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Abstract: For safe and efficient driving of a vehicle on urban roads, it is essential to analyze
the trends of the vehicles ahead to take early measures in changing traffic situations. Existing
efficient driving systems based on optimal car following compute the vehicle control input
by solving an optimization problem over a prediction horizon, and at the expense of large
computation cost, they provide significant improvement in traffic flows and fuel consumption.
This paper proposes a look-ahead car following scheme, which can take anticipatory driving
decisions with negligible computation cost, for efficient driving of a vehicle. Specifically, at
first, the distinctive features of an optimal car following scheme over traditional car following
of a human driver are investigated. Then, based on the features observed, a look-ahead car
following scheme is formulated that can partly reflect the desired driving characteristics of
the optimal car following scheme. The proposed scheme extends a traditional car following
model by incorporating the predicted state of the preceding vehicle in a restricted look-ahead
horizon. Finally, the proposed look-ahead car following scheme is evaluated in typical urban
traffic scenarios, and the observed driving characteristics and performances are compared.
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1. INTRODUCTION

Improving safety, energy efficiency and traffic flows on
urban roads are major demands as the number of ve-
hicles on worldwide road-networks has been increasing.
Various physical factors affect fuel consumption of vehi-
cles, e.g., engine characteristics, powertrain system and
vehicle structure related to aerodynamic drag and weather
conditions. However, it has been revealed from various
studies and experiments that the energy consumption of
a vehicle is highly influenced by driving behavior (Berry,
2010; Knowles et al., 2012).

Microscopic human driving behavior is described by a
car following model, which prescribes control acceleration
according to the instantaneous driving context, e.g., pres-
ence and states of a vehicle in the front. A variety of
car following models were developed and their behavioral
aspects were well studied (Brackstone and McDonald,
1999). Some widely used ones include Gipps model (Gipps,
1981), optimal velocity model (OVM) (Bando et al., 1995),
intelligent driver model (IDM) (Treiber et al., 2000). These
models can approximately replicate human driving behav-
ior related to the longitudinal motion of a vehicle in any
traffic flow conditions.

Adaptive cruise control (ACC) based on a traditional
control algorithm or cooperative ACC (CACC) are the
advanced car following schemes developed for semi-
automated vehicles. Taking a short gap between the ve-

hicles, these schemes improve the traffic capacity and flow
performances (Davis, 2004; Kesting et al., 2008). Both
ACC and traditional car following models are not energy
efficient, and they may cause shock-waves or congestion
in the traffic due to the presence of disturbances in dense
traffic. Particularly, vehicles with these driving schemes
often make aggressive braking due to the lack of traffic
anticipation. Furthermore, they exhibit delayed or slow de-
parture from a queue at an intersection, and such behavior
causes reduction of the effective green time or the capacity
of the intersection (Koonce et al., 2008).

Comfortable energy-efficient behavior would be to predict
what is happening on the road ahead and avoid hard
braking, drive at the optimal steady speed, and slowly
decelerate at stops (Kamal et al., 2013). Recently, several
efficient driving systems with the different perspectives,
e.g., maximizing energy efficiency, smoothing traffic flows,
and improving traffic capacity, have been developed for
automated or semi-automated vehicles (Kamal et al., 2013;
Sciarretta et al., 2015; HomChaudhuri et al., 2016; Kamal
et al., 2014). These systems determine input acceleration
using a model predictive control (MPC) framework by
solving an optimization problem, which includes the esti-
mated future state of the preceding vehicle in the decision
making, and hence, the solution of the problem provides
an anticipatory car following behavior that improves the
driving efficiency of a vehicle. In contrast, the traditional
car following models or ACC decides a control input only
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based on the current state of the preceding vehicle, and
hence, they cannot avoid aggressive braking or inefficient
driving decisions in a transient traffic flow condition. Al-
though the optimal car following scheme improves the
driving efficiency of a vehicle, the high computational cost
in solving a complex optimization problem reliably and the
necessity of powerful computing systems are the main bar-
riers in implementing them on the road vehicles. Therefore,
the use of these efficient driving systems remains limited
mostly in the simulation studies.

Addressing the above potentials and limitations of the
optimal car following schemes, this paper proposes a look-
ahead car following scheme that is comparable with the
traditional car following model in terms of computation
cost and reflects the desired anticipatory driving behavior
similar to the optimal car following schemes to some
extent. Particularly in this paper, the distinctive features
of an optimal car following scheme over a traditional
car following model of a human driver are investigated.
Next, the proposed car following scheme is formulated
using a simple mechanism of incorporating the short-
term predicted state of the preceding vehicle with a
car following model. The suitable predicted horizon or
look-ahead time is then chosen through simulation of a
vehicle that follows a preceding vehicle according to the
real driving data. Finally, the potentials of the proposed
scheme are investigated by implementing it on multiple
vehicles on roads with signalized intersections. The overall
fuel-saving and flowing behavior at intersections by the
vehicles with the proposed scheme are evaluated.

2. CAR FOLLOWING SCHEMES

Consider a host vehicle (HV) driving problem where the
control acceleration needs to be computed in order to
maintain a safe distance from the preceding vehicle (PV)
for a given desired speed. Let xh = [ph, vh] ∈ R2 denote
the state of the HV, where ph and vh are the position and
velocity, respectively. The control input ah is given in the
form of acceleration. The state dynamics of the HV in a
discrete-time framework can then be given by

xh(k + 1) = Axh(k) +Bah(k), (1)

where k denotes the step number and, with step size ∆τ ,
the coefficient matrices are defined as

A =

[
1 ∆τ
0 1

]
, B =

[
0.5∆τ2

∆τ

]
. (2)

The longitudinal motion of the HV depends on the control
input ah, which is determined by a car following model or
automated driving system.

2.1 Traditional Car Following Model

In the case of human driving, we refer it to traditional car
following (TCF), it is assumed that the acceleration ah
depends on the states xh and xp of the HV and the PV,
respectively, and can be represented by a function fTCF as

ah(k) = fTCF(xh(k), xp(k)). (3)

The details of the function fTCF can be given accord-
ing to the equations of any car following model, e.g.,
Gipps model, OVM or IDM. The Gipps model derives
acceleration based on complex safety considerations with

Fig. 1. Generated acceleration of the HV by the TCF and
OCF for different acceleration of the PV.

the preceding vehicle. The OVM replicates shock-waves
in traffic that often found on the freeways. However, the
OVM often produces unrealistic acceleration/deceleration
since the relative speed of the preceding vehicle is ig-
nored in deciding acceleration. The intelligent driver model
(IDM) (Treiber et al., 2000), a recent and widely used car
following model, uses a few model parameters that have
clear meanings in the context of traffic flows, provides
acceleration as a smoothly varying quantity and ensures
collision free driving. The IDM with modified parameters
have also been tested for ACC system and found to be
effective in improving traffic flows (Kesting et al., 2008).
In this study, fTCF is described by the IDM, which is
expressed as

fTCF(xh, xp) = c1

(
1−

(vh
ν

)4
−
(
d∗hp
dhp

)2
)
, (4)

where dhp = pp − ph denotes the distance to the PV,
d∗hp(vh, vp) denotes the desired safe distance defined as

d∗hp = s0 + vhT + vh(vh − vp)/(2
√
c1, c2), (5)

and T, c1, c2, s0, ν are the parameters whose values typi-
cally vary among drivers depending on their skills, prefer-
ences and unknown factors.

2.2 Optimal Car Following Scheme

A typical car following based on solution of an optimiza-
tion problem using a MPC framework is briefly described.
For simplicity, such driving is refer to optimal car following
(OCF) scheme. It is assumed that acceleration of the HV
can be determined by anticipating the state of both the HV
and the PV according to some given objective function,
and such an OCF scheme simple expressed here by a
function fOCF as

ah(k) = fOCF(xh(k), xp(k), āp(k)), (6)

where āp(·) denotes the estimated acceleration of the
preceding vehicle. Specifically, the optimal car following
decision can be obtained as

fOCF(xh(k), xp(k), āp(k)) = a∗h(0|k), (7)

where a∗h(0|k) ∈ A∗(k) is the immediate control input
and A∗(k) = [a∗h(0|k), a∗h(1|k), . . . , a∗h(N − 1|k)] ∈ RN is
the optimal input vector obtained as the solution of the
following optimization problem at step k:

min
A

J(xh(0|k), X̃p(k),A(k)), (8)
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Fig. 2. Speed and acceleration of the HV while following the PV. Using (a) TCF, and (b) the OCF by the HV.

subject to, for n = 0, 1, 2, . . . , N − 1, state equations{
xα(0|k) = xα(k), α ∈ {h,p},
xα(n+ 1|k) = Axα(n|k) +Baα(n|k), α ∈ {h,p}, (9)

and constraints{
0 ≤ vh(n+ 1|k) ≤ vmax,
amin ≤ ah(n|k) ≤ amax,
ph(n|k) ≤ p̃p(n|k)−R0 − t0vh(n|k),

(10)

where vmax, amin, amax, R0, t0 are constants, and

X̃p(k) = [x̃Tp (1|k), x̃Tp (2|k), . . . , x̃Tp (N |k)]T

is the state of the PV in the horizon. Here, X̃p(k) is either
given (e.g., using vehicle-to-vehicle communication) or can
be estimated using both xp(k) and āp(k) according to some
short-term traffic prediction methods, e.g., conditional
persistent prediction (Kamal et al., 2013; Kamal et al.,
2018). Basically, at each step k the optimal control inputs
A∗(k) is obtained to control the vehicle along the horizon.
However, only the first input a∗h(0|k) ∈ A∗(k) is applied by
dismissing the remaining in the vector, and the process is
repeated.

Most importantly, the performance index of this optimiza-
tion problem is defined as

J(xh(0|k), X̃p(k),A(k)) =

N∑
n=1

((Vd − vh(n|k))2+

+ β1a
2
h(n− 1|k) + β2C(xh(n|k), x̃p(n|k))),

(11)
where β1 and β2 are constant coefficients, Vd, vh are the
desired speed, current speed of the HV, respectively, and
x̃p(n|k) is the estimated state of the PV, the nonlinear
function C denotes penalty when the time headway re-
duces from the desired value while following the PV, and
the function is defined as

C(xh(k), x̂p(k)) = e−β3(td.min−th(k)), (12)

where td.min is the desired minimum time headway, th =
(pp − ph)/(vh + ε) is the time headway, ε is a constant
added to avoid singularity at vh = 0. Minimization of the
above cost function (11) can ensure efficient and smooth
driving (with minimum acceleration and steady speed),
and as a consequence of that fuel efficiency of the vehicle
is expected to improve.

2.3 Comparison of TCF and OCF

The driving performances of the TCF and the OCF
schemes are compared through simulation in two steps by
using the typical value of the parameters of the respective
schemes. At first, a simple evaluation is conducted in a
typical situation where the HV with speed 35 km/h follows
a PV with 40 km/h at a gap of 20 m. In this test, for
different levels of acceleration of the PV, the calculated
acceleration of the HV is shown in Fig. 1. Regardless of the
levels of acceleration of the PV, the TCF provides the same
acceleration for the HV. However, in the case of the OCF,
acceleration of the HV increases with the acceleration of
the PV and vice versa. It implies that the OCF predicts
the PV and takes advance action to improve its speed or
to avoid sudden braking later, which indirectly improves
the fuel consumption of the vehicle.

Next, we used real driving data of a vehicle driven at about
7.74 km in about 15 min on National Road 129, Kanagawa,
Japan. By setting the PV to follow the real driving pattern
exactly, the HV is initialized at the nominal distance with
the same speed of the PV. Fig. 2 (a) shows the speed
and acceleration of the PV and the HV that are simulated
using the TCF. The HV with the TCF shows a speed and
acceleration patterns very similar to the PV. Fig. 2 (b)
shows the speed and acceleration of the HV driven by
the OCF scheme. The HV with the OCF usually avoids
any aggressive acceleration or deceleration and keeps the
speed smoother than that of the TCF or the PV. It is
found that the total fuel consumption by the TCF and
the OCF vehicles are 487.9 ml and 459.8 ml, respectively.
The anticipation of the PV enables the OCF vehicle in
saving about 6% fuel consumption.

The OCF scheme using MPC provides the best driving
solution since the control inputs are computed to minimize
the driving cost in a given horizon while ensuring various
constraints. However, the computation cost is very high
compared with the simple car following models. Partic-
ularly, the TCF requires less than 0.5 ms to generate
the control inputs, whereas the OCF requires above 100
ms using MATLAB in a typical PC. Furthermore, it is
very difficult to evaluate a large traffic network containing
thousands of vehicles with the existing OCF in real time.
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Therefore, it is desired to develop a new car following
scheme that can partly reflect the desirable features of the
OCF while keeps the computation cost negligible.

3. LOOK-AHEAD CAR FOLLOWING SCHEME

The key difference of the OCF over the TCF is the
consideration of the predicted future states of the PV to
make an anticipatory control decision. Considering that
fact, here we propose a novel way of incorporating the
predicted future state of the PV in the parameterized
car following model, which we named Look-ahead Car
Following (LCF) scheme. In this scheme, for a short
look-ahead horizon the states of the PV are predicted.
Considering the current speed of the host vehicle as
constant in the same horizon, the relative look-ahead state
of the PV is used in calculating the control input. For a
look-ahead horizon tla|k at step k the LCF, denoted by
function fLCF, is formally defined as

ah(k) = fLCF(xh(k), xp(k), āp(k))
= fTCF(x̄h(tla|k), x̄p(tla|k))

= a

1−
(
v̄h(tla|k)

ν

)4

−

(
d̄∗hp(tla|k)

d̄hp(tla|k)

)2
 ,

(13)

where x̄h(tla|k) and x̄p(tla|k) are the look-ahead states,
v̄h(tla|k), v̄p(tla|k), d̄hp(tla|k), d̄∗hp(tla|k) are the look-ahead
values of the variables, which are estimated as

v̄h(tla|k) = vh(k),

v̄p(tla|k) = vp(k) + āp(k)tla,

d̄hp(tla|k) = dhp(k) + (vp(k)− vh(k))tla + 0.5ap(k)t2la,

d̄∗hp(tla|k) = s0 + vh(k)T

+vh(k)(vh(k)− v̄p(tla|k))/(2
√
ab). (14)

The look-ahead horizon tla is dynamically tuned as

tla =

{
Hβ−1vh, if vh ≤ β,
H, otherwise,

where β is a constant and H is the maximum look-ahead
horizon in second. Depending on speed vh, the look-ahead
horizon tla is tuned linearly from 0 to H when the speed
varies from 0 to β. Such tuning at a low speed helps
avoiding any oscillatory decision due to the presence of
the PV at a short distance.

4. SIMULATION RESULTS

The proposed look-ahead car following scheme has been
evaluated through numerical simulation. Using a few sce-
narios the scheme has been compared with both the OCF
and the TCF. For designing the look-ahead parameters
for the scheme, the influences of H on the generated
acceleration and fuel consumption of a vehicle are observed
as follows. At first the control inputs generated by the LCF
schemes with different look-ahead horizon H are compared
for the case presented in Fig. 1. As stated, acceleration of
the PV is varied from −1.5 m/s2 to 1.5 m/s2, and the
corresponding control input of the HV is calculated by
the proposed LCF scheme for the maximum look-ahead
horizon (H) of 0.5 s, 1.0 s and 1.5 s, and compared
with the OCF and the TCF as shown in Fig. 3. The

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

A
cc

e
le

ra
ti

o
n

 o
f 

H
V

, 
m

/s
2

Acceleration of PV, m/s2

TCF LCF0.5 LCF1.0 LCF1.5 OCF

Fig. 3. Acceleration of the HV by the proposed LCF
scheme with different look-ahead horizon as the ac-
celeration of the PV varies.

Fig. 4. Overall fuel consumption performance of the HV
for different look-ahead horizon of the LCF, and
comparison with the OCF and the TCF.

LCF schemes generate higher or lower control input when
the PV accelerates or decelerates, respectively, and the
difference margin increases with the look-ahead horizon.
In this respect, the LCF schemes are more similar to
the MCP-based OCF scheme than the TCF. Note that
in LCF, it is assumed that the PV would continue the
same acceleration over the look-ahead horizon, and at
high deceleration of the PV it generates a large negative
control input. However, once the HV successively executes
the LCF scheme, it would make early adjustment in its
relative states, and high negative control input would not
be necessary.

The best look-ahead horizon for the LCF schemes need
to be determined. For this purpose, by varying the look-
ahead horizon, the HV is controlled behind a car that runs
according the experimental driving data as shown in Fig. 2.
Figure 4 shows the fuel efficiency of the HV for traveling
a distance of about 7.74 km in about 15 min. It is found
that the LCF with 1.5 s horizon provides the best fuel
efficiency, although it is much lower than the OCF scheme,
which used the exact future trajectories of the PV in the
decision making. The LCF with 1.5 s horizon improves
the fuel efficiency by 2.5% compared with the TCF for
the same parameters of the car following model. At the
higher horizon than 1.5 s, the fuel efficiency deteriorates

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14036



(a) (b)

Fig. 5. Driving characteristics while leaving the queue at the green signal appearance and stopping at the red signal in
the intersections by ten vehicles driven by (a) TCF and (b) LCF.

since large horizon often causes fluctuating control inputs
due to variation in the speed of the PV. Therefore, the
LCF with H = 1.5 s with β = 4 m/s is chosen for the
subsequent simulation.

Possible impacts on the traffic flow by the proposed LCF
scheme have been evaluated by observing the driving
characteristics of a string of ten vehicles at intersections
as shown in Fig. 5. More specifically, trajectories, speeds,
and accelerations of these vehicles are observed while
they leave a queue at the first intersection and travel to
another intersection separated by 700 m and having the
red signal. Initially, ten vehicles in the queue are idling
due to the red signal, which turns into the green at time

10 s. The signals of both consecutive intersections are
synchronized for simplicity, and the red signal appears
again at time 40 s and continues up to 100 s. The LCF
vehicles apply slightly higher acceleration and speed up
a bit faster than the vehicles with the TCF. In contrast
to the start-up characteristics, during stopping at the red
signal, the LCF vehicles use significantly low deceleration
in a very anticipative manner. Such smooth deceleration
ensures better utilization of kinetic energy to save fuel
consumption and reduce emissions. A similar comparison
between TCF and OCF can be found in Bakibillah et al.
(2019).
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Fig. 6. Improvements in traffic performance: (a) intersec-
tion crossing time, and (b) fuel efficiency.

Finally, the queue clearing timings and fuel consumption
efficiency in the observed period are evaluated for each
of these vehicles in Fig. 6. The leading vehicle left the
intersection typically, while the 2nd to the 10th vehicles
follow their respective PV. Vehicles with the LCF cross
the intersection slightly faster than the TCF vehicles as
shown in Fig. 6 (a), e.g., the 10th vehicle could cross 2.4
s earlier. This implies that the LCF reduces the start-up
delays of the vehicles that directly enhances the capacity of
the intersection. Considering the 90 s cycle with the two-
phase signal in the intersection, it improves the effective
green time by 5.3% that directly relates the capacity
enhancement of the intersection. Fig. 6 (b) shows the
average fuel efficiency of these vehicles in both cases. Since
the total travel distance of the vehicles slightly differs, we
have shown the fuel consumption rate in km/L for a fair
comparison. By starting up faster and stopping slower,
the LCF vehicles significantly improve fuel consumption
efficiency. The improvement margin of the 10th vehicle is
the highest since it could decelerate for the longest distance
by better utilizing the kinetic energy. These achievements
illustrate the potentials of the proposed LCF in improving
both the traffic flows and fuel efficiency.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a look-ahead car following scheme has
been proposed that can partly reflect the desired driving
characteristics usually obtained from the solution of the
optimization problem. The proposed scheme reduces the
start-up delays of the traffic in the queue departure at the
intersection and significantly improves the effective green
time, and hence, enhances the intersection capacity. Fur-
thermore, it attempts to decelerate slowly while stopping
at intersections, and such behavior helps to improve fuel
efficiency by utilizing the kinetic energy.

In the future, we would also like to investigate the impacts
of the LCF scheme in a urban and freeway networks.
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