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Abstract: This paper presents a method of closed-loop identification for multivariable systems
without external excitation. The method is specially designed for model predictive control
(MPC) systems. Without using external excitation (test signals), the method ensures the
informativity of the closed-loop data and, at the same time, improve the control performance
during the test period. The purpose of the study is to reduce the cost of identification test.
The basic idea is to switch the input weighting matrix in the MPC controller which leads to
the informativity of the data-set. A preliminary test is carried out in order to find a new input
weighting matrix which improve the control performance; then a switching scheme is developed
based on the two weighting matrixes. Traditional simulation based model validation no longer
works in closed-loop identification without excitation, and model error bounds on the frequency
responses can be used instead. The effectiveness of the proposed method is demonstrated by a
simulation study.

Keywords: model predictive control; control performance; model mismatch; persistent
excitation condition.

1. INTRODUCTION

In process industries, model predictive control(MPC) has
been poven the most powerful control technology since
it was proposed by Richalet et al. (1978) and Cutler
and Ramaker (1980). Compared to some traditional meth-
ods like PID (proportional-integral-derivative) control, the
advantages of MPC are its ability to solve multivariable
control problems and to take operation constraints into
consideration. For a model-based control algorithm like
MPC, the performance strongly depends on the quality of
the model. The model predicts the output of the process
and the control behavior is determined by optimizing a
performance index. An accurate model is important for
MPC to work properly( Zhu et al. (2013)). In practice, the
process would slowly change over time which could lead
to control performance degradation due to the mismatch
between the model and the process. Therefore, in order
to maintain MPC performance, process model need to be
maintained or re-identified from time to time.

In process industries, the MPC modeling is most often
done by using system identification. In MPC control, it is
natural to use closed-loop data for model identification in
order to ensure the stability and the stable operation of
the process. In industrial MPC closed-loop identification
tests, test signals are added to the controlled process in
order to ensure informativity of the data-set which in
turn guarantees the consistency of the model. However,
adding test signals will increase the variances of controlled
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variables (CVs) which degrades the control performance
and is a cost of identification tests. The larger the CV
variances, the higher the cost of identification.

Thus, it would be desirable to achieve closed-loop data
informativity without using test signals. The study of
identification without external excitation has attracted
the attention of many researchers for several decades.
For closed-loop identification in the MPC framework, in
order to solve the issue of identifiability, Genceli and
Nikolaou (1996) first introduced the notion called simul-
taneous constrained model predictive control and identi-
fication(MPCI). The basic idea is to add additional con-
straints of input that assure persistent excitation, trying
to obtain sufficient model information, while minimally
disturb the process. Aggelogiannaki and Sarimveis (2006)
and Rathouský and Havlena (2013) also proposed similar
methods. However, adding extra constraints to the origi-
nal optimization proposition still more or less affects the
control performance of the closed-loop system. Besides, it
turns the optimization into a non-convex problem, which
increases the difficulty in the optimization (Larsson et al.
(2016)).

In the 1970s, some researchers studied on data informa-
tivity (then called model identifiability) of closed-loop
identification without external excitation. Soderstrom
et al. (1976) pointed out that switching the controller can
ensure data informativity (or model identifiability). Yan
and Zhu (2018) used switching strategy in a PID closed-
loop system and obtained good models without using test
signals. This paper extends the controller switching idea
of Yan and Zhu (2018) to multivariable MPC systems.
Through a proper design of control switching, one can not
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only meet the informativity conditions, but also increase
control performance during the identification test, hence
achieving a negative identification cost.

The rest of the paper is structured as follows: In sec-
tion 2, an MPC algorithm is briefly introduced; Section
3 discusses the informativity conditions for multivariable
closed-loop identification without excitation; Section 4
presents a switching scheme that ensures the informativity
for MPC controlled closed-loop identification and proposes
a method of model validation; Section 5 illustrates effec-
tiveness of the proposed method in simulation. Section 6
is the conclusion.

2. INTRODUCTION TO AN MPC ALGORITHM

2.1 Optimization proposition of DMC

The identification method developed in this paper will
work for most of the MPC algorithms. To make the presen-
tation more illustrative the well known DMC algorithm is
used and briefly discussed. DMC (dynamic matrix control)
is a predictive control algorithm developed by Cutler and
Ramaker (1980) where process model is given in the form
of the step responses of the process which is called dynamic
matrix. The DMC algorithm determines the future control
moves (∆UM (k)) over the control horizon(M) to drive
the model predicted outputs as closely as possible to a
desired future trajectory over prediction horizon(P ). The
computation of DMC is to minimize the cost function:

min J(k) = ‖W (k)− ŷ
PM

(k)‖2Q + ‖∆U
M

(k)‖2R (1)

where
W (k) = [w1(k) · · · wq(k) ]

T
(2)

wi(k) = [wi(k + 1) · · · wi(k + P ) ]
T

(3)

∆UM (k) = [ ∆U1,M (k) · · · ∆Uj,M (k) ]
T

(4)

∆Uj,M (k) = [ ∆uj(k) · · · ∆uj(k +M − 1) ]
T

(5)

where i = 1, ..., p, j = 1, ...,m. m and p represent the
number of inputs and outputs respectively; Denote P and
M as the prediction horizon and the control horizon;
∆U

M
(k) as the decision variable and ω as the reference

trajectory; ŷ
PM

(k) represents the predicted output; Q
represents the output weighting matrix which is used to
handle the delay part and the inverse part; R represents
input weighting matrix which affects the moves of MVs.

Q = block − diag(Q1, ..., Qp) (6)

R = block − diag(R1, ..., Rm) (7)

Increasing the sizes of the elements of R will lead the
decreasing of the MV movements, which is equivalent to
the decrease of the controller gain. Decreasing the sizes
of the elements of R will do the opposite. For most of
the industrial processes, one can assume that decreasing
the input weighting R will increase the robust stability of
the closed-loop system; increasing the input weighting R
will decrease the robust stability of the closed-loop system.
This assumption will be used in developing the switching
method in the identification test.

2.2 Predictive model

The process model is used to provides predictive outputs
which consists of two part,

ŷ
PM

(k) = ŷ
P0

(k) +A∆U
M

(k) (8)

where ŷ
P0

(k) is the natural response under uj(k− 1). A is
a pP ×mM Matrix called dynamic matrix which consists
of step response coefficient aij(s),

A =

A11 · · · A1m

...
. . .

...
Ap1 · · · Apm

 (9)

Aij =


aij(1) 0

...
. . .

aij(M) · · · aij(1)
...

...
aij(P ) · · · aij(P −M + 1)

 (10)

2.3 Moving horizon optimization

If the optimization has no constraints or does not trigger
the constraint, the proposition has an analytical solution:

∆U
M

(k) = (ATQA+R)−1ATQ[W (k)− ŷ
P0

(k)] (11)

where ∆U
M

(k) contains M steps. However, the controller
only takes the first step increment for actual control,
namely:

uj(k) = uj(k − 1) + ∆uj(k) (12)

at the next moment, a similar optimization proposition
will be proposed. This is so-called ”Moving horizon opti-
mization” strategy.

3. IDENTIFIABILITY CONDITIONS UNDER
FEEDBACK

Ljung (1999) proposed the concept of identifiability and
informativity which concerns the model structure and
operation data respectively. And the second property is
focused on this paper, which deals with the question
whether the data generated by the system is rich enough
to distinguish different models in the given model set.
For single-variable closed-loop control system, Gevers
et al. (2009) proposed that as long as the structure
of the controller in the closed-loop system is complex
enough, then the model can be identified without external
excitation. Similarly for multivariable closed-loop control
systems, Bazanella et al. (2010) proved that when the
controller satisfies certain complexity requirement, then
identification by noise excitation alone is possible. In order
to solve closed-loop identification problem, Söderström
and Stoica (1989) and Ljung (1999) summarized three
methods as follows:

(1) To add external excitation signal;

(2) To add a time delay in the feedback controller;

(3) To use a nonlinear controller.

Adding external excitation would sacrifice the control per-
formance. Similarly, adding delays in the feedback con-
troller will slow down the control actions which also leads
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Fig. 1. System under several controllers

to control performance degradation. In this work, the third
way is adopted, that is, to generate nonlinearity through
switching the controller settings among different ones. In
this way, it is possible to ensure data informativity and
to increase control performance. The method developed in
this work is based on the following theory of informativity
of the closed-loop system test.

Theorem 3.1 (Soderstrom et al. (1976)) Consider a
multivariable closed-loop system with m inputs and p
outputs, and the system is switched between k different
linear controllers, as shown in figure 1. When there is no
external excitation, the input outpu data-set is informative
if the following criteria is met,

k ≥ 1 +
m

p
(13)

4. CONTROLLER SWITCH SCHEME

Here it is intended to find a switching scheme that can:
1) satisfy data informativity condition for closed-loop
identification without excitation; 2) improve the control
performance during the test period. Yan and Zhu (2018)
designed a switching scheme for PID control system,
which achieved a win-win effect between informativity and
control performance. For DMC system, one can consider
switching the weighting coefficient R.

4.1 Relationship between R and output variance

In this research, the output variance of the system is
chosen as an indicator to evaluate the control performance.
This is because in the process industry, one of the MPC’s
main purposes is to reduce the system’s output variance. A
small output variance could ensure the system is operated
in a safer and more cost-effective situation. Here, the
system output variance τ is defined as

τ = E

[
p∑
1

(yi(k)− ri(k))
2

]
(14)

Where p is the number of outputs. Regarding the system
output variance and weighting coefficient R, the following
result can be used.

Theorem 4.1 (Tran et al. (2014)) For a closed-loop
system under DMC controller, in the case that the opti-
mization proposition has no constraint or constraints will
not be triggered, and there exists a model mismatch, then
the system’s output variance will first decrease and then
increase with an increase in the closed-loop bandwidth ω,
as shown in figure 2.
When the closed-loop bandwidth is small, the system will
be sensitive to the disturbance. Conversely, the system will
be sensitive to the model mismatch which also causes a
bad control performance, even instability. Therefore, there
exists an optimal closed-loop bandwidth. Further, fixing

Fig. 2. Relation between R and the output variance

the input weights and increasing the output weights, or
fixing the output weights and reducing the input weights,
both raise the closed-loop bandwidth. So when there exists
a model mismatch, one could try to find a more suitable
weight when the system is not working on the optimal
point.

4.2 Preliminary test for finding a better input weighting

In general, a multi-input and multi-output(MIMO) pro-
cess identification with p inputs can be divided into p times
of multi-input single output (MISO) process identification.
According to formula 13, to identify a MISO model with
m inputs, at least m+1 different controllers are needed to
ensure the identifiability of the model. The purpose of the
preliminary is to determine the values of a new weighting
matrix which could improve the performance. Assume that
the current weighting matrices is

R0 = block - diag {r
1M
, ..., r

mM
} (15)

where
r
1M

= diag {r1, r1, ..., r1}︸ ︷︷ ︸
M

(16)

and
r
mM

= diag {rm, rm, ..., rm}︸ ︷︷ ︸
M

(17)

Step 1: The closed-loop system is controlled by the ex-
isting linear DMC controller; Compute and record the
current output variance τ0.
Step 2: Increase the weighting matrix. In general, increas-
ing the input weighting slows down the control action and
increase the closed-loop system robustly stability. So the
user is on the safe side by starting with increasing the
input weighting. Set the weighting matrix as

R1 = K1R0,K1 > 1 (18)

where K1 can be in the range from 2 to 5. Compute the
output variance τ1 in this period. If τ0 > τ1, it means
that the new input weighting matrix R1 has a higher
control performance and it will be used as the new input
weighting. Set Ks = K1 and stop the pretest. If τ0 < τ1,
then go to Step 3 and increase the input weighting matrix.
Step 3: Decrease the input weighting matrix. Set the
weighting matrix as

R2 = K2R0,0 < K2 < 1 (19)

where K2 can be in the range from 0.3 to 0.8. If τ0 > τ2,
it means that decreasing the input matrix increase the
performance. Then set Ks = K2 and stop the pretest.

Note that although one can achieve better control using
a new input weighting in most of the cases, one cannot
guarantee the increase of control performance in all sit-
uations. In a rare case, it may happen that τ0 < τ1, τ2,
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Fig. 3. GBN signals conduct switching behaviors

which means that the current input weighting is close to
the optimal one. In this case, one can switch the controller
between R0 and R1 which is the larger input weighting
corresponding to a more robust controller.

4.3 Switch method

Based on the result of the pre-test, one obtains a new input
weighting matrix Ks that is in general a better controller.
In order to create sufficient number of controllers, every
input weighting is switched individually between its corre-
sponding elements in the two weighting matrixes Ro and
R1 (R2) by following a switch sequence. Now for every
input, there exists 2 different settings. When the test time
is sufficient long, by combination, one obtains 2m settings
of controllers, which suffices to meet the informativity
condition (11). For example, a 3-input system has 8 dif-
ferent settings. The switching sequence of each input can
be arranged in different ways. Here, it is proposed that
the switching of the inputs follows m independent GBN
(generalized binary noise) signals; see figure 3. The average
switching time of GBN signals can be set as the time to
steady state (response time) of the process.

4.4 Model validation

In identification for control, it is necessary to evaluate
the quality of the model identified. When test signals are
used in identification tests and when the signal-to-noise
ratios are high, model output errors (simulation errors)
can be used to measure model quality. For example, if the
simulation error variance is smaller than 10% of the output
variance, then the identified model is considered accurate.
However, this measure cannot be used in closed-loop
identification without excitation. This will be explained
using a single-input single-output process. Denote

y(t) = Go(q)u(t) + v(t) (20)

as the process, where y(t) is the true output, Go(q) is the
true model, u(t) is the input, v(t) is the disturbance. The
relative simulation error RE is given

RE =
var(y(t)− ŷ(t))

var(y(t))
× 100% (21)

where ŷ(t) is model’s output, which means

ŷ = Ĝ(q)u(t) (22)

where Ĝ(q) is the identified model. Suppose that the

process can be identified perfectly (Ĝ = Go), the output
error (simulation error ) of the model is

εoe(t) = y(t)−Gou(t) = v(t) (23)

then we have

RE =
var[εoe(t)]

var[y(t)]
× 100% =

var[v(t)]

var[y(t)]
× 100% (24)

A well performing controller ensures that the output
variance in the closed-loop operation will be smaller than
the open loop disturbance variance. In this case one
has RE > 100% when the model is identified perfectly.
This means that model simulation errors cannot be used
for model validation in closed-loop identification without
excitation.

In the framework of prediction error method, the identified
model is considered a random variable( Ljung (1999)).
When the distribution of the model is known, model qual-
ity can be evaluated using the corresponding confidence
intervals. Based on the prediction error method( Ljung
(1999)), one can obtain

θ̂N
w.p.1−−−−→
N→∞

θo (25)

and as N tends to infinity,
√
N(θ̂ − θo) ∈ As N(0, Pθ) (26)

From (26), we get the covariance of θ̂N

cov(θ̂N ) ≈ 1

N
Pθ (27)

As θ becomes sufficiently close to θo, by Taylor’s expan-
sion,

Ĝ(eiω, θ̂)−Go(eiω, θo) = [G
′

θ(e
iω, θo)]T (θ̂−θo)+O(

∣∣∣θ̂ − θo∣∣∣)
(28)

where G
′

θ(e
iω, θo) is the derivative of G(eiω, θ) with respect

to θ at θo. According to (28), the asymptotic distribution
in the frequency domain could be obtained as N tends to
infinity,

√
N [Ĝ(eiω, θ̂)−Go(eiω, θo)] ∈ As N(0, PG) (29)

and (28) directly gives

PG ≈ [G
′

θ(e
iω, θo)]TPθG

′

θ(e
iω, θo) (30)

and

cov(Ĝ(eiω, θ̂)) ≈ [G
′

θ(e
iω, θo)]T cov(θ̂N )G

′

θ(e
iω, θo) (31)

Based on this property, to evaluate the quality of the
identified model, a common choice is to plot the confidence
region with 3 standard deviation. A relative small bound
means a good model.∣∣∣Ĝ(eiω, θ̂)−Go(eiω, θo)

∣∣∣ 6 3

√
var(Ĝ(eiω, θ̂)) (32)

Another error model bound is proposed using the asymp-
totic theory in Zhu (2001)∣∣∣Ĝ(eiω, θ̂)−Go(eiω, θo)

∣∣∣ 6 ∆(ω) (33)

∆(ω) , 3

√
nh
N

Φv(ω)σ2
e

Φu(ω)σ2
e − |Φue(ω)|2

(34)

where nh is the order of a high-order model. Φv(ω) is
the power spectrum of disturbance. Φu(ω) is the power
spectrum of input. Φue(ω) is the cross power spectrum
between input and white noise e(t). σe is the variance
of white noise e(t). The auto and cross-spectra used in
(34) can be estimated using input signal u(t), output error
residual v̂(t), and prediction error residual ê(t).
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To use the model error bounds in model validation, an
engineering approach of Zhu (1998) is used here: Compare
the relative size between the model and the error bound
over the low and middle frequencies; a transfer function is
graded A (very good) , if bound 6 30%model, B (good), if
bound 6 60%model, C (marginal), if bound 6 90%model,
and D (poor), if bound >90%model.

5. SIMULATION

In order to confirm the effectiveness of the approach
proposed, a simulation study is performed.

5.1 Description of simulation

The process is given as a 3-input and 2-output ARMAX
system:

A(q−1)

[
y1(t)
y2(t)

]
=B(q−1)

[
u1(t)
u2(t)
u3(t)

]
+C(q−1)

[
e1(t)
e2(t)

]
(35)

where,

B(q−1) =

[
0.15q−1 + 0.1q−2

0.2q−1 + 0.25q−2

0.6q−1 + 0.3q−2 0.45q−1 + 0.4q−2

0.35q−1 + 0.2q−2 0.1q−1 + 0.2q−2

]
(36)

A(q−1) =

[
1−1.3q−1+0.38q−2

1−1.64q−1+0.69q−2

]
(37)

C(q−1) =

[
1 + 0.2q−1 + 0.1q−2

1 + 0.1q−1+0.1q−2

]
(38)

5.2 Description of simulation

(1)Two different cases would be compared. Case 1: System
operates using a linear DMC controller. Case 2: System
operates under switching DMC controllers.
(2)As shown in figure 4, a preliminary test is performed
first to fix the Ks, then GBN signals are added to direct
the weight switching sequence of MVs.
(3)There is no external excitation. White noise signal e1(t)
and e2(t) are mutually independent. The variances of the
white noises are both 0.01.
(4)The simulation was run for 100 times; the sample length
is 30000. The length of the GBN signals is 30000 and its
average switching time is 200.
(5)The controller’s initial setting is as follows: Model
horizon N = 40, the prediction horizon P = 15, control
horizon M = 6, the output weighting matrix Q =
diag{1, ..., 1}, the current input weighting matrix R = I.
The extent of a the two settings are K1 = 5,K2 = 0.3.
(6)There exists a mismatch between the predictive model
and the process, and the step responses of the process and
the model are shown in figure 5.

5.3 Simulation results

Table 1 shows the parameters estimation results of 100
simulations in two different situations; The step responses

R0    

Linear controller Update model
Case 1:

Pre-test Update modelSwitching controllers
   Case 2:

Ri, i=1,2,... 

Fig. 4. Simulation process
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Fig. 5. Model mismatch

0 50 100 150
0

5
U1-Y1

0 50 100 150
0

10

20
U2-Y1

0 50 100 150
0

5

10

15
U3-Y1

0 50 100

0

5

10

U1-Y2

0 50 100
0

10

U2-Y2

Switch control

Linear control

True process

0 50 100 150
0

5

10
U3-Y2

Fig. 6. Identified model’s step response

of identified model and the process are shown in figure
6(the figure only shows results of 10 models in order not
to make it too messy). Figure 8, Tables 1 and 2 show
that the identified models are poor with a linear DMC
controller. On the contrary, by switching DMC controllers,
one can indeed obtain accurate models. Further, figure 7
and figure shows the output variance of the system during
each period. Obviously, with a good switching strategy,
the control performance during the experimental period
has been improved, at least not degraded, which verifies
the effectiveness of the preliminary test. After the pre-
dictive model updated, the control performance has been
improved again with the same parameter settings. Figure
8 shows that the relative error is very high when the
model is accurate. As mentioned in section 4, it’s feasible
to evaluate the quality from the estimated variance in
frequency response. Figure 9 shows the frequency response
of one simulation with confidence bound of 3 standard de-
viation. The confidence bounds(the shaded area) signifies
the estimated variance is small and the identified model is
desirable.

6. CONCLUSION

A method of multivariable MPC closed-loop identification
without excitation is developed. A switching scheme of
the MV weighting matrix is proposed to assure data infor-
mativity (model identifiability) during the identification
test. Compared to the test method in process industries
where test signals are used, this method can improve the
control performance during the test period which decrease
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Table 1. Parameter estimation

Parameter True value Switch controller Linear controller

a11 -1.3 -1.3030±0.0315 -1.3015±0.0441
a21 0.38 0.3831±0.0273 0.3820±0.0473
b11,1 0.15 0.1532±0.0810 0.1249±0.6176

b21,1 0.1 0.0966±0.0798 0.1190±0.3333

b11,2 0.6 0.5991±0.1344 0.5976±0.4875

b21,2 0.3 0.2984±0.1488 0.2982±0.3693

b11,3 0.45 0.4598±0.1366 0.4347±0.3382

b21,3 0.4 0.3877±0.1489 0.4108±0.3053

c11 0.2 0.1967±0.0326 0.1988±0.0428
c21 0.1 0.0983±0.0140 0.0996±0.0174

a12 -1.64 -1.6394±0.0128 -1.6386±0.0527
a22 0.69 0.6893±0.0112 0.6919±0.1369
b12,1 0.2 0.2027±0.1355 0.5320±10.9747

b22,1 0.25 0.2477±0.1406 0.0104±8.2667

b12,2 0.35 0.3579±0.1892 0.0242±8.9660

b22,2 0.2 0.1912±0.1919 0.4949±7.9617

b12,3 0.1 0.0997±0.0874 0.3089±6.7856

b22,3 0.2 0.1989±0.0899 0.0122±6.1766

c12 0.1 0.0996±0.0140 0.1010±0.0538
c22 0.1 0.1005±0.0080 0.1008±0.0109

0 20 40 60 80 100

0.45

0.5

0.55

0.6

0.65

Linear period

Switching period

Model updated period

Fig. 7. Variance comparison totally
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Fig. 8. Relative error of identified model

Fig. 9. Model validation in frequency domain

the cost of identification. It is pointed out that, in closed-
loop identification without excitation, the simulation error
cannot be used to evaluate the quality of the identified
model and confidence intervals (error bounds) of model
frequency responses can be used in model validation. The
effectiveness of the proposed method is verified by simu-
lating a 3-input and 2-output process.
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