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Abstract: This paper presents a novel adaptive fuzzy fault-tolerant controller for a class of
uncertain multi-input single-output (MISO) nonlinear systems subject to actuator faults with
user-defined time-varying asymmetric output constraints. The highlight of the proposed method
is that it can tolerate the partial and total loss of effectiveness faults without the need for
additional fault detection and isolation mechanism, as well as remain the system output within
the predesigned time-varying output constraints during the system operation. To achieve the
new results, an error transformation strategy is implemented to convert the original constrained
system to an unconstrained one. For the transformed system, an effective switching function
scheme is developed to search for the desired working mode by observing a switching performance
index in which the impact of faulty actuators on the system can be weakened automatically.
Furthermore, it is proved that the proposed adaptive fuzzy actuator fault compensation scheme
can guarantee that the output is confined within the preselected bounds and all the closed-loop
signals are bounded. Finally, numerical analysis confirms the merits of the proposed controller.

Keywords: Fault-tolerant control, Output constraints, Error transformation, Actuator faults,
Uncertain MISO nonlinear systems.

1. INTRODUCTION

In practical control systems, it is clear that there often ex-
ist actuator faults, i.e., partial loss of effectiveness (PLOE)
fault and total loss of effectiveness (TLOE) fault, which
may degrade the system performance and even lead to
catastrophic closed-loop system instability. Therefore, it
is of great necessity to develop a fault-tolerant control
(FTC) method to enhance the system reliability and safe-
ty. To address the problem of actuator faults for nonlinear
systems, an active FTC strategy (He et al. (2016); Shen
et al. (2018); Ijaz et al. (2019)) based on real-time infor-
mation from a fault detection and isolation (FDI) unit
is designed to compensate the faults by reconfiguring the
controller. However, the involvement of extra FDI units
not only increases the system complexity but also leads to
a small probability of false alarm and missed detections.
Fortunately, a passive FTC approach (Jin (2016); Wang
and Zhang (2018)) based on robust control technique can
make the system insensitive to actuator failure without
reconstruction of the controller online. Furthermore, for
passive FTC method, if the system suffers from TLOE
faults, the adaptive FTC design just considering PLOE
faults (Jin (2016)) will be inapplicable to handle such
condition due to loss of control effort in some control chan-
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nels. To avoid such cases from happening, some additional
actuators are equipped to serve as backups for dealing with
the TLOE faults in (Ijaz et al. (2019); Yang et al. (2015a)).
Hence, it is crucial to propose an adaptive FTC scheme
under multiple actuators to accommodate actuator faults
without the requirement for FDI mechanism.

It is noteworthy that the FTC problem of nonlinear sys-
tems subject to output constraints or full-state constraints
has attracted numerous attention because of its practical
application. As a matter of fact, owing to system specifi-
cations and safety considerations, the problem of output
constraints is widespread in many engineering systems
(Meng et al. (2016); Li et al. (2018); Hu et al. (2018)). For
instance, if the actuator fault occurs suddenly in spacecraft
system (Hu et al. (2018)) during the on-orbit servicing
mission, the attitudes of spacecraft will have so potentially
large changes that the constraint requirements are not ful-
filled, which may interfere with the system in an undesir-
able way or even cause fatal accident. To achieve the goal
of output constraints in control designs, an error trans-
formation strategy was first proposed (Bechlioulis and
Rovithakis (2008)) and subsequently extended to serval
classes of nonlinear systems (Meng et al. (2015); Fan et al.
(2019)). It should be noticed that most results are only
applicable to some nonlinear systems with known control
gain function (Jin (2016); Li et al. (2018)), all actuators
functioning healthily (Meng et al. (2016, 2015); Fan et al.
(2019)) and only suffering from PLOE faults (Jin (2016)).
To the authors’ knowledge, how to design an adaptive
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fault-tolerant controller without FDI units for uncertain
nonlinear systems with actuator faults, user-defined time-
varying output constraints and external disturbance still
remains an open problem.

Therefore, a novel FTC design together with an error
transformation strategy is developed for uncertain MISO
nonlinear systems in the presence of actuator faults, exter-
nal disturbance to achieve the satisfaction of prescribed
output bounds. The contributions of this paper can be
summarized as: 1)A switching function method is designed
to locate the desired working mode where the healthy
actuators or PLOE fault actuators are activated without
human’s involvement. Thence, the actuator faults can be
compensated and the requirement for FDI mechanism
is relaxed. 2)The tracking error is always kept within
the arbitrarily user-defined time-varying constraints. The
guaranteed transient performance can be achieved despite
actuator faults.

First, an error transformation strategy is designed to
transform the output constrained problem of the original
system into a traditional stability problem of an uncon-
strained one. Further, a novel switching function is pro-
posed to locate the desired working mode in an automatic
way and the FDI mechanism is avoided. According to the
switching function scheme, a fuzzy fault-tolerant controller
is established to guarantee the satisfaction of prescribed
transient performance and tracking performance. Final-
ly, semiglobal uniformly ultimate boundedness of all the
closed-loop signals are ensured via Lyapunov analysis.

The remainder of this paper is structured as follows. Sec-
tion 2 is devoted to actuator fault model, FLS introduc-
tion, and problem statement. The system transformation
technique, a novel switching function are presented in
Section 3. In Section 4, the simulation results are provided
and Section 5 comes to the conclusion.

2. PROBLEM FORMULATION

2.1 Modeling and Problem Statement

Consider the following nonlinear MISO systems:

ẋ = f (x) + gT (x)u+ d (t)

y = x (1)

where x ∈ R is the state of the nonlinear system. u =

[u1, . . . , um]
T ∈ Rm, y denote the input vector and output,

respectively. In order to be consistent with the actual
application, the maximum control input is assumed to
be limited in this paper. f(x), g (x) are totally unknown

smooth functions with g (x) = [g1 (x) , . . . , gm (x)]
T ∈

Rm. d (t) denotes the time-varying unknown bounded
disturbance such that |d (t)| ≤ d̄ with d̄ being unknown
positive constant (Yang et al. (2015b)).

Thereafter, a novel fault-tolerant control method against
actuator faults subject to output constraints is proposed
as in Fig. 1 to show the highlights of this paper.

Furthermore, unexpected actuator faults might occur at
unknown time tf in practice during system operation,
leading to the following relation between the output of
actuator u(t) and actuator input υ(t):

u (t) = ρ (t)S (t) υ (t) + δ (t) , t > tf (2)

Control law Plant

dy
1

2

m

1s 2s ms

1u

2u

mu

y y y 

( )S t( )S tSwitching function 

Actuator

Fault-tolerant controller

Fig. 1. An adaptive FTC method with prescribed output
constraints

where u (t) = [u1 (t) , . . . , um (t)]
T

, υ (t) = [υ1 (t) , . . . ,

υm (t)]
T

, ρ (t) = diag {ρ1 (t) , . . . , ρm (t)}, S (t) = diag

{s1 (t) , . . . , sm (t)}, δ (t) = [δ1 (t) , . . . , δm (t)]
T

. 0 ≤
ρp (t) ≤ 1, p = 1, . . . ,m represents the actuator efficiency.
The condition 0 < ρ

p
≤ ρp (t) < 1 corresponds the loss

of effectiveness (LOE) fault. ρ
p

is the known lower bound

of ρp(t). δp (t) denotes the unknown bounded time-varying
bias or stuck fault. Moreover, the switching function sat-
isfies sp (t) ∈ {τ0, 1} where τ0 > 0 is designed to be a
sufficiently small constant which is consistent with the
maximum control input of industrial systems.

The control goal is to develop a novel adaptive FTC
scheme for the uncertain nonlinear system (1) such that:
1)the output y(t) tracks the reference signal yd(t) while
not transgressing the user-defined output constraints, that
is, y (t) < y (t) < ȳ (t), during the entire system operation
and 2)all the signals in the closed-loop system are bounded
regardless of the coexistence of unknown actuator faults
at unknown fault time instants, external disturbance and
prescribed output constraints.

In order to obtain a feasible solution, some common
assumptions are presented.

Assumption 1. For unknown nonlinear system (1), when
m − 1 actuators sustain stuck or outage faults, the re-
maining actuator undergoing LOE fault can still make the
system controllable.

Assumption 2. The bias fault δ(t) is upper bounded such
that ‖δ (t)‖ ≤ δ̄, where δ̄ > 0 is unknown.

Assumption 3. The signs of the nonlinear function gp(x),
p = 1, . . . ,m are known, and there exist unknown positive
constants gm and gM such that 0 < gm ≤ |gp (x)| ≤ gM <
∞. More specially, the assumption that 0 < gm ≤ gp (x) ≤
gM <∞ is given.

2.2 Fuzzy Logic System

Because of the existence of unknown functions, fuzzy logic
system (FLS) is utilized as an online approximator to
identify the unknown nonlinear dynamics. More details
can be found in (Shen et al. (2014)). Then, a lemma on
the FLSs is presented as follows.

Lemma 1. (Zhai et al. (2016)) For any continuous func-
tion f(Z) defined on an arbitrary compact set ΩZ and
any given positive constant ε > 0, there exists an FLS
WTφ (Z) such that

sup
Z∈ΩZ

∣∣f (Z)−WTφ (Z)
∣∣ ≤ ε

where Z denotes the input vector to the FLS and W =

[w1, . . . , wN ]
T ∈ RN represents the ideal weight vec-
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tor with N being the total number of rules. φ (Z) =

[φ1 (Z) , . . . , φN (Z)]
T ∈ RN is the fuzzy basis function

vector .

Apparently, W is bounded such that ‖W‖ ≤ ωM (Hu
et al. (2017)) and that the approximation error ε satisfies
|ε| ≤ εM (Hu et al. (2017)), with ωM , εM being unknown
positive constants. To cope with the unknown control
gain function gp(·), the variable ϑ is introduced as ϑ =
1
gm
‖W‖2.

3. CONTROL METHODOLOGY

3.1 System Transformation

The system tracking error is derived as

e(t) = y(t)− yd(t) (3)

Then, by substituting the time-varying output constraints
into (3), one has

e(t) < e(t) < ē(t) (4)

where e(t) = y(t) − yd(t), ē(t) = ȳ(t) − yd(t). Hence, the
output constraints are converted to the error constraints
given by (4).

In order to guarantee the prescribed transient perfor-
mance, an error transformation algorithm is presented to
transform the origin constrained tracking error into an un-
constrained one. Thereafter, a function T (ς (t) , e (t) , ē (t))
is introduced as

e (t) = T (ς (t) , e (t) , ē (t)) (5)

ς (t) = T−1 (e (t) , e (t) , ē (t)) (6)

where ς (t) is the transformed error, and T (·) denotes a
smooth invertible function with satisfying ∂T (·)/∂ς > 0.
In this paper, the function T is selected as

T =
ē (t)− e (t)

π
arctan (ς (t)) +

ē (t) + e (t)

2
(7)

By recalling (6), the new unconstrained error ς (t) is
obtained as

ς (t) = tan

(
π

2

2e (t)− ē (t)− e (t)

ē (t)− e (t)

)
(8)

By combining (5) and (7), the following fact holds on:{
lim

ς→−∞
e (t) = e (t)

lim
ς→+∞

e (t) = ē (t).
(9)

From (9), it is noted that as long as ς (t) is bounded, we
have

e (t) < e (t) < ē (t) (10)

Adding yd(t) to every side of (10), we get y(t) < y(t) <
ȳ(t), which indicates that the system output can be
always maintained in the predesigned region. Thus, the
boundedness of the transformed error ς (t) is sufficient to
guarantee the time-varying output constraints.

Now, the transformed closed-loop system dynamics is
given by

ς̇ = κ
[
f (x) + gT (x) (ρSυ + δ) + d (t)− ẏd (t)

]
+ ςd

y = x (11)

where κ = ∂ς/∂e > 0 and ςd = (∂ς/∂e) ė + (∂ς/∂ē) ˙̄e are
available as feedback signals since the signals ς, e, e, ē, ė
and ˙̄e are known.

3.2 Switching Function Design

In this section, a novel switching function scheme is
developed to minimize the influence of faulty actuators
for achieving the control goal. Before proceeding, some
definitions are provided.

Definition 1. According to m actuators, we number m ac-
tuators in sequence and the total number of fault patterns
is M = 2m − 2. The µth actuator fault pattern σ(µ),
µ = 1, . . . ,M is defined as

σ(µ) =
{
σµ1, σµ2, . . . , σµlµ

}
(12)

where σµ1, . . . , σµlµ ∈ {1, . . . ,m} represents pth actuator.
Therefore, after the actuator fault occurrence time tf , the
corresponding switching functions sσµ1 = · · · = sσµlµ are
set τ0 to minimize impact of the faulty actuators.

Definition 2. For a system with m actuators, the number
of working modes is L = 2m − 1 and an overall working
mode set is generated as

Π =
{
Ŝ1, Ŝ2, . . . , ŜL

}
= {diag {τ0, τ0, . . . , τ0, 1} , diag {τ0, τ0, . . . , 1, τ0} , . . . ,

diag {1, 1, . . . , 1, 1}} (13)

Definition 3. For the fault pattern σ(µ), the undesired
working mode set comes that

Π̄(µ) =
{
S̄µ1, S̄µ2, . . . , S̄µL̄µ

}
(14)

where L̄µ stands for the number of undesired working
modes, and each mode S̄µα = diag {s̄µα1, . . . , s̄µαm}, α =
1, . . . , L̄µ satisfies

(1) Only ρp 6= 0, p = 1, . . . ,m actuator faults model is
considered:

Π̄(µ) = ∅

(2) The ρp = 0 actuator fault model is included:

s̄µαp =

{
1 ρp = 0
τ0 or 1 else

Definition 4. According to the overall and undesired work-
ing mode sets, the set containing all the desired working
modes is given by

Π(µ) = Π − Π̄(µ). (15)

Based on the aforementioned definitions, an adaptive au-
tomatic switching scheme is employed to avoid the com-
plexity of FDI mechanism. And the switching performance
index θ is defined as

θ̇ = kθN (ς) , θ (0) = 0.001 (16)

where kθ is a positive constant, N (ς) is a smooth ”dead-
zone” type function which is designed as

N (ς) =

{
0, |ς| ≤ ~
(|ς| − ~)

2
, |ς| > ~ (17)

~ is a constant to be determined later. And the switching
function is described as

S (t) = S (θ (t)) = Ŝη ∈ Π (18)
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where the switching function index η is presented by

η = dmod (θ, L)e (19)

d·e is the ceiling function, and mod(·) is the residual
operator.

Actually, the overall working mode set serves as a working
mode pool where there is at least one desired working mod-
e. When the TLOE faults occur, the switching function
index θ being the function of the transformed error ς will
move continuously to find a working mode Π(µ) in the
working mode pool Π . In the whole search process, there
are two scenarios that the system operates in the undesired
working mode and in the desired working mode. If S(t)
takes a working mode Π̄(µ) in the event of actuator fault(s),
sufficiently weak control effort of all actuators can hardly
actuate the control system such that the deteriorating
tracking performance will be generated. Hence, the index θ
will drive the index η to the next integer continuously until
the Π(µ) is located. Conversely, when a working mode Π(µ)

is picked, the healthy actuators or the actuators suffering
from PLOE faults will be activated and force the output to
move towards the reference signal. Thence, the index θ will
remain unchanged, that is, the system stays in the desired
working mode all the time, to guarantee the predefined
tracking performance and transient performance. By this
means, the index θ can vary continuously and the proposed
switching function approach eventually locates a working
mode Π(µ) in the overall working mode set Π to maintain
an acceptable system performance.

3.3 Adaptive Fault-Tolerant Control Law

The adaptive control law υp is designed as

υp = − 1

ρ
p
κ

[
k0ς +

1

2r2
ςϑ̂φT (z)φ (z)

]
(20)

where ρ = min
{
ρ
p
, p = 1, . . . ,m

}
with 0 < ρp < 1 being

a known constant in (2) and k0, r are positive constants.

The adaptive law for ϑ̂ is tuned as

˙̂
ϑ =

l

2r2
τ0ς

2φT (z)φ (z)− γϑ̂ (21)

where l, γ are positive design parameters, and ϑ̂ (0) > 0 is
the arbitrarily chosen initial estimate of variable ϑ, which

can always keep ϑ̂ positive. Define the estimation error as

ϑ̃ = ϑ− ϑ̂.

3.4 Stability Analysis

Eventually, according to the previous analysis, the main
results of this paper are stated in the following theorem.

Theorem 1. Consider the transformed closed-loop system
(11) under Assumption 1-3, let fault-tolerant control law
be provided by (20) with adaptive law (21). Then, the
system output y(t) can track its reference signal yd(t)
without violation of the time-varying output constraints,
y(t) < y(t) < ȳ(t), despite actuator faults. Furthermore,
all the closed-loop signals remain bounded.

Proof: Consider the following Lyapunov function candi-
date

V =
1

2
ς2 +

gm
2l
ϑ̃2. (22)

The time derivative of V is given by

V̇ =ςκ
[
f (x) + gT (x) (ρSυ + δ) + d (t)− ẏd (t)

]
+ ςςd −

gm
l
ϑ̃

˙̂
ϑ. (23)

Based on Assumption 2 and 3, Young’s inequality is
employed, and we have

ςκgT (x) δ ≤ 1

2
ς2κ2 +

1

2
mg2

M δ̄
2 (24)

ςκd (t) ≤ 1

2
ς2κ2 +

1

2
d̄2. (25)

Substituting (24) and (25) into (23) generates

V̇ ≤ς
[
κf (x) + ςκ2 − κẏd + ςd

]
+ ςκgT (x) ρSυ

− gm
l
ϑ̃

˙̂
ϑ+

1

2
mg2

M δ̄
2 +

1

2
d̄2 (26)

Due to the approximation property of FLSs, the unknown
function f(x) is handled by FLSs and suppose that there
exists an ideal fuzzy approximation on a compact set Ωz
such that

Q (z) = κf (x) + ςκ2 − κẏd + ςd = WTφ (z) + ε (27)

where z = [x, ς, e, e, ė, ē, ˙̄e, ẏd]
T

is the input vector to FLS.
Furthermore, according to Young’s inequality, we can get

ς
[
WTφ (z) + ε

]
≤ 1

2r2
gmς

2ϑφT (z)φ (z) +
1

2
r2

+
1

2
ς2 +

1

2
ε2M . (28)

Substituting (27), (28) into (26) yields

V̇ ≤1

2
ς2 +

1

2r2
gmς

2ϑφT (z)φ (z) + ςκgT (x) ρSυ

− gm
l
ϑ̃

˙̂
ϑ+D (29)

where D = (1/2)
(
mg2

M δ̄
2 + d̄2 + r2 + ε2M

)
.

Based on the mechanism of switching function scheme, we
shall consider two scenarios for the system.

(i) When the desired working mode is chosen at time ti,
i.e., S (θ (ti)) = S (θ) ∈ Π(µ), it implies that the control
effort of healthy or faulty actuators for bias and LOE fault
can be delivered to reach the system. Therefore, one has

V̇ ≤− k1ς
2 +

1

2r2
gmς

2
(
ϑ− ϑ̂

)
(1− τ0)φT (z)φ (z)

+
gmγ

l
ϑ̃ϑ̂+D

≤− k1ς
2 +

gm
2r2

ς2ϑφT (z)φ (z)− gmγ

2l
ϑ̃2 +

gmγ

2l
ϑ2 +D

≤−
(
k1 −

1

2r2
ω2
M

)
ς2 − gmγ

2l
ϑ̃2 +

gmγ

2l
ϑ2 +D

≤− C1V + E1 (30)

where k1 = k0gm − 1/2, C1 = min
{

2k1 −
(
1
/
r2
)
ω2
M , γ

}
,

E1 = (gmγ/2l)ϑ2 +D.

By combining (22) and (30), one has

1

2
ς2 ≤ E1

C1
+ V (ti) e

−C1(t−ti) (31)

Furthermore, we can obtain

|ς| ≤
√

2E1

C1
+
√

2V
1
2 (ti) e

−C1
2 (t−ti). (32)
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The parameter ~ can be designed as ~ ≥
√

2E1/C1.
Thence, for |ς| > ~, the switching performance index θ
is obtained as

θ̇ = kθ(|ς| − ~)
2 ≤ 2kθV (ti) e

−C1(t−ti) (33)

which means that θ converges to a positive constant.

(ii) When an undesired working mode is chosen at time tj ,
it indicates that the healthy actuators are turned off and
the control effort of faulty actuators is minimized such that
the system dynamics is not influenced. Hence, one has

V̇ ≤k2ς
2 +

gm
2r2

ς2ϑ (1− τ0)φT (z)φ (z) +
gmγ

l
ϑ̃ϑ̂+D

≤k2ς
2+

gm
2r2

ς2ϑφT (z)φ (z)− gmγ

2l
ϑ̃2 +

gmγ

2l
ϑ2 +D

≤
(
k2 +

1

2r2
ω2
M

)
ς2 +

gmγ

2l
ϑ̃2 +

gmγ

2l
ϑ2 +D

≤C2V + E2 (34)

where C2 = max
{

2k2 +
(
1
/
r2
)
ω2
M , γ

}
, E2 = E1, k2 =

1/2− k0gmτ0 > 0.

According to the above stability analysis of undesired

working mode, there are two possibilities:
∫ +∞
tj

θ̇dt ≤ 1

still holds on [tj ,+∞), and the condition
∫ +∞
tj

θ̇dt >

1 achieves and consequently, the switching performance
index θ will increase until a right working mode Π(µ) is
found.

Next, based on the automatic switching mechanism, the
S(t) can enter the desired working mode a time ti and
remains in it all the time, that is, the following inequality
is obtained as ∫ +∞

ti

θ̇dt ≤ 1. (35)

For 0 ≤ t < ti, the undesired working modes will be
chosen, one has V̇ ≤ C2V + E2. Then, we have

V (ti) ≤eC2tIV (0) +
E2

C2
eC2ti − E2

C2

≤eC2tiV (0) +
E2

C2
eC2ti . (36)

Substituting (36) into (33) yields

θ̇ ≤2kθV (ti) e
−C1(t−ti)

≤kθ
(

2V (0) +
2E2

C2

)
e−C1t+(C1+C2)ti (37)

Thereafter, taking the integration of (37) on [ti,+∞)
generates∫ +∞

ti

θ̇ (t) dt ≤
∫ +∞

ti

kθ

(
2V (0)+

2E2

C2

)
e−C1t+(C1+C2)tidt

=kθ
2C2V (0) + 2E2

C1C2
eC2ti . (38)

Choose kθ ≤ C1C2/[(2C2V (0) + 2E2)N ] with N > 0
being a design parameter. Obviously, there must exist a
sufficiently large N such that eC2ti ≤ N , that is, (35) is
satisfied.

Combining (i) and (ii), there exists the time ti such that
the switching function can stay within a desired working

mode and never comes out, i.e.,
∫ +∞
ti

θ̇ (t) dt ≤ 1. Accord-

ing to Barbalat’s Lemma and (33), one has limt→∞N (ς) =

0 5 10 15 20 25 30 35 40

Time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
System output y
Reference signal y

d

Output bounds

Fig. 2. Output tracking performance of the system
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0, i.e., limt→∞ |ς| ≤ ~. Furthermore, referring to the s-
tandard Lyapunov analysis and error transformation tech-
nique, the aforementioned analysis demonstrates uniform-
ly ultimately boundedness of tracking error e. The other

variables y = x, ϑ̂ and the control input u are also bound-
ed. Therefore, all the signals in the closed-loop system are
guaranteed to be bounded.

4. SIMULATION STUDY

In this section, a simulation study is provided to evaluate
the control performance of the adaptive FTC method for
a first-order nonlinear system given by

ẋ = 0.5 sin (x) e−x + (2 + cos (x)) (u1 + u2) + d (t)

y = x (39)

with the external disturbance d (t) = 0.06 sin (0.5t), where
x is the state, and u1, u2, y denote the control input and
output of the system, respectively.

Suppose that the actuator #2 suffers from a stuck fault at
tf = 5s with u2(t) = 0.1 sin(t), t > tf . According to the
Definition 1-4, the desired working mode consists of two
working modes S21 = diag {1, τ0} with τ0 = 10−6, S22 =
diag {1, 1}. Moreover, the reference signal is selected as
yd (t) = 0.5 + 1.5 sin (t) and the prescribed output bounds
are described by y(t) < y(t) < ȳ(t) with y (t) = −e−0.3t −
0.05+yd, ȳ (t) = 0.5e−0.3t+0.06+yd. The initial conditions
are given as kθ = 20, ~ = 0.06, k0 = 150, r = 10, γ = l = 1.

The system output performance of nonlinear system (39)
in Fig. 2 demonstrate that it can track the reference signal
regardless of actuator faults and external disturbance. The
simulation result in Fig. 3 illustrates that the tracking
error can always reside within the predefined time-varying
error constraints. Additionally, as observed in Fig. 4, the
transformed error is bounded in the simulation interval
such that the prescribed performance can be guaranteed in
terms of e(t) given by in (10). From Fig. 5, when actuator
#2 undergoes stuck fault, the index θ changes with sudden
increase to drive the index η to reach 2 before violating the
tracking error bounds.
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Fig. 4. Transformed error ς
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5. CONCLUSION

In this paper, an novel fuzzy FTC method is proposed
to accommodate actuator faults for uncertain nonlinear
MISO systems while forcing the output to reside in user-
defined output constraints. By employing an error trans-
formation technique, the stability of the equivalently un-
constrained system is sufficient to address the output
constraints of the original system. The requirements for a
prior knowledge of system dynamics, FLS approximation
error and external disturbance have been relaxed. The de-
sired working mode can be found without the need for FDI
design via the designed switching function scheme. In the
desired working mode, the actuator faults compensation,
the desired tracking performance and the time-varying
output bounds can be guaranteed simultaneously. All the
signals of the closed-loop system is proved to be bounded.
The problem of FTC design with output constraints for
nonlinear systems subject to infinite number of actuator
faults will be investigated in the future work.
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