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Abstract: This paper presents the development of virtual patients to enable the simulation
evaluation and assessment of multivariable control algorithms for biomedical systems. The
virtual patients are generated by fitting the parameters of the models to clinical experimental
data, followed by the estimation of the multivariate distribution of the actual patient parameters.
The estimated multivariate distribution is then incorporated with constraints to ensure the
sampling of synthetic virtual patients conforms to the actual patient parameter bounds. The
sampled synthetic virtual patients are analyzed through multivariate statistical techniques and
data clustering algorithms to prune out virtual subjects with similar characteristics or unrealistic
dynamics, yielding a virtual patient population that is diverse and with individually distinct
characteristics. The generated virtual patient population is used to evaluate multivariable
nonlinear and adaptive control algorithms for insulin dosing in people with Type 1 diabetes.

Keywords: Biomedical system modeling and simulation, Multivariable control of biological
systems, Metabolic and physiological model, Artificial pancreas, Model identification and
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1. INTRODUCTION

Multivariable predictive control is becoming increasingly
prevalent in biomedical systems. The significance of tran-
sitioning from the traditional monitoring of a single phys-
iological variable of interest to the broad multivariable as-
sessment of the inherent physiological state of a patient is
widely recognized. However, the adoption of multivariable
technologies and advanced predictive control algorithms
in medical applications is relatively restrained, despite ex-
tensive research and development. The limited application
of multivariable control techniques in medicine is related
to the complex nature of the physiological response to
controlled drug infusion, the difficulty in quantifying the
transient responses, and the stringent requirements for
patient safety.

Physiological and metabolic systems represent a complex
system with nonlinear interdependencies among multiple
pathways and processes, with effects characterized by dis-
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tinct magnitudes and time-scales. The physiological and
metabolic dynamics can vary substantially among pa-
tients, depending on genetic traits, behavioral tendencies,
and concurrent disturbances. Because of the complex non-
linear and multivariable interactions in biological systems,
the control algorithms developed for medical applications
require extensive testing to validate safety and efficacy.
Mathematical modeling and simulation of dynamic physio-
logical and metabolic behaviors across a diverse population
of patients can contribute to the development and appli-
cation of multivariable control algorithms in biomedical
systems (Resalat et al., 2019; Visentin et al., 2018).

The closed-loop control of glucose concentrations in people
with Type 1 diabetes (T1D) is a complex multivariable
control problem (Oviedo et al., 2017; Bequette, 2012). The
difficulties involved in continuous infusion of insulin for
the regulation of glucose concentrations relate to the myr-
iad disturbances perturbing the glucose dynamics, patient
variability, and accurate measurement and assessment of
the physiological state (Balakrishnan et al., 2013; Acker-
man et al., 1965). A number of studies in the literature
report the implementation of predictive control algorithms
for glucose control. Many of the existing control algorithms
are single-loop systems for the controlled infusion of insulin
in response to measurements of the glucose concentration.
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A few recent insulin dosing algorithms comprise of more
complex multivariable control architectures that integrate
the assessment of the state of the patient through addi-
tional measurements such as heart rate, skin temperature,
and accelerometer readings (Fig. 1). Translating these
advanced multivariable control systems from the clinical
setting to an outpatient free-living environment can be
accelerated through virtual models of the patients (Messori
et al., 2019; Boiroux et al., 2016; Dalla Man et al., 2007;
Visentin et al., 2016; Makroglou et al., 2006; Haidar et al.,
2013; Chassin et al., 2004).

Comprehensive integrated metabolic and physiological
models are essential to allow the early and efficient assess-
ment of the multivariable controller performance. Moti-
vated by the need, this paper proposes an approach for the
development of a virtual patient population, which serves
as a foundation for the design and assessment of mul-
tivariable controllers for insulin infusion. In this regard,
important properties of the virtual simulation platform
and the virtual patient population, such as scalability,
interoperability, expansibility, and fidelity, are addressed.
This paper also elucidates the approach for developing the
virtual patients and ensuring the conformity of the virtual
patient populations to the actual population of people with
T1D.

2. OVERVIEW OF SIMULATOR MODELS

A new multivariable simulator called mGIPsim (multivari-
able Glucose Insulin Physiological Variable Simulator) was
developed (Fig. 1). The simulator is introduced elsewhere
(Rashid et al., 2019). The simulator involves the integrated
physiologic and metabolic simulation of a cohort of virtual
subjects with T1D. Enabling this comprehensive simula-
tion is a physiological model that is integrated with Hov-
orka’s glucose-insulin model to instigate both immediate
and long-lasting variations in the glucose-insulin dynamics
in response to physical activity (Hovorka et al., 2004).
User-defined scenarios for meals, administered insulin, and
physical activity are used in the proposed multivariable
simulator to generate heart rate, energy expenditure, skin
temperature, and accelerometer readings in addition to
insulin and glucose concentrations. Clinical experimental
data are used to determine the virtual subject population.

Fig. 1. Illustration of the use of synthetic virtual subjects
for the assessment of nonlinear/adaptive/stochastic
control algorithms through either the (blue) single-
variable or (blue + red) multivariable control archi-
tectures.

2.1 Models

Several mathematical models are developed and used to
generate various simulator output variables based on meal,
insulin, and physical activity. Some model parameters are
subject-specific to capture the inter-subject variability.
The models are briefly described in this subsection to
enhance the description of the capabilities and capacity
of the multivariable simulator. A detailed description and
analysis of the models is reported in Rashid et al. (2019).

Glucose-Insulin Model The glycemic model simulates
the glucose variations in response to meals, administered
insulin, and physical activity. The effects of physical ac-
tivity are explicitly considered in the glycemic dynamics
described by an extended version of Hovorka’s glucose-
insulin model. The original Hovorka’s model consists of
a glucose subsystem, an insulin subsystem, and an insulin
action subsystem. In the proposed model, physical activity
instigates immediate changes in the glucose disposal and
long-lasting variations in the insulin action on glucose
distribution, disposal, and endogenous glucose production.
The driving force for the changes in the glucose-insulin
dynamics is the elevated heart rate during exercise, which
increases the glucose uptake from the plasma compartment
to the muscles and tissues and also increases the glucose
disposal from the working muscles. The glucose disposal
rate increases with both immediate effect and long-lasting
changes in insulin sensitivity. The new model explicitly
considering the effects of physical activity on glucose-
insulin dynamics improves glucose prediction accuracy
compared to the reference model.

Physiological Heart Rate Model A dynamic physiologi-
cal model characterizing the heart rate as a function of
exercise intensity is used to compute the heart rate in
the simulator. The heart rate during exercise is described
by three different components that are combined to con-
tribute the overall dynamics, including a fast component
related to increased oxygen requirement of the exercis-
ing muscles, a slow component concerning the removal
of accumulated lactate through supplied oxygen, and a
metabolic component for the increase in demand of oxy-
gen due to elevated core body temperature. A number of
parameters in the physiological model are subject-specific,
including demographic information such as body weight,
resting heart rate, maximum heart rate, and maximum
intensity achieved during the Bruce protocol test. The data
spanning the exercise sessions and including a cool-down
period beyond the termination of exercise is considered for
optimizing the model parameters to specific patients.

Energy Expenditure Model Experiments are conducted
for energy expenditure measurement using the COSMED
K5 wearable metabolic system (COSMED, Italy) during
treadmill and stationary bike exercises at different inten-
sities and protocols. The data are used to develop a model
to predict the energy expenditure in metabolic equivalents
(MET). The mechanical work rate is computed from the
exercise intensity information and the computed power is
translated to energy expenditure estimates through a first-
order filter with a subject-specific time constant to capture
the transient behavior of the energy expenditure dynamics.
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Skin Temperature Model Skin temperature, affected by
exercise, is modeled by assuming a temperature gradient
from the core body to the skin temperature with physical
activity as the source of increased metabolism or heat
generation. The skin temperature depends on the exercise
intensity and other factors reflecting the environment and
ambient conditions (for instance, wind speed or humidity).
A partial differential equation model of heat convection
with time and distance dependencies relates the core body
temperature to the skin temperature dynamics. The effect
of exercise is integrated as the source of metabolic heat
generation in the core body. The model parameters include
the thermal conductivity and the distance from core body
to skin.

Details of the models are reported in Rashid et al. (2019).

2.2 Parameter Estimation

The proposed exercise-glucose-insulin model is personal-
ized to 18 subjects with T1D by identifying the subject-
specific values for the identifiable model parameters. The
model parameters are estimated using the clinical exper-
imental data and by using Bayesian parameter estima-
tion involving the Markov chain Monte Carlo (MCMC)
approach that leverages the model and exploits the prior
knowledge available in earlier literature studies. The max-
imum a posteriori estimation problem is expressed by

x∗ = arg min
x

P
(
x | f (·) , D

)
(1)

= arg min
x

P
(
f (·) , D | x

)
P (x)∫

P
(
f (·) , D | x′

)
P (x′) dx′

(2)

= arg min
x

P
(
f (·) , D | x

)
P (x) (3)

where the optimum parameter values, x∗, are found such
that the posterior probability, P

(
x | f (·) , D

)
, is maxi-

mized. Further, P
(
f (·) , D | x

)
is the likelihood of the

parameters x given the model f (·) and the clinical experi-
mental data D, with P (x) denoting the prior distribution
of the parameters. Eq. 2 is formulated from Bayes’ rule
and Eq. 3 is obtained after discarding the normalization
constant that does not affect the Bayesian optimization.

The Bayesian optimization approach relies on the cascaded
Goodman and Weare affine invariant ensemble MCMC
sampler where an ensemble of chains is generated to search
for model parameters. The parameter estimation for each
subject is obtained from the posterior probability distribu-
tion of the subject-specific parameters after running one
million iterations of the ensemble MCMC sampler for the
model. The first 30% of the samples are discarded as the
initial burn-in period.

3. VIRTUAL PATIENTS

In this section, the generation of the virtual patient
parameters is discussed.

3.1 Generation of Virtual Patients

Virtual patients are generated by sampling of the distri-
bution of the actual patient parameters. Given the set of

actual patient parameters
{
x(1), x(2), ..., x(m)

}
, the distri-

bution of the actual patient parameters is approximated
as a multivariate Gaussian distribution of the form

p (x;µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
(4)

with the parameters

µ =
1

m

m∑
i=1

x(i)

Σ =
1

m

m∑
i=1

(
x(i) − µ

)(
x(i) − µ

)T
where µ and Σ denote the mean and covariance of the
multivariate Gaussian distribution. Currently the distribu-
tion of the actual patient parameters is approximated as a
Gaussian distribution, though future work may consider
the approximation as a multivariate Gaussian mixture
model to characterize subpopulations within the overall
population of people with T1D. The estimated distribution
is used to sample synthetic virtual subjects representative
of the actual patient population.

The virtual patients are sampled from a truncated multi-
variate Gaussian distribution defined as

p (x;µ,Σ, xmin, xmax) =

exp
(
− 1

2 (x− µ)
T

Σ−1 (x− µ)
)

∫ xmax

xmin
exp

(
− 1

2 (x− µ)
T

Σ−1 (x− µ)
)

dx
(5)

with p (x;µ,Σ, xmin, xmax) for x < xmin and x > xmax,
where xmin and xmax denote the minimum and maximum
bound constraints for the parameter values.

Generating variates from the truncated Gaussian multi-
variate distribution can be conducted through either rejec-
tion or Gibbs sampling. Rejection sampling is straightfor-
ward and involves drawing samples from the unconstrained
distribution shown in Eq. 4 and to accept only those
samples that are within the support region, thus rejecting
the samples violating the bound constraints. However,
rejection sampling can be inefficient for large dimensional
spaces and limited supports by tight bound constraints,
thus increasing the rejection rate. Another approach for
generating random samples from a truncated multivari-
ate Gaussian distribution is to use the Gibbs sampler,
a MCMC technique that, given sufficient sampling, con-
verges to a stationary target distribution. The advantage
of Gibbs sampling is that it accepts all drawn samples
without the limitations of an acceptance rate.

3.2 Enforcing Conformity of Virtual Patients

The approximation of the actual patient population and
the subsequent random sampling of synthetic virtual sub-
jects may result in virtual subjects that are similar in their
parameter values or the output prediction responses, and
a few virtual subjects may be distant from the mean of
the actual patient population. Therefore, the unrealistic
virtual patients or the less plausible realizations of the
synthetic virtual patients must be eliminated.
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Low-Probability Virtual Patients Some synthetic virtual
patient parameters may be far from the mean of the actual
patient population. These virtual patients can be elimi-
nated from the virtual patient population by evaluating
the probability of the virtual patients as

arg max
Jn1

∏
j∈Jn1

P
(
xj | µ,Σ

)
(6)

where n1 > 0 is the number of retained subjects, and Jn1

denotes the set of retained virtual subjects as a subset
of the full set of synthetic virtual subjects Jn, that is
Jn1
⊂ Jn.

The Mahalanobis distance may also be used to find the
virtual subjects that are highly-probable since it considers
the correlation in the data through the use of the inverse
of the variance-covariance matrix of the actual patient
population. The Mahalanobis distance is given by

dj =

√(
xj − µ

)T
Σ−1

(
xj − µ

)
(7)

and the set of virtual subjects that has lower Mahalanobis
distances can be retained to form the virtual patient
population as

arg min
Jn2

∑
j∈Jn2

dj (8)

where Jn2 ⊂ Jn is the set of retained virtual subjects as a
subset of the full set of synthetic virtual subjects. However,
the computation of the covariance matrix may be non-
ideal, especially when the actual patient parameter values
contain much redundant or correlated information, or mul-
ticollinearity, which may result in a noninvertible nearly
singular covariance matrix. This is likely in the covariance
of the actual patient population since the parameter values
of a subject are likely to be highly correlated due to
the same underlying physiologic or metabolic conditions
affecting several parameter values. Another drawback of
the calculation of the covariance matrix is that the number
of actual patients has to be greater than the number of
parameters, which may not necessarily hold in biological
systems where recruiting patients for experiments may be
expensive and time-consuming. To overcome this draw-
back, a subset of meaningful and identifiable parameters
may be selected from the total set of parameters to com-
pute the inverse covariance matrix.

A more robust approach to overcoming the drawbacks
of computing the inverse of the covariance matrix is to
use feature reduction methods like principal component
analysis (PCA). Then the Mahalanobis distance can be
readily computed using the latent variables (or principal
components) instead of the original parameter values.
Moreover, the analysis is also simplified as the principal
components are orthogonal (uncorrelated).

PCA effectively handles high-dimensional, noisy, and cor-
related data by generating an orthonormal basis that
maximizes the variance explained by the projection of the
actual patient parameters on the lower dimensional space.
This reduces the original parameter space from a high
dimensional space to a lower dimensional subspace and
extracts the significant features from the data set. PCA
can be used to decompose the matrix of parameter values
X ∈ Rn×k (where n is the number of actual patients and
k is the number of parameters) as the sum of the outer

product of vectors ti and pi plus the residual matrix, E,
as

X = TPT + E =

a∑
i=1

tipi + E (9)

where ti denotes the score vectors that form the projec-
tions of the original parameter space to the subspace,
and pi denotes the orthonormal loading vectors containing
information about relations among the parameters. The
projection also reduces the original set of parameter values
to a smaller number of latent variables, that is a < k, while
the residual matrix may remove noise resulting from the
numerical optimization of the models to clinical experi-
ment data.

The Hotelling’s T2 and squared prediction error (SPE)
statistics and their control limits can be used to identify
the virtual patients that are outliers relative to the actual
patient data. The Hotelling’s T2 statistic is given by

T2
k = tTk Λtk (10)

where Λ is the diagonal matrix of the inverse of the eigen-
values associated with the retained principal components
and the SPE statistic is given by

SPEk = xTk

(
I− PPT

)
xk (11)

The control limits for the Hotelling’s T2 and SPE statistics
can be calculated as

T2
a,n,α =

a (n− 1)

n− a
Fa,n−a,α (12)

and
SPEα = gχ2

h (13)

with g = b/2a and h = 2a2/b where a and b are
the estimated mean and variance of the SPE statistic.
Determining the contributions of individual variables to
the T2 and SPE indexes can reveal variables or phenomena
that are the likely causes of the deviations from expected
trends. The projected data can be clustered to identify
cohorts of subjects. The virtual subjects that have high
Hotelling’s T2 and SPE statistics compared to the actual
patient population data can be pruned as those synthetic
virtual patients are not representative of the actual patient
population.

Cluster Analysis for Uniqueness Beyond the elimination
of the virtual patients that are unlikely to occur in the
actual patient population, it is also desired for the virtual
patients to possess distinct and individual dynamics. The
similar virtual patients can be identified through cluster
analysis. It should be noted that the similarity of the
parameter values is not exclusively the main criteria as
virtual patients with distinct parameter values may also
have similar responses due to the complex nonlinear rela-
tionships among the parameters.

To determine the similarity of the virtual patients, we use
an agglomeration hierarchical clustering algorithm. The
clustering algorithm is based on a predefined distance
(or similarity) metric. The clusters of virtual subjects
are formed by grouping subjects with similar parameter
values or glucose-insulin dynamics together, while subjects
with distinctly different parameter values or dynamics are
placed in distinct clusters. This unsupervised approach un-
veils naturally occurring subgroups within the virtual pa-
tient population, without requiring labeled training data.
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The agglomeration hierarchical clustering algorithm is
summarized as follows:

(1) Compute distances between each pair of virtual sub-
jects (xi and xj) as d

(
xi, xj

)
=
∥∥xi − xj∥∥2, which

yields a metric for the pairwise similarity between
virtual subjects. Consider each subject as a distinct
cluster.

(2) Form a binary cluster from either the two most similar
subjects or clusters. For a binary cluster of:
• subjects, the distance metric is:

d
(
xi, xj

)
=
∥∥xi − xj∥∥2

• existing clusters, the linkage metric is:

l (A,B) =
1

nA · nB

∑
a∈A

∑
b∈B

d (a, b)

where the two existing clusters are denoted A and
B with associated virtual subject parameters a
and b.

(3) Recompute the distances between newly formed clus-
ter and the remaining subjects or clusters.

(4) Return to Step 2, or terminate if all virtual subjects
are included in one main cluster, and form the den-
drogram.

(5) Specify the level of the hierarchy and assign the
virtual subjects below the specified level to specific
clusters.

Following the clustering, only one unique virtual subject
from each cluster is selected for inclusion in the final
virtual patient population.

4. RESULTS

Given the glucose data, input variables including meal,
insulin, and heart rate information, and the prior dis-
tribution of the parameters, the generated posterior dis-
tributions of subject-specific model parameters are used
to obtain the parameter estimates and the corresponding
confidence intervals. Table 1 summarizes the results of
fitting the new proposed model and the reference model
to the clinical experimental data. Fig. 2 shows the output
predictions of the glucose values given the known meal,
insulin, and physical activity inputs with model parame-
ters optimized for the original Hovorka’s model and the
proposed extended Hovorka’s model. The improvement of
the proposed extended model is statistically significant
relative to the original Hovorka’s model with p-values
< 1 × 10−3 for one-sided t-test to evaluate reduction in
prediction error.

A virtual patient population is generated from the distri-
bution of the actual patient population, and the outliers

Table 1. Comparison of predictive perfor-
mances between proposed exercise-glucose-
insulin model and reference glucose-insulin
model. RMSE: root-mean-square error, MAE:

mean absolute error.

RMSE MAE
(Mean±SD) (Mean±SD)

Proposed model 18.65± 4.89 14.50± 3.55

Reference model 22.39± 6.00 17.34± 4.61

and unlikely virtual patients are excluded, as are virtual
patients with similar characteristics. The virtual patient
population is simulated under the same simulation sce-
nario to demonstrate the diversity of the virtual patients
(Fig. 3). The results demonstrate that the diversity of the
actual patient population is well characterized by the vir-
tual patient population. The virtual patients are valuable
for testing novel nonlinear/adaptive/stochastic control al-
gorithms in a simulation virtual setting to evaluate its
efficacy.

5. CONCLUSION

The problem of developing virtual patients for enabling the
simulation evaluation and assessment of multivariable con-
trol algorithms for biomedical systems is addressed. The
virtual patients are generated by fitting the parameters
of the models to clinical experimental data, followed by
the estimation of the constrained multivariate distribution
of the actual patient parameters. The sampled synthetic
virtual patients are analyzed through multivariate statisti-
cal and clustering algorithms to eliminate virtual subjects
with similar characteristics or unrealistic dynamics. A
diverse virtual patient population is generated for eval-
uating multivariable control algorithms for insulin dosing
in people with T1D in a virtual simulation environment.
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Visentin, R., Campos-Náñez, E., Schiavon, M., Lv, D.,
Vettoretti, M., Breton, M., Kovatchev, B.P., Dalla Man,
C., and Cobelli, C. (2018). The UVA/Padova type 1
diabetes simulator goes from single meal to single day.
J. Diabetes Sci. Technol., 12(2), 273–281.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16459


