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Abstract: This paper presents both design and implementation of a discrete-time proportional-
integral (PI) tracking control for the desired output torque of a nonlinear hydrostatic trans-
mission system affected by disturbances and uncertainties. The control is conceived in a
decentralized form, in which the bent-axis angle and the torque of the hydraulic motor are
controlled separately. The motor bent-axis angle is adjusted by a pure feedforward control law,
whereas the torque of the hydraulic motor is controlled using a PI state feedback from a online-
solution of the state-dependent Riccati equation. State variables and external disturbances are
reconstructed by a discrete-time nonlinear observer. The stability of the closed-loop system
as well as the observer are investigated by linear matrix inequalities. The achieved tracking
performance indicates the robustness of the overall control structure in the presence of system
disturbances and uncertainties. The proposed control is evaluated by means of simulations and
experiments using the dedicated test rig at the Chair of Mechatronics, University of Rostock.
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1. INTRODUCTION

Hydrostatic transmissions (HSTs) are widely used in clas-
sical industrial applications like heavy working machines,
construction and agriculture machinery and off-road ve-
hicles, cf. Schulte (2007). They are recently present also
in wind turbines, cf. Schulte (2014), and power-split gear-
boxes, cf. Shamshirband et al. (2014). HSTs are often pre-
ferred in comparison to conventional mechanical gearboxes
due to their high power density in combination with a
continuously variable transmission ratio. Moreover, they
allow for a directional reversion without changing gears as
well as wearless braking, see Aschemann (2013). Thanks to
a high flexibility regarding the geometrical arrangement,
hydrostatic transmissions are employed in numerous drive
train designs. Fig. 1 depicts the principle structure of a

Fig. 1. Principle structure of an HST system.

hydrostatic transmission system. It typically consists of
two main components – a hydraulic pump and a hydraulic
motor, each with a variable volumetric displacement – that
are connected in a closed circuit by means of hydraulic

hoses. The pump is driven by an engine or an electric drive,
the mechanical power supplied to the system is converted
to hydraulic power in form of pressurized fluid flow, and
transmitted to the hydraulic motor, where it is converted
back to mechanical power at the output shaft.

The axial piston type represents the most popular struc-
ture of hydraulic pumps and motors. With this structure,
the transmission ratio can be adjusted by changing the
swash-plate angle of the hydraulic pump, by altering the
axial bent angle of the hydraulic motor or by changing
both simultaneously by means of the displacement units.
As a result, both torque and angular velocity of the hy-
draulic motor can be controlled independently according
to the purpose of the specific application. For the track-
ing control of the angular velocity, several concepts have
already been proposed, see Dang (2018). Tracking control
designs for the motor torque have been published in Asche-
mann (2017) and Prabel (2017). These control approaches
take advantage of extended linearization or Takagi-Sugeno
techniques and are designed in the continuous-time do-
main.

In current industrial practice, gain-scheduled-PID con-
trollers are still the typical choice to control hydrostatic
transmissions, see Schulte (2007). As the derivative term
may be critical w.r.t. high-frequency noise, PI controllers
may be preferable to PID controllers in such cases, cf.
Dogruer (2018). Aiming at a digital control implementa-
tion, this paper presents the design and implementation
of a discrete-time decentralized control structure: a simple
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feedforward control is deployed for the bent-axis angle of
the hydraulic motor, whereas the motor torque is regulated
by the PI state-feedback control based on SDRE tech-
niques. The tracking control performance is investigated
by means of both simulation and experiments using a
validated model of the dedicated test rig which is available
at Chair of Mechatronics, University of Rostock.

Fig. 2. HST test rig at Chair of Mechatronics, University
of Rostock.

2. NONLINEAR MODEL OF THE HYDROSTATIC
TRANSMISSION

This section presents briefly the model for the HST system,
which can be found in more detail in Sun (2015).

2.1 Hydraulic Subsystem

Pump Flow Rate The pump flow rate qP is determined
by a nonlinear function

qP =
VP (αP )ωP

2π
, (1)

with ωP as the angular velocity of the pump. The nonlinear
relationship between the volumetric displacement VP (αP )
and the tilt angle αP of the swashplate is defined by

VP (αP ) = NP AP DP tan(αP,max · α̃P ) , (2)

with the normalized swashplate angle α̃P = αP /αP,max.
Here, the geometrical parameters are the effective piston
area AP , the diameter DP of the piston circle, and the
number NP of pistons present in the pump. With the
maximum volumetric displacement ṼP = NPAPDP

2π , the
pump flow rate can be stated as

qP = ṼP tan (αP,max · α̃P )ωP . (3)

Motor Flow Rate The hydraulic motor is of a bent-axis
design. Therefore, the ideal volume flow rate qM into the
hydraulic motor becomes

qM =
VM (αM )ωM

2π
, (4)

where VM (αM ) represents the nonlinear volumetric dis-
placement of the motor and ωM the motor angular veloc-
ity. Given the geometrical parameters NM , AM , and DM ,
the volume flow rate can be written as

qM = ṼM sin (αM,max · α̃M )ωM . (5)

Here, a normalized bent-axis angle is introduced according
to α̃M = αM/αM,max as well as the maximum volumetric

displacement ṼM = NMAMDM

2π , similar to the pump model.

Dynamics of fluid pressure The pressure dynamics in-
volves the dynamics of the high-pressure and the low-
pressure sides of the hydrostatic transmission. For prac-
tical reasons, the pressure dynamics is reduced to the dy-
namics of the difference pressure between the high and low
pressure sides. Assuming symmetric physical conditions
and negligible pressure losses in the hydraulic hoses, the
differential equation for the difference pressure results in

∆ṗ =
2

CH

(
ṼP tan (αP,max.α̃P )ωP

− ṼMsin (αM,max.α̃M )ωM

)
− qU
CH

,
(6)

where qU is a lumped disturbance caused by the individual
leakage flows, and CH denotes the hydraulic capacitance.

Dynamics of Actuators The dynamics of the displace-
ment units of the pump and the motor are represented by
first-order lag models

TuP ˙̃αP + α̃P = kPuP ,
TuM ˙̃αM + α̃M = kMuM .

(7)

Here, TuP and TuM denote the corresponding time con-
stants, kP and kM the proportional gains, and uP and uM
the analogue input voltages of the servo valves. In the given
physical design, the angles are bounded by α̃P ∈ [−1, 1]
and α̃M ∈ [εM , 1], εM > 0.

2.2 Mechanical Subsystem

The mechanical aspects of the HST system are governed
by the equation of motion for the motor

JV ω̇M + dV ωM = ṼM∆p sin(αM,max · α̃M )− τU , (8)

where dV is the damping coefficient, and JV the mass mo-
ment of inertia. A lumped disturbance torque τU addresses
load disturbances and model uncertainty.

2.3 The Nonlinear Model of the Overall System

Combining all the subsystems discussed, the dynamics
of the HST system can be stated by four first-order
differential equations as follows


˙̃αM
˙̃αP

∆ṗ

ω̇M

 =



− 1

TuM
α̃M +

kP
TuM

uM

− 1

TuP
α̃P +

kM
TuP

uP

2ṼP
CH

tan(αP )ωP − 2ṼM
CH

sin(αM )ωM − qU
CH

−dV
JV

ωM +
ṼM
JV

sin(αM )∆p− τU
JV


,(9)

where αM = α̃M ·αM,max as well as αP = α̃P ·αP,max have
been used and the control inputs are given by uP and uM .

3. DISCRETE TIME CONTROL DESIGN

In the decentralized control structure, the motor bent-axis
angle and the motor torque are controlled separately.
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3.1 Feedforward Control of the Motor Bent-Axis Angle

The dynamics of the motor tilt angle consists only of the
first equation in (9), which represents a simple first-order
lag behaviour

˙̃αM = − 1

TuM
α̃M +

kM
TuM

uM . (10)

Accordingly, a feedforward control is sufficient for refer-
ence tracking. Applying the explicit Euler method, the
discrete-time system representation with the time index
k becomes

α̃M (k + 1) =

(
1− Ts

1

TuM

)
α̃M (k) + Ts

kM
TuM

uM (k). (11)

Here, Ts is the constant time step size. The inverse
dynamics of the motor displacement unit becomes

uM =
TuM
TskM

α̃M (k + 1)−
(
TuM
TskM

− 1

kM

)
α̃M (k). (12)

The feedforward control law is made causal by shifting the
desired value α̃M,d one time step backward, resulting in

uM =
TuM
TskM

α̃M,d(k)−
(
TuM
TskM

− 1

kM

)
α̃M,d(k − 1). (13)

3.2 State Feedback Tracking Control Design

The relevant state equations for the motor torque control
design are given by the second and third equations in (9),
which can be written by means of state- and parameter-
dependent matrices and vectors as follows

ẋ = A(α̃P , ωP )x + bu+ e v ,
y = cT (α̃M )x .

(14)

In detail, the system (14) description reads[
˙̃αP

∆ṗ

]
=

[
− 1

TuP
0

f (·) 0

][
α̃P

∆p

]
+

[ kP
TuP

0

]
uP +

[
0
1

CH

]
v,

y =
[

0 fc (α̃M )
] [ α̃P

∆p

]
.

(15)

Here, v = −2ṼMωM sin (αM,max · α̃M ) − qU defines a
lumped disturbance term, and y is the output torque of
the hydraulic motor. The state- and parameter-dependent
(SPD) nonlinear functions f (α̃P , ωP ) and fc (α̃M ) are
given by

f (α̃P , ωP ) =
2ṼPωP sinc (αP,max · α̃P ) · αP,max

CH cos (αP,max · α̃P )
,

fc (α̃M ) = ṼM sin (αM,max · α̃M ) .

(16)

In this design model, the state variable α̃M is considered
as a scheduling parameter.

The design is based on SDRE techniques, at each time
step the SPD system matrix is calculated and employed in
the discrete-time linear quadratic regulator (LQR) design
to obtain the corresponding feedback gain. The term v in
(14) is discarded in this step and is addressed separately.
For the PI feedback, the system is extended by an integral
term w, which is defined by

ẇ = e = r − y. (17)

Here, e stands for the tracking error, r is the reference
value and y represents the controlled output torque. The
extended system becomes

ẋw = Aw(α̃M , α̃P , ωP )xw + bw uFB + dw r ,
y = cTw(α̃M )xw ,

(18)

where the feedback control action uFB is introduced. The
extended system matrices read

Aw (α̃M , α̃P , ωP ) =

[
A 0
−cT 0

]
, xw =

[
x
w

]
,

bw =

[
b
0

]
, dw =

[
0
1

]
, cTw =

[
cT 0

]
.

(19)

A successful SDRE control design is guaranteed if Kalman’s
controllability criterion is fulfilled point-wise in the com-
plete operating range

QC (·) =
[
bw Aw (·)bw A2

w (·)bw
]
,

det (QC (·)) 6= 0.
(20)

In the given case, the determinant is unequal to zero with
ωP > 0 and α̃M ∈ [εM , 1], εM > 0. After an explicit Euler
discretization, the system part for the control design can
be described in a discrete-time form according to

xw(k + 1) = Awdxw(k) + bwd uFB(k) , (21)

with Awd = I + TsAw, bwd = Ts bw . Optimal control
techniques, especially discrete-time SDRE techniques, are
now employed, which results in a state- and parameter-
dependent feedback gain vector kw(α̃M , α̃P , ωP ). The
SDRE design involves the minimization of a quadratic cost
function

J =

∞∑
k=1

[
xTw(k)Qxw (k) +Ru2FB (k)

]
, (22)

where Q > 0 is a positive definite weighting matrix for
the state vector xw and R > 0 is a positive weight
the for the scalar input uFB . The optimal feedback gain
can be determined as the symmetric, positive definite
solution P = PT > 0 of the discrete-time algebraic Riccati
equation

AT
wd[(P−Pbwd(R+ bTwdPbwd)

−1bTwdP]Awd + Q = P,

(23)

leading to the state- and parameter-dependent feedback
gain vector

kw = (R+ bTwdPbwd)
−1bTwdP. (24)

Finally, the nonlinear state feedback law results in

uFB(k) = −kw (α̃M , α̃P , ωP )xw(k) , (25)

The implementation of the gain-scheduled control concept
is illustrated in Fig. (3). Here, kTw =

[
kT kI

]
consists

of two components: the component kT corresponds to the
feedback of the original system state vector x, whereas the
component kI corresponds to a feedback of the integrated
tracking error w. Using a polytopic framework, closed-
loop stability of the corresponding system matrix Ac =
Awd − bwd k

T
w is guaranteed by the existence of a joint

Lyapunov function for all four vertices Ac,i, i = 1, ..., 4
that result from the maximum and minimum values of the
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Fig. 3. Implementation of feedback control (presented in
continuous form).

nonlinear functions present in the system matrix Ac, see
Tanaka (2001) for details. The joint Lyapunov function
has been found by means of YALMIP and SeDuMi, see
Löfberg (2004); Sturm (1999), satisfying the following set
of inequalities

P0 > 0, AT
c,i P0 Ac,i −P0 < 0, i ∈ {1, ..., 4} . (26)

Moreover, Fig. 4 shows the closed-loop eigenvalue locations
of Ac in the whole working range of the state variables and
scheduling variables.

Fig. 4. Eigenvalue locations of the state-dependent closed-
loop system matrix.

Disturbance Compensation For a further improvement
of tracking performance, the lumped disturbance v defined
in (14) needs to be compensated. The z-transfer function
from the term V (z) to the controlled output Y (z) becomes

Ge(z) =
Y (z)

V (z)
= cT (zI−Ac)

−1
ed . (27)

Here, Ac = Ad − bdk
T holds with Ad = I + TsA,

bd = Ts b and ed = Ts e . For an ideal disturbance
compensation, the following condition has to be fulfilled
by a proper choice of the disturbance compensation law
UDC(z)

Y (z) = Gb(z) · UDC(z) +Ge(z) · V (z)
!
= 0 , (28)

with Gb(z) = cT (zI−Ac)
−1

bd. By solving for UDC(z),
the dynamic disturbance compensation results in

UDC(z) = −Ge(z)
Gb(z)

· V (z) . (29)

In the given case, no zeros are present in the discrete-time
system model, hence the minimum-phase systemGb(z) can
be inverted, and the compensation law is implementable.
With the introduction of a polynomial ansatz for V (z)

V (z) = kV 0 + kV 1 · z, (30)

the coefficients kV 0 and kV 1 are chosen in such a way
that at least the first two coefficients of the numerator

polynomial in the transfer function (29) vanish. Using the
estimate q̂U , the term v can be evaluated according to (15)
and the compensation law becomes

uDC(k) = kV 1(α̃P , ωP )v(k) + kV 0(α̃P , ωP )v(k − 1). (31)

The overall control law for the motor torque, see Fig. 6, is
given by the sum of the input signals from feedback control
and disturbance compensation

uP = uFB + uDC . (32)

3.3 Design of a Nonlinear Discrete-Time Observer

The proposed nonlinear control law involves state feed-
back. With the given sensor equipment at the dedicated
test rig, however, some variables are not accessible by
measurements. Therefore, a nonlinear observer is designed
to reconstruct all the required variables. For this purpose,

the state vector x1 = [ α̃P α̃M ∆p ωM ]
T

in system (9) is
extended by integrator-type disturbance models: τ̇U = 0
for the disturbance torque and, similarly, q̇U = 0 for the
leakage volume flow. The extended state vector now reads

xe = [ α̃P α̃M ∆p ωM qU τU ]
T
, (33)

with the measured outputs

ym =

[
∆p
ωM

]
=

[
0 0 1 0 0 0
0 0 0 1 0 0

]
xe = Cmxe. (34)

The observer is designed based on SDRE techniques by
deploying the duality principle in a similar way as in
the SDRE feedback control design presented before. The
extended system is rewritten using SPD matrices as follows

ẋe = Ae (x1)xe + Beu, (35)

where the SPD system matrix Ae (x1) and the extended
input matrix Be become

Ae =



− 1

TuP
0 0 0 0 0

0 − 1

TuM
0 0 0 0

f1 (·) f2 (·) 0 0 − 1

CH
0

0 0 f3 (·) −dV
JV

0 − 1

JV
0 0 0 0 0 0
0 0 0 0 0 0


BT
e =

 kP
TuP

0 0 0 0 0

0
kM
TuM

0 0 0 0



(36)

Given the available measurements, this selection for SPD
system matrix satisfies Kalman’s observability criterion,
which represents the precondition for a successful SDRE
observer design. The state- and parameter-dependent
functions in the extended system matrix read

f1 (α̃P , ωP ) =
2ṼPωP sinc (αP,max · α̃P )αP,max

CH cos (αP,max · α̃P )
,

f2 (α̃M , ωM ) =
−2ṼMωM sinc (αM,max · α̃M )αM,max

CH
,

f3 (α̃M ) =
ṼM sin (αM,max · α̃M )

JV
.

(37)
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Again, the design model is time-discretized using the
explicit Euler method, resulting in

xe (k + 1) = Aed xe (k) + TsBeu (k) , (38)

with Aed = I + TsAe and Bed = TsBe. Finally, the state

and disturbance observer is given by

x̂e (k + 1) = Aedx̂e (k) + Beu (k) + H (ym −Cmx̂e (k)) . (39)

Here, the observer gain matrix H is determined by
discrete-time SDRE techniques. The cost function involves
quadratic terms for the observer error x̃e = xe − x̂e and
the measurement vector υe according to

Je =

∞∑
k=1

[
x̃Te (k)Qex̃e (k) + υTe (k)Reυe (k)

]
, (40)

where the weighting matrices Qe > 0 and Re > 0 are

symmetric positive definite diagonal matrices. The optimal

observer gain matrix can be determined in the form of

online solutions Pe = PTe > 0 of a discrete-time algebraic

Riccati equation

AT
ed

[
(Pe −Pe Cm(Re +CT

mPeCm)−1CT
mPe

]
Aed +Qe = Pe.(41)

The state-dependent observer gain matrix H becomes

H = (Re + CT
mPeCm)−1CT

mPe. (42)

Again, the stability of observer dynamics is investigated
using a polytopic framework. Here, a joint Lyapunov func-
tion can be determined via LMIs for all 23 = 8 vertex
models – corresponding to the minimum and maximum
values of functions f1, f2 and f3. Additionally, Fig. 5 illus-
trates the eigenvalue locations of the state- and parameter-
dependent observer error dynamics for the complete range
of the state variables as well as scheduling variables.

Fig. 5. Eigenvalue locations of the observer error dynamics.

Fig. 6. Block diagram of the implemented control struc-
ture.

4. IMPLEMENTATION RESULTS

4.1 Simulation Results

The simulations are performed using the nonlinear system
model of the hydrostatic transmission derived in Sect. 2.
Here, a simulation step size of 0.05 sec is employed. To
obtain realistic and reliable results, measurement noise is
added to the output signals and the disturbance torque
and leakage volume flow are considered by the following
models:

qU = 1 · 10−12∆p ,

τU = 0.1JV ω̇M + 7 tanh
(ωM

0.1

)
.

(43)

The desired motor torque τMd and the desired motor tilt
angle α̃Md are used as reference trajectories, see Figs. 7
and 8. The angular velocity of the pump ωP , which repre-
sents a scheduling variable, is depicted in Fig. 9. As satu-
rating inputs are not taken into account in this study, these
trajectories are designed properly to avoid any saturation
of the displacement units due to the limits of mechanical
design. The estimation quality of the dimensionless pump

Fig. 7. Desired trajectory for the motor bent-axis angle.

Fig. 8. Desired trajectory for hydraulic torque.

Fig. 9. Variations of hydraulic pump angular velocity.

swashplate angle α̃P , which is not measurable at the test
rig, is illustrated in Fig. 10 whereas the simulated and
estimates values for the unknown leakage flow qU are
shown in Fig. 11. The results show a quite good matching
of the estimated and the simulated values that indicates a
high performance of the proposed nonlinear observer.

Fig. 12 shows the comparison of simulated and estimated
values of the motor bent-axis angle. The result shows
clearly that a good trajectory tracking is achieved by
feedforward control alone.
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Fig. 10. Simulated and estimated values for α̃P .

Fig. 11. Simulated and estimated values for qU .

Fig. 12. Simulated and estimated values for α̃M .

Fig. 13. Tracking error of the hydraulic torque τM .

4.2 Experiments

After successful results from simulation studies, the
discrete-time control structure has been implemented on
the dedicated test rig using an identical sampling time of
Ts = 0.05 sec. An experimental result for the tracking
error is shown in Fig. 14. Obviously, a little higher noise
level is present caused by effects at the real equipment.
The achieved accuracy, however, indicates an equivalent
performance for motor torque tracking as in the simulation
and validates the proposed control approach.

Fig. 14. Tracking errors for the motor torque control at
the test rig.

5. CONCLUSIONS

In this paper, a discrete-time tracking control of desired
trajectories for the motor torque of a hydrostatic trans-
mission has been investigated. Based on a decentralized
structure, a simple discrete feedforward control is designed
for the displacement unit of the motor, which allows for

a sufficiently accurate tracking of desired trajectories for
the motor bent-axis angle. For the tracking of the motor
torque, a PI state feedback control as well as an observer
have been designed and implemented using a real-time
solution of the state-dependent Riccati equation. Here,
robust stability has been shown by LMI techniques. Simu-
lation and experimental results indicate the high accuracy
and performance of the implemented nonlinear control
structure that counteracts efficiently both model uncer-
tainty and external disturbances.
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