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Abstract: We study the control problem for polynomial continuous-time dynamical systems. We con-
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the involved Bernstein polynomials. The formulated conditions are a set of algebraic inequalities, in the
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1. INTRODUCTION

The problem of verifying stability of closed-loop systems by
means of a Lyapunov function is an important step in the
formal verification of control systems Tabuada (2009). Many
works have been focused on the subject of stability analysis
for polynomial systems Ackerman (1993). Bernstein polyno-
mials (BP) have been used in control, among other approaches
such as Handelman basis functions, sum-of-squares polynomi-
als for finding Lyapunov stability certificates and stabilizing
controllers.

For systems with inputs and in specific affine control systems,
the main goal is to provide a practical method for computing
control Lyapunov functions such that the closed-loop system
is asymptotically stable. Since a Lyapunov function is positive
definite and the Lie derivative by Lyapunov stability condition
of control systems must be negative semidefinite in the neigh-
borhood of the equilibrium, the problem can be translated to the
one of searching for certificates of positivity (CP). The sum-of-
squares approach is popular in control society as a CP, and has
been explored by many authors, e.g., Jarvis-Wloszek (2003);
Tan and Packard (2006) to design controllers, approximate
domains of attraction for nonlinear systems etc. This method
provides special classes of positive functions, and while it can
not be used to certify CP for all positive functions, existing
methods provide tight approximation results by considering
degree elevation, see e.g., Putinar’s Positivstellensatz Putinar
(1993).

An appealing alternative for finding CP in control design in-
volves the Bernstein basis approximations, see, e.g., Hamad-
? Nikolaos Athanasopoulos is supported by the CHIST-ERA 2018 funded
project DRUID-NET.
??Tareq Hamadneh is supported by Al Zaytoonah University of Jordan under
the grant number 2019-2018/585/G12.

neh and Wisniewski (2018a,b); Sloth and Wisniewski (2014);
Ben Sassi et al. (2015). In Sloth and Wisniewski (2014), the
simplicial Bernstein coefficients are utilized for controller de-
sign problem and formulated as a linear programming problem
over simplices. Bernstein expansions have an important prop-
erty, making them useful for providing CP, primarily for poly-
nomial functions: their value is lower and upper bounded by the
Bernstein expansion coefficients, which can be computed ex-
plicitly. In Leth et al. (2017), an algorithm with its convergence
for the synthesis of Lyapunov polynomials for polynomial vec-
tor fields in the Bernstein bases was given. In Lane and Riesen-
feld (1981), an algorithm for isolating the enclosure bound and
real roots of a polynomial was presented. Moreover, CP for
polynomial functions defined over simplices are addressed in
Hamadneh et al. (2019, 2020a); Boudaoud et al. (2008); Leroy
(2008). The extension to the tensorial rational case is given in
Hamadneh et al. (2019, 2020b). Our approach follows the same
path, namely, we study the enforcement of Lyapunov monotone
conditions via certificates of positivity induced by polynomi-
als in the Bernstein basis. First, we provide a set of results
summarizing and extending known facts of operations on BPs
over boxes, such as addition, multiplication, and differentiation.
Next, by describing the system dynamics in the tensorial Bern-
stein basis, we express the Lyapunov conditions as inequalities
involving only coefficients of BPs over boxes. Instead of over-
approximating the Bernstein basis functions using linear or
polynomial relaxations, we work directly on the space of the
BP coefficients. We derive, to the best of our knowledge for the
first time necessary and sufficient conditions for existence of
polynomial Lyapunov functions and polynomial controllers of
a given maximum degree in the monomial form, using BPs de-
fined over boxes. These conditions are accompanied by a set of
algebraic inequalities, whose solvability implies the existence
of the Lyapunov function and controller of some maximum
degree. In general, the conditions are nonlinear, however, when
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considering the controller or the Lyapunov function fixed, they
become linear in the Bernstein coefficient space, recovering
results in the literature for the autonomous case Leth et al.
(2017). Summarizing, our contributions are as follows.

• Whilst most previous studies have focused on the simpli-
cial Bernstein basis, Hamadneh and Wisniewski (2018a,b);
Sloth and Wisniewski (2014) Leth et al. (2017), we study
the stability of control systems over boxes in the tensorial
Bernstein basis,
• We hold the analytic equivalent Bernstein forms for ad-

dition, differentiation, multiplication and degree elevation
onto control systems in the tensorial Bernstein basis.
• We provide necessary and sufficient conditions for exis-

tence of polynomial controllers and Lyapunov functions
of some maximum degree, through Bernstein basis ap-
proximations. Moreover, we show equivalence of these
conditions with a set of algebraic inequalities. We must
note that our strategy of working on the space of Bernstein
coefficients is similar to that given in Ribard et al. (2016).
In comparison, the work there does not provide the non-
linear system of coefficients appearing on the vertices of a
simplex. Therefore, the problem of finding upper bounds
on the degree of the Bernstein form of the Lyapunov and
control function is not sought after there.

2. PRELIMINARIES

In this section, we introduce the expansion of polynomials
into Bernstein form in the state space and highlight important
properties.

2.1 Tensorial Bernstein Basis

We consider the Bernstein expansion of a polynomial function
f over a general n-dimensional boxQ in the set of real intervals
I(R)n,

Q = [q
1
, q1]× ....× [q

n
, qn]

with
q
µ
≤ qµ, µ = 1, ..., n.

The width of Q is denoted by w(Q),
w(Q) := q − q.

Comparisons and arithmetic operations on multiindices i =
(i1, ..., in) are defined component-wise. For x ∈ Rn and a mul-
tiindex j, its monomial is xj := xj11 ...x

jn
n . Using compact nota-

tion, D = (D1, ..., Dn), we have
∑D
j=0 :=

∑D1

j1=0 · · ·
∑Dn
jn=0

and
(
D
i

)
:=

∏n
µ=1

(
Dµ
iµ

)
. An n-variate polynomial function

f : Rn −→ R is expressed in the monomial form as f(x) =∑d
j=0 ajx

j , where d = (d1, ..., dn), and can be represented in
the Bernstein form by

f(x) =

D∑
i=0

b
(D)
i (f) B

(D)
i (x), x ∈ Q. (1)

In (1), the ith Bernstein polynomial of degree D ≥ d is

B
(D)
i (x) =

(
D

i

)
(x− q)i(q − x)D−iw(Q)−D. (2)

Moreover, the Bernstein coefficients b(D)
i of f of degreeD over

Q are given analytically by the formula

b
(D)
i (f) =

i∑
j=0

(
i
j

)(
D
j

) sj , 0 ≤ i ≤ D, (3)

where

sj = w(Q)j
d∑
τ=j

(
τ

j

)
aτq

τ−j , aj = 0 for d < j. (4)

The Bernstein basis polynomials are by construction non-
negative for all x ∈ Q, i.e., B(D)

i (x) ≥ 0, ∀i = 0, ..., D. We
underline that 0 is the multiindex with all components equal to
0. Without loss of generality, we can consider the domain of f
to be the unit box U = [0, 1]n, since any compact non-empty
box in Rn can be mapped thereupon by an affine transforma-
tion. Hence, the expression of f as (1) can be simplified with

B
(D)
i (x) =

(
D

i

)
xi(1− x)D−i, x ∈ U, (5)

and

b
(D)
i (f) =

i∑
j=0

(
i
j

)(
D
j

)aj , 0 ≤ i ≤ D. (6)

We highlight two important properties of Bernstein polynomi-
als, namely, the endpoint interpolation property

b
(D)

î
(f) = f

(
î

D

)
,

for some î, where 0 ≤ î ≤ D satisfy îj ∈ {0, Dj}, j = 1, ..., n,
and the enclosing property (Garloff, 1986)

min
0≤i≤D

b
(D)
i (f) ≤ f(x) ≤ max

0≤i≤D
b
(D)
i (f),

for all x ∈ U .

2.2 Convergence and tightness of approximation bounds

The range of f on Q is defined by

R(Q) := [minx∈Q f(x),maxx∈Q f(x)] =: [f, f ], while
the enclosure bound of the Bernstein form is defined by
E(D)(f,Q) := [min0≤i≤D b

(D)
i (f),max0≤i≤D b

(D)
i (f)]. In

this subsection, we provide linear and quadratic convergence
of the interval range R(Q) of a polynomial f to its enclosure
bound. For this purpose, we define the (Hausdorff) distance H
between the two intervals E(D)(f,Q) and R(Q) as

H(E(D)(f,Q), R(Q)) =

max

{∣∣∣∣ min
0≤i≤D

b
(D)
i (f)− f

∣∣∣∣ , ∣∣∣∣ max
0≤i≤D

b
(D)
i (f)− f

∣∣∣∣} .
Theorem 1. (Hamadneh, 2018, Theorem 4.3.1) For D ≥ d, the
following bound holds for the overapproximation of the range
R(Q) of f over Q by the Bernstein form:

H
(
R(Q), E(D)(f,Q)

)
≤ C

D
, (7)

where

C :=

d∑
j=0

n∑
µ=1

[max(0, jµ − 1)]2|sj |, (8)

and the coefficients sj are given by (4).

The quadratic convergence with respect to subdivision has been
studied in Malan et al. (1992). Repeated bisection of U (0,1) :=
U in all n coordinate directions results at subdivision level
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1 ≤ l in subboxes U (l,ν) of edge length 2−l, ν = 1, . . . , 2nl,
see Garloff (1986), Fischer (1990). An n-variate polynomial f
can be represented as

f(x) =

d∑
i=0

b
(d,ν)
i (f) B

(d,U(l,ν))
i (x), for x ∈ U (l,ν), (9)

where b(d,ν)i (f) are the Bernstein coefficients of degree d over
U (l,ν) = [q

(l,ν)
, q(l,ν)].

Theorem 2. (Malan et al., 1992, Theorem 2) For each 1 ≤ l it
holds

H
(
R(U), E(D)(f, U (l,ν))

)
≤ C ′(2−l)2, (10)

where C ′ is a constant which can be given explicitly, and
independently of l.

We define the grid point of the µth component of x by x(D)
i ,

x
(D)
i,µ = xµ +

iµ
Dµ

(xµ − xµ), µ = 1, . . . , n. (11)

Corollary 3. If Dµ ≥ 2, by [Garloff (1986), p. 42] for all
i, 0 ≤ i ≤ D, the following bound holds |min f(x

(D)
i ) −

min b
(D)
i (f)| ≤ C

D , where C is the constant (8).

3. TENSORIAL CERTIFICATES OF POSITIVITY

It may be the case where we have positive polynomials over a
box in the monomial form, but they have non-positive Bernstein
coefficients.

By denoting with (O(D)(f)) the ordered list of Bernstein
coefficients of a (multivariate) polynomial f of degree D, we
follow the definition of Bernstein CP, CP (O(D)(f)), given in
Leroy (2008), µ = 1, ..., n,

CP (O(D)(f)) :=

{
b
(D)
i (f) ≥ 0, 0 ≤ i ≤ D
b
(D)

î
(f) > 0, îµ ∈ {0, Dµ}.

CP (O(D)(f)) implies that f is positive over U , precisely, the
expression of f in the Bernstein basis of degree D over U
provides CP for f over U .

By raising the degree D of Bernstein high enough, from The-
orem 1, the minimum Bernstein coefficient of f converges to
the minimum of the range of f , and consequently obtain the
following theorem.
Theorem 4. Consider a polynomial function f of degree d
defined on the unit interval U . Moreover, consider its Bernstein
form of some degree D. Then, f is positive on U if and only if
it satisfies CP with

D >
C

f
,

where f is the minimum of f(x(d)i ) and C is given in (8).

In this paper, we focus on CP by elevating the degree of
BPs. Nevertheless, for completeness, we present the analogous
approximation result that concerns the subdivision scheme. The
proof is omitted as an immediate consequence of Theorem 2.
Theorem 5. Let f be a (monomial form) polynomial of degree
d, positive on U . Assume that 2l >

√
C′√
f
, where f is the

minimum value of f(x(d)i ) over U . Then f satisfies the local
CP associated to the subdivision level of U (l,ν).

4. STABILITY ANALYSIS FOR THE TENSORIAL
BERNSTEIN CONTROL SYSTEMS

We consider systems whose dynamics is captured by poly-
nomials. We investigate the stabilization problem around an
equilibrium point x0 of the vector field, using polynomial state
feedback. Specifically, x ∈ Rn, and the affine control system is
given by

ẋ =: Fu(x) = p(x) + g(x)u(x), (12)
where the vector field Fu : Rn −→ Rn is defined by the drift
p : Rn −→ Rn and the control u : Rn −→ Rm with the input
matrix function g : Rn −→ Rn×m.

If there are u and V such that the negative Lie derivative
LFu(V ) is positive semidefinite in the neighborhood of the
equilibrium, then we will say there exists a stabilizing control
for Fu.
Definition 6. (Khalil (2002)) Let x0 be an equilibrium point for
(12) and let A ⊆ Rn be a box containing the interior point x0.
Let V : A → R be a continuously differentiable function such
that V (x0) = 0,

V (x) > 0, ∀x ∈ A \ {x0},

LFu(V )(x) = −∂V
∂x

(x)Fu(x) > 0, ∀x ∈ A \ {x0}, (13)

where L denotes the (negative) Lie derivative. Then V is a
Lyapunov function for Fu.

Suppose all p, g, u, V are given in the monomial form of
degrees dp, dg , du, dV , respectively. Then LFu(V )(x) is also
given in the monomial form of degree

dLF = max{dp + dV − 1, dg + du + dV − 1}. (14)
Without loss of generality, we assume the candidate Lyapunov
function is a polynomial expressed in the monomial form of
degree dV and x0 = 0, where V (x0) = 0. Consequently,
the Bernstein form of V (x) of degree DV ≥ dV is given
analytically as in (1).

4.1 Bernstein Arithmetic Operations

In this subsection, we provide a way to express the different op-
erations in the Lyapunov decrease conditions (13) in Bernstein
basis, namely, differentiation, multiplication and addition.
Remark 7. (Farouki and Rajan (1987), degree elevation) The
Bernstein basis of degree D can be expressed in terms of
those of degree D +D∗, where D∗ = (D1, ...Dµ − 1, ...Dn),
µ ∈ {1, ..., n}, 0 ≤ i ≤ D, as

B
(D)
i (x) =

i+D∗∑
j=i

(
D
i

)(
D∗

j−i
)(

D+D∗

j

) B(D+D∗)
j (x). (15)

Lemma 8. (Farin (1986)) Consider V (x) of degreeDV is given
in the Bernstein form. The Bernstein coefficients of ∂V

∂xµ
(x) can

be calculated by taking linear combinations of bi(V ) of degree
(D1, ..., Dµ − 1, ...Dn) = D∗, i.e.,

V ′µ(x) :=
∂V

∂xµ
(x) =

D∑
i=0

b
(D)
i (V )

∂B
(D)
i

∂xµ
(x) (16)

=
∑
i≤D∗

Dµ(bi1,...iµ+1,...in − bi) ·B
(D∗)
i (x).

Hence, for i = 0, ..., D∗,

b
(D∗)
i (V ′µ) = Dµ(bi1,...iµ+1,...in − bi). (17)
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Corollary 9. (Farouki and Rajan (1988)) Let p(x) be a Bern-
stein polynomial of degree Dp, and f(x) be of degree D∗.
Then, it holds that

p(x) · f(x) =
Dp+D

∗∑
i=0

( min (Dp,i)∑
j=max (0,i−D∗)

(
Dp
j

)
.
(
D∗

i−j
)(

Dp+D∗

i

) ·
b
(Dp)
j (p)b

(D∗)
i−j (f)

)
B

(Dp+D
∗)

i (x)

=

Dp+D
∗∑

i=0

bi(p · f)B
(Dp+D

∗)
i (x). (18)

Remark 10. For x ∈ Q, let the polynomials p(x) and f(x) be
in the Bernstein form of the same degree D. Then, we have

p(x) + f(x) =

D∑
i=0

(b
(D)
i (p) + b

(D)
i (f))B

(D)
i (x). (19)

Remark 11. The number of Bernstein coefficients of the tenso-
rial BP of degree D = (D1, ..., Dn) is N :=

∏n
µ=1(Dµ + 1).

Example 12. Let p(x1, x2) = 4x21x
2
2 and f(x1, x2) = 10x1x

2
2

be of degree d := (2, 2) given over the box Q = [2, 5] ×
[1, 3]. By the representation (3), we can compute the ordered
list of Bernstein coefficients for both p and f . For i1, i2 =
(0, 0), ..., (2, 2), we put the list of coefficients in two 3 ×
3−matrices of Bernstein coefficients. It follows that the sum-
mation of the corresponding Bernstein coefficients of degree
d gives the Bernstein coefficients of p(x) + f(x), where each
bi1,i2 in p is added to the corresponding bi1,i2 in f ,

{bi1,i2(p) + bi1,i2(f)} =

(−4 −12 −36
5 15 45
50 150 450

)
.

Remark 13. Let p(x) and V ′µ(x) be of degree Dp and D∗,
respectively. Then, we have

p+ V ′µ =

Dp∑
i=0

(
b
(Dp)
i (p)+

min (D∗,i)∑
j=max (0,i−Dp+D∗)

(
D∗

j

)
.
(
Dp−D∗
i−j

)(
Dp
i

) bD
∗

j (V ′µ)

)
B

(Dp)
i . (20)

Theorem 14. (Smith, 2012, Theorem 3.3) Let f(x) be a poly-
nomial in Bernstein form of any degree D. Then its monomial
form is

f(x) =

D∑
i=0

aix
i,

where

ai =

i∑
j=0

(−1)i−j
(
D

i

)(
i

j

)
b
(D)
j , 0 ≤ i ≤ D.

4.2 Bernstein Coefficients for Lyapunov and Controller

Let us assume that there exist polynomials u(x) and V (x)
so that a stabilizing control for Fu exists. In this section, we
provide a method for finding V (x) within a finite number of
Bernstein coefficients, and computing the control law u(x). We
refer to dg and Dg to be the degrees of g in the monomial form
and the Bernstein form respectively. By partition (subdivision
of intervals) of the box Q around the equilibrium such that

the equilibrium point x0 is equal zero, then we assume that
bDV0 (V ) = 0 is the corresponding Bernstein coefficient of x0.

Our goal is to find the Bernstein coefficients such that the
Lyapunov decrease conditions, i.e., the negative Lie derivative
is positive semi-definite. We defineD∗ = DV −1 and define the
product

∑n
µ=1 V

′
µgµr(x) =: V Gr(x), ∀r ∈ {1, ...,m}, and let

it be in the Bernstein form of degree DG+D∗. Following (17),
(18) and (20), the polynomial LFu(V )(x) can be rearranged
with unknown Bernstein coefficients for u as

LFu(V )(x) =

n∑
µ=1

Dp+D
∗∑

i=0

bi(V
′
µpµ)B

(Dp+D
∗)

i (x)+

Du∑
j=0

bj(u1)B
(Du)
j (x)

D∗+DG∑
i=0

bi(V G1)B
(D∗+DG)
i (x) + ....

+

Du∑
j=0

bj(um)B
(Du)
j (x)

D∗+DG∑
i=0

bi(V Gm)B
(D∗+DG)
i (x).

(21)

For any j0 = 0, ..., Du and i0 = 0, ..., D∗ +DG, we define the
dot product between bj0(u) and bi0(V G) as
bj0(u).bi0(V G) := bj0(u1)bi0(V G1)+...+bj0(um)bi0(V Gm).

By noting the tensor product of Bernstein basis between u, V
and G, we can rewrite LFu(V )(x) in (21) as


b0(u).b0(V G) ... b0(u)bD∗+DG(V G)
b1(u).b0(V G) ... b1(u)bD∗+DG(V G)

. .

. .

. .
bDu(u).b0(G) ... bDu(u)bD∗+DG(V G)

 ·

BDu0 (x).BD

∗+DG
0 (x) ... BDuDu (x) ·B

D∗+DG
0 (x)

. .

. .

. .

BDu0 (x).BD
∗+DG

D∗+DG
(x) .... BDuDu (x) ·B

D∗+DG
D∗+DG

(x)

 .

For i0 ∈ {0, ..., Dp+D
∗}, we set bi0(V

′
1p1)+...+bi0(V

′
npn) =:

bi0(V p). Hence, we can write the corresponding Bernstein
coefficients of LFu(V )(x) as follows.

bi(LFu(V )) =


b0(V p)

.

.

.
bD∗+Dp(V p)

+


b0(u) ... bDu(u)
b0(u) ... bDu(u)
.
.
.

b0(u) ... bDu(u)

 ·

b0(V G) ... bD∗+DG(V G)

. .

. .

. .
b0(V G) ... bD∗+DG(V G)

 (22)

where for all i0, j0, bj0(u) = (bj0(u1), ..., bj0(um) and
bi0(V G) = (bi0(V G1), ..., bi0(V Gm))T . By (18), the Bern-
stein degree of LFu(V )(x) is given as

DLF = max{Dp +D∗, DG +Du +D∗}. (23)
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Define

Y =


b0(u) ... bDu(u)
b0(u) ... bDu(u)
.
.

b0(u) ... bDu(u)

 , B =:


b0(V p)

.

.

.
bDp+D∗(V p)

 (24)

and

J =


b0(V G) ... bD∗+DG(V G)

. .

. .

. .
b0(V G) ... bD∗+DG(V G)

 . (25)

Let CLF , CV , be the constants derived from Theorem 4 by
application of (8) to LFu(V )(x) (of degree dLF ≤ DLF ) and
V (x), respectively. By considering (21) and (22), we are in
the position to present the following result, which is the main
contribution of the paper. Roughly, the theorem associates the
existence of polynomial controllers and Lyapunov functions for
polynomial dynamical systems, to the existence of Bernstein
polynomial controllers and Lyapunov functions. The third con-
dition of Theorem (15) associates the conditions with the corre-
sponding algebraic inequalities, paving the way for constructive
methods.
Theorem 15. Consider the system (12) with some feedback law
u(x) be defined on the unit box U . Let dV and du be two
integers and dLF is given in (14). The following are equivalent:

(1) There exists a polynomial controller u(x) of degree du
and a polynomial Lyapunov function V (x) of degree dV
(both in the monomial form) such that the equilibrium is
asymptotically stable with this control.

(2) There exists a polynomial controller u(x) in the Bern-
stein form of degree Du ≥ du and a polynomial Lya-
punov function V (x) in the Bernstein form of degree
DV ≥ dV with DV > CV

minV (x
(dv)
i

)
such that the closed-

loop system is asymptotically stable over U and DLF >
CLF

minLFu (V )(x
(dLF )

i
)
.

(3) Let Y and J,B be defined in (24), (25). Then, the set
of inequalities Y · J + B > 0 defines a non-empty
set with respect to Bernstein coefficients, where Y, J ∈
RDLF×DLF and B ∈ RDLF , and DLF is given in (23).

Proof. (1) ⇔ (2). Suppose there exists a positive Lyapunov
function V (x) be of degree dV and there exists a stabilizing
control of degree dFu over U . Then, by Theorem 4 there exists
a Lyapunov function V (x) in the Bernstein basis of degree
DV > CV

minV (x
(dV )

i
)

such that V (x) of degree DV is positive.

We can compute coefficients for u of degree du ≤ Du, and
then u(x) is of the same degree in the Bernstein form. By
multiplying the Bernstein form of V ′(x) with the corresponding
Bernstein form of g(x), using (18), the degree of V ′G is D∗ +
DG, hence (Y.J) is of degree Du + D∗ + DG. Similarly, for
V ′p the degree is D∗ + Dp. It follows that (LFu(V ))(x) is
of degree DLF (23). Again, applying Theorem 4 with its grid
points to (LFu(V ))(x

(dLF )
i ) certifies the positivity of (LFu(V ))

with degree DLF > CLF

minLFu (V )(x
(dLF )

i
)
. The converse follows

by Theorem 14.

(2)⇔ (3). Note that, if all Bernstein coefficients of LFu(V )(x)
are positive, then LFu(V )(x) is positive for all x ∈ U . By (24)
and (25), the problem of computing Bernstein coefficients for
LFu(V )(x) is reduced to the following system:

Y · J +B > 0. (26)
Note that adding the corresponding Bernstein coefficients of
two terms to each other requires the same number of coeffi-
cients. Hence, we elevate the number of coefficients of Y.J with
the corresponding number of coefficients of B using (15). By
solving the system (26), we can then build ur(x), r = 1, ...,m,
in the Bernstein form and V (x) of degree DV , whereas Theo-
rem 14 can be used to transform the controllers to their mono-
mial form. 2

Remark 16. The relations of Theorem 15-(3) are bilinear alge-
braic inequalities that are clearly nonlinear. There are several
possibilities to relax these problems to a set of solvable con-
ditions, using, e.g., bilinear programming approaches Gronski
(2019) and results on weak solvability of interval inequalities
Hladı et al. (2013). These extensions are definitely not trivial,
and are not explored in the current article, however they are in
our future research plans.
Remark 17. In Theorem 15, if the control strategy is fixed, the
conditions correspond to the analogous result stated in Sloth
and Wisniewski (2014), however for systems in the current
article that are defined over boxes. In this special case, the
conditions in Theorem 15-(3) become linear, i.e., if we input
Bernstein coefficients for V , then B in (24) and J (25) can
be computed. Therefore, we solve the system Y · J + B > 0
in order to find the Bernstein coefficients of u in Y . Verifying
whether a nonempty set is possible, e.g. by an application of
Farkas’ lemma is given in Leth et al. (2017).
Remark 18. Similarly, when the candidate Lyapunov function
is fixed, the existence conditions of Theorem 15 become suffi-
cient only, however, conditions in Theorem 15-(3) become lin-
ear and can be readily used to retrieve a stabilizing polynomial
controller.
Example 19. Let, after the linear transformation to U = [0, 1]2,
x = (x1, x2) ∈ U and

ẋ =

(
p1(x)
p2(x)
p3(x)

)
+

(
g11(x) g12(x)
g21(x) g22(x)
g31(x) g32(x)

)
.

(
u1(x)
u2(x)

)
be of degree D = (1, 1), with p1(x) = x1, p2(x) = x1 −
2x2, p3(x) = −x1x2, and g11(x) = g32(x) = 1, g12(x) =
g21(x) = g22(x) = g31(x) = 0.

In case of unknown coefficients for both V and u, we compute
the Bernstein coefficients of p by (6),

{bi1i2(p1)} =
(
0 0
1 1

)
, {bi1i2(p2)} =

(
0 −2
1 −1

)
,

{bi1i2(p3)} =
(
0 0
0 −1

)
.

Similarly, we compute the coefficients for all g(x) of (elevated)
degree 1. We follow bi(LFu(V )) with unknown coefficients for
V and u, and to reach finally to Y , B, J , given in (24), (25).
Y · J +B > 0 is bilinear with respect to Bernstein coefficients
of u and V . Following Remark 18, we can input Bernstein
coefficients for the candidate Lypunov function V of degree
one,

{bi1i2(V )} =
(
0 1
1 2

)
.
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Therefore, V (x) = (1 − x1)x2 + x1(1 − x2) + 2x1x2. Note
that the set of coefficients {bi1i2(g12)} = {bi1i2(g21)} =
{bi1i2(g22)} = {bi1i2(g31)} = (0), and

{bi1i2(g11)} = {bi1i2(g32)} =
(
1 1
1 1

)
.

Computing bi1i2(LFu(V )) with Y , B and J , it follows that the
problem is reduced to finding Y such that Y ·J+B > 0, where

J =

(
(0, 0)T (1, 1)T

(1, 1)T (2, 2)T

)
, B =

(
0 0
4 −2

)
.

The set Y · J + B > 0 is nonempty, so any element of the set
can be used to construct a stabilizing controller. For example,
by choosing

Y =

(
(1,−1) (−1,−1)
(0, 1) (1, 1)

)
,

we can build u(x) in the Bernstein basis as follows:
u1(x) = (1− x1)(1− x2)− (1− x1)x2 + x1x2.

u2(x) = −(1−x1)(1−x2)− (1−x1)x2+x1(1−x2)+x1x2.

5. CONCLUSIONS

In this article, we presented a method for finding a Lyapunov
function and the associated polynomial controller over boxes.
In particular, we developed new certificates of positivity for the
Lyapunov decrease condition using Bernstein basis expansions.
We provided existence conditions of polynomial Lyapunov
functions and controllers, that are of a maximum degree in the
monomial base. These conditions are only on the Bernstein
coefficients and not the state space variables. To reach our
result, we used the fact that multiplication, addition, degree
elevation and differentiation of functions expressed in Bernstein
basis leads to functions still expressed in the Bernstein basis.
Last, we provided algebraic inequalities, whose solvability
implies existence of a stabilizing controller. These conditions
are in principle nonlinear, however they become linear when
either the Lyapunov candidate or the controller are fixed.
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