with ascending numbers in the green circles. 

The survey frame (Figure 11.a) is analysed during real-time 

imaging and the data are sorted line-by-line. At the end of the 

frame each qualified pattern will cause the system to 

automatically perform a high resolution imaging, where the 

asperity dimension can be precisely measured (Figures 11.b-

e). One can see in this example that the nano-asperity cannot 

be matched with any particular template. However, the 

parametric pattern detection works successfully for this 

application. 

6. CONCLUSIONS 

Image-based pattern recognition was demonstrated in two 

applications: electrical short micro-defects in FPD, and nano-

asperity detection on hard disk drive substrates. MEMS 

mechanical defects were also demonstrated: frictions of the 

moving parts are higher than nominal friction. 
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