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Abstract: The problem of trajectory tracking of a quadrotor without using linear velocity
measurements and with model parameter uncertainties is addressed in this paper. A linear
observer is proposed to overcome the problem of a lack of linear velocity measurements. The
proposed adaptive control algorithm exploits the cascade structure of the translational and
attitude dynamics of the quadrotor and guarantees asymptotic convergence of the tracking and
observer errors. The attitude control is designed based on the unit quaternion; thus, the well-
known singularities of the Euler angles are avoided. Simulation results are presented to show
the performance of the proposed control scheme.
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1. INTRODUCTION

A quadrotor is an aircraft composed of four rotors that
can perform vertical take-off, landing, and hovering flight
maneuvers. Such capabilities allow this type of aerial
robot to carry out several tasks, for instance, surveillance,
exploration, 3D-mapping, transportation, for mention a
few. Therefore, the interest in modeling and controlling
quadrotors has rapidly grown in recent years (Castillo
et al., 2005; Mahoney et al., 2012).

Quadrotors are under-actuated nonlinear systems with six
degrees of freedom; therefore, the trajectory tracking and
pose regulation problems for these systems are challeng-
ing tasks. Nevertheless, in a variety of applications, the
aircraft operates near the hovering regime, in this case,
the quadrotor’s dynamic can be approximated by a linear
system (Michael et al., 2010), and several linear control
algorithms have been proposed (Bouabdallah et al., 2004;
Pounds et al., 2006).

To overcome the limitations of linear controllers, nonlin-
ear control algorithms and trajectory planning methods
that allows the quadrotor to perform complex and aggres-
sive maneuvers have been proposed in the literature (Lee
et al., 2009; Zuo, 2010; Mellinger et al., 2012). The atti-
tude stabilization problem was addressed in (Tayebi and
McGilvray, 2006) where a unit quaternion-based feed-
back controller with exponential convergence property was
proposed. Kendoul et al. (2010) proposed a hierarchical
model-based nonlinear control that achieves stabilization
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and trajectory tracking. The control algorithm relies on
the extraction of the desired Euler angles and total thrust
from a intermediary control input. On the other hand,
Lee et al. (2010) proposed a novel almost global nonlinear
geometric control on SE(3). Simulation results show that
this controller can be use to perform aggressive maneuvers.
Nevertheless, the aforementioned control schemes assume
full-state measurements. Moreover, it is assumed that the
quadrotor’s dynamic parameters are known.

Due to hardware limitations, it is not always possible to
measure all the state variables of the aircraft. To circum-
vent the problem of lack of state measurements several
researches have been proposed velocity observers, linear
and nonlinear filters. Rosaldo-Serrano et al. (2019) pro-
posed a Luenberger observer to estimate both the linear
and angular velocity of the system. The observer was used
in combination with a backstepping control algorithm for
trajectory tracking of a group of AR.drone quadrotors.
A nonlinear velocity observer and a nonlinear controller
based on the unit quaternion is proposed in (Abdessameud
and Tayebi, 2010). The observer only estimates the lin-
ear velocity and the complete control-observer scheme
achieves global trajectory tracking. A nonlinear controller
without linear and angular velocity measuremntes based
on nonlinear filters is proposed in (Zou, 2017b).

On the other hand, the problem of model parameters
uncertainties is addressed in (Ha et al., 2014) and (Zou,
2017a). In the former work it is assumed that the mass
of aircraft is unknown and a passivity-based adaptive
backstepping control is proposed. In the latter, a robust
nonlinear adaptive control is presented which deals with a
mass and inertia matrix uncertainties. A model reference
adaptive control (MARC) for trajectory tracking for a
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low-cost quadrotor is proposed in (Dydek et al., 2013).
The controller’s performance was successfully validate by
means of experimental test on the RAVEN laboratory
platform (How et al., 2008).

In this paper a nonlinear adaptive control algorithm is
proposed for trajectory tracking of quadrotor in a 3D
environment without using linear velocity measurements.
The controller exploits the cascade structure of the equa-
tions of motion of the aircraft. As a result, a hierarchical
control strategy is adopted. First, an auxiliary control
is proposed to achieve trajectory position tracking. Such
auxiliary control allows us to compute the total thrust
and the desired orientation (outer-loop control). Once the
desired attitude is obtained, a nonlinear adaptive control
is designed for the quadrotor’s attitude dynamics (inner-
loop control). The linear velocity is estimated by means
of a simple Luenberger observer. The remaining sections
of the paper are organized as follows: Section 2 presents
the dynamic model and kinematic relationships of the
quadrotor. The linear velocity observer is introduced in
Section 3. The proposed control scheme as well as the
stability analysis of the closed-loop system is presented
in Section 4. Simulations results are given in Section 5. Fi-
nally, some concluding remarks are discussed in Section 6.

2. DYNAMIC MODEL

In this section, the equations of motion of the quadrotor
are presented. Let Σ0 = {x0,y0, z0} be the inertial frame
and let Σ1 = {x1,y1, z1} be a second frame attached to
the center of mass of the quadrotor. The frames Σ0 and
Σ1 are related by the rotation matrix R ∈ SO(3) which
describes the orientation of the quadrotor. According to
Fig. 1, p ∈ <3 and v = ṗ ∈ <3 denote, respectively, the
position and linear velocity of the quadrotor’s center of
mass expressed w.r.t. the inertial frame Σ0, and ω ∈ <3

denotes the angular velocity expressed w.r.t. the body
frame Σ1. The equations of motion of the system are given
by

ṗ = v

v̇ =
T
m
Rz0 − gz0

(1)

Ṙ = RS(ω)
Jω̇ = τ − S(ω)Jω

(2)

where g, m and J ∈ <3×3 are, respectively, the gravity
constant, the mass and constant inertia matrix of the
quadcopter, T ∈ < and τ ∈ <3 denote the total thrust
and the external input torque. Finally, S(·) ∈ <3×3 is a
skew-symmetric matrix which satisfies S(q1)q2 = q1 × q2
and ‖S(q1)‖ = ‖q1‖ ∀ q1, q2 ∈ <3 where × denotes the
cross product operator.

Alternatively to the rotation matrix R, the attitude of the
quadrotor can be described by the four-parameter unit
quaternion denoted by Q = {η, ε}, where η ∈ < and
ε = col(εx, εy, εz) ∈ <3 denote the scalar and vector parts,
respectively. The unit quaternion presents the following
properties: η2 + εTε = 1 and Q−1 = {1,−ε} where Q−1
denotes the inverse of Q. Given the unit quaternions Q1 =
{η1, ε1} and Q2 = {η2, ε2}, the quaternion product is de-
fined as Q1 ⊗Q2 =

{
η1η2 − εT1 ε2, η1ε2 + η2ε1 + S(ε1)ε2

}
is equivalent to the rotation matrix multiplication R1R2.

Σ0
x0

y0

z0

z1

y1

x1
Σ1

p

ω

T1

T2T3

T4

mgz0

v

Fig. 1. Quadrotor composed of four rotors, T =
∑4
i=1 Ti

and τ are the control inputs

The rotation matrix corresponding to a given quater-
nion is R(η, ε) = (2η2 − 1)I + 2εεT + 2ηS(ε), therefore,

RTR = I ⇔ Q−1Q = {1,0}. Finally, the time-derivative
of Q = {η, ε} is related to the angular velocity ω by the
so-called propagation rule (Siciliano and Villani, 1999)

η̇ = −1

2
εTω

ε̇ =
1

2
(ηI − S(ε))ω.

(3)

3. LINEAR VELOCITY OBSERVER

Commercial quadrotors are equipped with inertial mea-
surement units (IMUs) composed of gyroscopes, ac-
celerometers, and magnetometers. Such devices allows to
measure the angular velocity and attitude of the quadro-
tor. The position can be measured by means of infrared,
acoustic, barometric sensors, global positioning system
(GPS) or VICON systems. Nevertheless, the problem of
measuring the linear velocity is more cumbersome. This
drawback motive us to propose an algorithm to estimate
the linear velocity of the aerial vehicle. Assuming that
p and R are available from measurements, the proposed
velocity observer for the subsystem (1) is given by

˙̂p = v̂ +L1p̃

˙̂v =
T
m
Rz0 − gz0 +L2p̃

(4)

where p̃ , p − p̂ is the observation error, p̂ denotes the
estimate of p and L1, L2 ∈ <3×3 are positive definite
matrices. By taking into account (1) and (4) the time-
derivative of the observation errors p̃ and ṽ = v − v̂ are
given by

˙̃p = −L1p̃+ ṽ

˙̃v = −L2p̃,
(5)

which is equivalent to
¨̃p+L1

˙̃p+L2p̃ = 0. (6)

Since the observer gains L1 and L2 are positive definite
matrices, the equilibrium point (p̃, ṽ) = (0,0) is asymp-
totically (exponentially) stable.
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4. CONTROL ALGORITHM DESIGN

The dynamic model of the quadrotor presents a cascade
structure where the interconnection term m−1TRz0 re-
lates the rotational dynamics (2) with the translational
equation of motion (1). Moreover, eq. (2) is independent
of the states p and v. Such characteristic allows us to apply
a hierarchical control strategy. The basic idea is to use the
total thrust and the quadrotor’s attitude as the control
inputs for the position subsystem.

4.1 Position controller

Consider the auxiliary control input

u =
T
m
Rdz0 − gz0 =

T
m




2(εxdεzd + ηdεyd)
2(εydεzd − ηdεxd)
2(η2d + ε2zd)− 1


− gz0 (7)

where Rd = Rd(ηd, εd) is the desired rotation matrix.
Therefore, given u = col(ux, uy, uz) it is possible to
compute the total thrust T and the desired attitude Qd =
{ηd, εd}. By exploiting the properties of rotation matrices,
one has

T = m ‖u+ gz0‖2 . (8)

In order to compute ηd and εd, the value of εzd is fixed to
zero, hence

ηd =

[
1

2
+
m(uz + g)

2T

] 1
2

, εd =
m

2ηdT

[−uy
ux
0

]
(9)

under the condition that u 6= col(0, 0,−g) (see (Ab-
dessameud and Tayebi, 2009) for further details). The
auxiliary control input u is proposed as follows

u =v̇d +K1 (pd − p̂) +K2 (vd − v̂)

=v̇d +K1∆p+K2∆v +K1p̃+K2ṽ
(10)

where K1, K2 ∈ <3×3 are positive definite matrices,
pd ∈ <3 is the desired position with vd = ṗd, v̇d = p̈d and

∆p , pd − p, ∆v , vd − v are the position and velocity
tracking errors. Based on (9) and (10), the desired angular
velocity can be computed as

ωd = 2

[
−εTd

ηdI − S(εd)

]T [
η̇d
ε̇d

]
(11)

where η̇d, ε̇d are obtained by differentiating (9). To avoid
complex calculations, the time-derivative of ωd can be

approximated by a low-pass filter ω̇d =
s

λs+ 1
ωd with

λ > 0 is the cutoff frequency.

4.2 Attitude controller

The next step of the hierarchical control strategy is to
design the control torque input τ that guarantees the
trajectory tracking of the desired attitude Qd = {ηd, εd}.
To this end, the following property of the attitude dynam-
ics (2) will be exploited:

Property 1. The attitude dynamics described by (2) is
linear w.r.t. the inertial parameters, i.e.,

Jω̇ + S(ω)Jω = Y (ω, ω̇)θ = τ (12)

where θ ∈ <p is the inertial parameter vector and
Y (ω, ω̇) ∈ <3×p is called the regressor matrix. �

The attitude error is defined as

∆Q = {∆η,∆ε} = Q−1 ⊗Qd. (13)

Therefore, the quadrotor’s attitude R is aligned to the
desired attitude Rd when ∆Q = {1,0}. In terms of rota-
tion matrix, the attitude error is given by ∆R(∆η,∆ε) =

RTRd. The angular velocity error is given by

∆ω = ω̄d − ω. (14)

where ω̄d , ∆R(∆η,∆ε)ωd. Before presenting the atti-
tude controller, consider the following auxiliary variables

ωr = ω̄d + kε∆ε (15)

ξ = ωr − ω = ∆ω + kε∆ε (16)

where ωr ∈ <3 is a reference velocity signal and ξ ∈ <3 is
an error variable.

Based on the previous definition and by taking into ac-
count (3), (12)-(16) the attitude dynamics can be written
as

∆η̇ = −1

2
∆εT∆ω

∆ε̇ =
1

2
(∆ηI − S(∆ε)) ∆ω

Jξ̇ = −S(ξ)Jω + Y (ω,ωr, ω̇r)θ − τ .

(17)

Since the inertial parameters of the quadrotor are un-
known the following adaptive control is proposed

τ = Y (ω,ωr, ω̇r)θ̂ +Kξξ + kε∆ε (18)

where kε ∈ < is a positive constant, Kξ ∈ <3×3 is

symmetric positive definite matrix and θ̂ ∈ <p is an
estimate of θ which is updated according to

˙̂
θ = ΓY T(ω,ωr, ω̇r)ξ (19)

where Γ ∈ <p×p is the adaptive gain.

4.3 Stability analysis

The main contribution of the paper is stated in the
following theorem:

Theorem 1. For the quadrotor dynamics described by (1)-
(3) with Q(0) = {η(0), ε(0)} 6= {−1,0}, the total thrust
and the desired attitude given in (8) and (9) in combina-
tion with the linear observer (4), the auxiliary control (10)
and the adaptive controller (18)-(19) guarante that all
closed-loop variables are bounded and

lim
t→∞

‖x‖2 = 0, lim
t→∞

‖∆ω‖2 = 0, lim
t→∞

∆Q = {1,0}
where x = col(∆p,∆v, p̃, ṽ) ∈ <12.

Proof. The first step of the proof consists in obtaining the
closed-loop dynamics of the position and attitude errors.
By taking into account (1), (7) and (10) the dynamics of
the position and velocity errors are given by

∆ṗ = ṽ
∆v̇ = −K1∆p−K2∆v −K1p̃

−K2ṽ −
T
m

(R−Rd)z0.
(20)

The interconnection term (R−Rd)z0 can be written as

(R−Rd)z0 = R(I −∆R(∆η,∆ε))z0 = RS(ε̄)∆ε (21)

where ε̄ , col(∆εy,−∆εx,∆η). Equations (5) and (20)
admit the following state-space representation

ẋ = Ax+B
T
m
RS(ε̄)∆ε (22)
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where

A =



O3×3 I O3×6
−K1 −K2 −K1 −K2

O6×6
−L1 I
−L2 O3×3


 , B =

[
O3×3
I

O6×3

]
(23)

where On×n denotes a zero matrix of dimension n× n.

On the other hand, by substituting the adaptive con-
troller (18)-(19) into (17) we obtain the closed-loop dy-
namics for the attitude subsystem given by

∆η̇ = −1

2
∆εT∆ω

∆ε̇ =
1

2
(∆ηI − S(∆ε)) ∆ω

Jξ̇ = −S(ξ)Jω + Y r∆θ −Kξξ − kε∆ε
∆θ̇ = −ΓY T

r ξ

(24)

where Y r = Y (ω,ωr, ω̇r) and ∆θ = θ − θ̂ is the
parametric error. Equations (20) and (22) describe the
closed-loop error dynamics of the whole system.

Since (24) does not depend on the state x, the second
step of the proof consists in analyzing the stability of the
equilibrium point (∆η,∆ε, ξ,∆θ) = (1,0,0,0). To this
end, consider the positive scalar function

Va =
1

2
ξTJξ +

1

2
∆θTΓ−1∆θ + 2kε(1−∆η) (25)

whose time derivative along (24) is given by

V̇a = −ξTKξξ − kε∆εTξ + kε∆ε
T∆ω (26)

By taking into account (16) V̇a becomes

V̇a =− ξTKξξ − k2ε‖∆ε‖22 ≤ −k‖r‖22 ≤ 0 (27)

where r = col(‖ξ‖2, ‖∆ε‖2) and k = min{λmin{Kξ}, k2ε}.
Therefore, the closed-loop variables ∆η, ∆ε, ξ and ∆θ are
bounded. This in turn implies that ∆ω is also bounded
(see (16)). Integrating both sides of (27) yields

Va(t)− Va(0) ≤ −k
∫ t

0

‖r(ϑ)‖2dϑ (28)

Since Va is nonincreasing, one has
∫ t

0

‖r(ϑ)‖2dϑ ≤ 1

k
Va(0). (29)

The previous result shows that r ∈ L2 ∩ L∞, this implies
that ξ, ∆ε, and ∆ω converge asymptotically to zero.
Since the quaternion error satisfies ∆η2 + ‖∆ε‖22 = 1 and
assuming that ∆η(0) 6= −1 it is concluded that ∆η → 1
as t→∞.

The final step of the proof consists in showing that
limt→∞ ‖x‖2 = 0. It is worth to mention that the control
and observer gains Ki and Li (i = 1, 2) can be chosen
such that the matrix A in (22) is Hurtwitz. Consider
the candidate Lyapunov function Vp = xTPx where
P ∈ <12×12 is a symmetric positive matrix which satisfies
PA +ATP = −qI, for q > 0. The time derivative of Vp
along (22) is given by

V̇p = −q‖x‖22 +
2

m
T xTPBRS(ε̄)∆ε. (30)

By taking into account (8) and (10) an upper bound of T
can be computed as

T = m‖u+ gz0‖ ≤ m(‖v̇d‖∞ + g) + 2mk̄‖x‖2 (31)

Table 1. Control/observer parameters

Position/Observer Orientation/Adaptive

Gain Value Gain Value
K1 diag(4, 3, 15) Kξ diag(3, 3, 3)
K2 diag(5, 3.5, 8) kε 2
L1 diag(10, 15, 16) Γ diag(0.02, 0.02, 0.01)
L2 diag(16, 36, 60) λ 5

where k̄ = max{λmax{K1}, λmax{K2}}. Based on the
previous analysis it can be shown that

T ≤
{
mc‖x‖2, if ‖x‖2 ≥ a
mca, if ‖x‖2 < a

(32)

with a , (‖v̇‖∞ + g)/2k̄ and c , 4k̄. Since ‖B‖2 = 1,
‖R‖2 = 1, ‖S(ε̄)‖2 = ‖ε̄‖2 ≤ 1 and by taking into
account (32) the time derivative of Vp satisfies

V̇p ≤ − (q − 2λmax{P }c‖∆ε‖2) ‖x‖2, ∀‖x‖2 ≥ a (33)

Since ‖∆ε‖2 → 0 as t → ∞ there exist a finite period
such that

‖∆ε‖2 =
q

4λmax{P }c
=⇒ V̇p ≤ −

1

2
q‖x‖22. (34)

Therefore, x(t) is bounded and converges asymptotically
(exponentially) to zero. This completes the proof. �

5. SIMULATION RESULTS

The performance of the proposed control algorithm is
evaluated by means of numerical simulations. The pa-
rameters of the quadrotor used in the simulation are
m = 1[Kg], g = 9.8[m/s2] and J = diag(θ1, θ2, θ3) =
(0.01, 0.05, 0.05)[Kgm2]. The initial position and oriten-
tation of the aerial robot are p(0) = col(2.5, 2.5, 0)[m],
η(0) = 0.8924, ε = col(0, 0.2588, 0.3696), respectively. It is
assumed that the vehicle starts its motion from rest, i.e.,
v(0) = 0 and ω(0) = 0. The initial guess of the inertial

parameters is θ̂ = 0. Finally, the control, observer, and
adaptation gains are shown in Table 1.

The structure of the regressor matrix in (18) is the
following

Y (ω,ωr, ω̇r) =

[
ω̇rx −ωyωrz ωzωry

ωxωrz ω̇ry −ωzωrx

−ωxωry ωyωrx ω̇rz

]
(35)

with ω = col(ωx, ωy, ωz) and ωr = col(ωrx, ωry, ωrz).

The desired position is given by

pd =

[
3 cos(2πt/40)
3 sin(2πt/40)

0.5 cos(2πt/10) + 2

]
[m]. (36)

The quadrotor’s trajectory is shown in Fig. 2. After
the transient response a good tracking is achieved. The
Fig. 3 shows the euclidean norms of the position and
observation errors. As it can be appreciated, both errors
converge asymptotically to zero. The trajectory tracking
performance in the orientation subspace is depicted in
Fig. 4. From the figure, it is clear that the norm of the
vector part of the unit quaternion converges to zero and
the scalar part converges to one, thus, a good attitude
tracking is also achieved.

Finally, the estimated inertial parameters and the control
inputs are shown in Figures 5 and 6, respectively. Notice
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Fig. 2. Quadrotor’s trajectory in 3D
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that the estimated parameters do not converge to the real
ones, this due to the desired trajectory is not a persistently
exciting function. However, this is not drawback, since
the main objective is trajectory tracking rather than
exact parameter estimation. Since the initial position and
observer error are relatively large, the proposed control-
observer algorithm requires more control effort at the
beginning of the trajectory. After the transient response,
the total thrust is about 10[N] and the norm of the input
torque is about ±0.02[N·m].

6. CONCLUSIONS

In this paper, the problem of position trajectory tracking
of a quadrotor in a 3D environment with model parameter
uncertainties and without using linear velocity measure-
ments was addressed. Due to the cascade nature of the
quadrotor’s dynamics, a hierarchical control strategy was
proposed. To avoid the singularities of the Euler angles,
the attitude adaptive controller was designed based on the
unit quaternion. On the other hand, a simple Luenberger
observer was presented to estimate the linear velocity
of the aircraft. The stability analysis of the closed-loop
system was carried out by means of Lyapunov theory and
the stability properties of cascade systems. Simulations
results show the performance of the proposed control algo-
rithm. Some future work include: experimental validation
of the proposed control-observer algorithm, inclusion of
the actuator dynamics in the control design, and designing
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Fig. 4. Time evolution of the unit quaternion error: (a)
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Fig. 5. Time evolution of the estimated parameters

robust control algorithms capable of handling external
disturbances.
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