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Abstract: The power system has gone through an evolutionary process towards a smart grid,
this process is a challenge for the system operator, these challenges are related to implementation
in real time, as well as problems with the control and stability of the system. We propose a
distributed transactive control algorithm based on population games to dynamically manage the
distributed generators and smart loads in the system to reach the optimum social welfare. The
proposed algorithm preserve stability and guarantee optimality conditions considering several
constraints on the real-time operation. Loads are modeled flexible and base loads. Stability
analysis and Nash equilibrium of the proposed game is studied by means of potential games
concepts. Simulation results of the proposed algorithm shows the stability and convergence of
the proposed algorithm.
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population dynamics.

1. INTRODUCTION

Centralized controllers often suffer from serious compu-
tation, communication, and robustness issues in power
systems with so many devices (Knudsen et al., 2016).
Distributed control is becoming a viable strategy to handle
these issues (Quijano et al., 2017). In order to be a com-
pelling solution, distributed control has to satisfy several
technical requirements. The first requirement is the proper
coordination among different devices used at low levels
such as traditional generation units, renewable generation
units, and smart loads (Kok and Widergren, 2016). Dis-
tributed controllers have to be able to provide stability and
robustness margins for the entire system in the presence
of uncertainty and offering some optimality guarantee on
real-time behavior (Lamnabhi-Lagarrigue et al., 2017).
Finally, distributed controllers rely on a communication
infrastructure to work. Several devices of the power system
can communicate with each other exchanging information
through a communication network integrated into the
energy network (Mojica-Nava et al., 2015; Marden and
Shamma, 2015).

Recently, multiple demand response strategies have pro-
posed to deal with generation and load variations balance
(Knudsen et al., 2016; Shiltz et al., 2016), among these
strategies, transactive control is emerging as a strong con-
tender for the coordinated operation of so many devices.
Transactive control, also called market-based control, is a
strategy that uses a market mechanism to enable actors
to interact with each other through an economic signal
to allocate the available resources (Bejestani et al., 2014;
Shiltz et al., 2016). Most of the results of transactive con-
trol are focused on the transmission level of the electrical
? The research reported in this publication was done while the
author was student of the Universidad Nacional de Colombia.

infrastructure (Bejestani et al., 2014; Shiltz et al., 2016).
However, a scalable coordination approach to distribution
systems operation could present advantages over tradi-
tional control strategies. Many methods can be used to
solve the transactive problem in a centralized manner.
In general, iteration methods such as projected gradient
methods (Baron-prada et al., 2018; Guo et al., 2016),
and many others have been extensively used (Bertsekas,
1999). However, coordination of the involved agents in
this more complex large-scale networked paradigm of the
smart grids is a more challenging task. Besides, when
agents change locally, the central system must be recon-
figured to solve the new problem. Finally, a centralized
optimizer could be susceptible to a single point of failure.
In response to the limitations of centralized methods, in
the last decades, there has been an increasing interest in
the development of decentralized optimization strategies
(Nedic and Ozdaglar, 2009; Yang and Johansson, 2010;
Lakshmanan and De Farias, 2008). One of the first al-
gorithm implemented in a distributed way is the center-
free algorithm (Ho et al., 1980). Since then, several dis-
tributed optimization algorithms have been proposed for
distributed resource allocation problems. Most of these
algorithms are based on the seminal work in (Tsitsiklis,
1984). These algorithms are based on reaching a consensus
on their estimates of an optimal solution based on local
information. Despite the recent success of such algorithms,
some limitations arise when they have to be implemented
in real-time operation such as lack of robustness to envi-
ronmental variations, the dependency of the synchroniza-
tion of information between agents, or the requirements
of a two-time scale solution. In contrast, game-theoretical
methods have emerged as a strong possibility to coordinate
the operation of these networked devices (Quijano et al.,
2017). Several benefits can be exploited such as real-time
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adaptation and robustness to dynamic variation in envi-
ronmental conditions (Marden and Shamma, 2015).

In this paper, we propose a distributed dynamic transac-
tive control algorithm for efficient integration of generators
and smart loads in a microgrid. The transactive microgrid
control is based on a population games approach which
solves a social welfare optimization problem. In particu-
lar, a distributed replicator dynamics algorithm is imple-
mented. In the proposed approach, the algorithm preserves
stability while guaranteeing some optimality conditions on
the real-time operation. The equilibrium of the social wel-
fare problem characterizes the outcomes of the interaction
of agents with conflicting objectives. However, there is still
a hierarchy conflict between the utility of the individual
and the system-level objective. The proposed population
game approach dynamically obtains the socially optimal
equilibrium while resolving this hierarchical conflict.

The rest of the paper is organized as follows. Section 2
describes the modeling of agents in the power system, and
the social welfare optimization is presented. Section 3 de-
scribes the main conceptual framework for the distributed
transactive control algorithm based on the distributed
replicator dynamics. In Section 4, simulations results are
presented to illustrate the effectiveness of the proposed
algorithm. Finally, in Section 5, some conclusions and
future work are drawn.

2. PROBLEM STATEMENT

We consider a transactive grid where there are two types
of agents, generators and smart loads. The network is
represented by a graph, where the nodes represent any
agent in the power system.

2.1 Preliminaires: Graph Theory

Consider the graph G = (V, E), G is connected, undirected
and unweighted (Bullo, 2019). Let i and j be any agent
of the graph G. Furthermore, V = {1, . . . , V } denote the
set of agents in the network, the nodes are represented
by semicircles blues and reds as is shown in Fig. 1, V
denote the total number of agents in the power network.
Moreover, E represents the set of links between agents in
the network. If (i, j) ∈ E , then it is a link between i and
j. The black lines in the Fig 1 represent the links. The
neighborhood of i-th agent is denoted as Ni, and is defined
as the set of nodes that have communication links to the
i-node.

Fig. 1. Graph based on WSCC 9 bus power system with
three generators (red) and three consumers (blue).

2.2 Model of Smart Loads and Generators

Smart loads are those that can adjust its consume, taking
into account the information given by the network. This
kind of load has several states, and it chooses one of them
depending on its utility through its objective function, an
example of this type of load is the air conditioning. The
set of smart loads is denoted as m ∈ M = {1, . . . ,M}.
Smart loads are assumed to be agents who can obtain
some system variables through demand response devices.
These devices are capable of making decisions about the
amount of power required by each consumer to maximize
their utility (Palensky and Dietrich, 2011). The consumers’
utility function is defined as (Bejestani et al., 2014)

U(Pdm) = ρdmPdm +
βdm

2
P 2
dm , (1)

where ρd ∈ RM and βd ∈ RM are utility coefficients,
Pd(k) ∈ RM is the vector that contains the load de-
manded by each smart consumer at time instant k,
Pd(k) = [Pd1(k), . . . , PdM (k)]>. The agent m-th has local
constraints given by

P dm ≥ Pdm ≥ P dm , (2)

where P dm and P dm are the minimum and maximum
power demanded by the load m-th respectively. P dm is
also called base load, the base load is the minimum load
that each consumer needs and it is not part of the power
negotiation with the power system.

2.3 Model of Smart Loads and Generators

Furthermore, we define a generator as n. The set of
generators is denoted as N = {1, . . . , N}, where N is the
number of generators in the network. Moreover, the cost of
generation is defined as quadratic (Bejestani et al., 2014;
Shiltz et al., 2016), i.e.,

C(Pgn) = ρgnPgn +
βgn
2
P 2
gn (3)

where ρg ∈ RN and βg ∈ RN are cost coefficients,
Pg(k) ∈ RN is a vector that contains the power de-
livered by each generator at time instant k, Pg(k) =

[Pg1(k), . . . , PgN (k)]
>

. Moreover, each generator has local
constraints given by

P gn ≥ Pgn ≥ P gn , (4)

where P gn and P gn are the minimum and maximum power
delivered by the n-th generator, respectively. We assume
that P gn and P gn do not have changes through the time.

2.4 Social Welfare Optimization Problem

The social welfare problem, i.e., to maximize the benefits
of the consumers and to minimize the cost of the genera-
tors. It is based on social welfare function obtained from
(1), (3), and it is defined as

SW (Pd, Pg) = U (Pd)− C (Pg) . (5)

The main goal is to maximize (5) as it is shown in the
following optimization problem
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Problem 1.

maximize
P

SW (P ) (6a)

subject to

N∑

n=1

Pgn +

M∑

m=1

Pdm = PL, (6b)

P gn ≥ Pgn ≥ P gn ∀ n ∈ N , (6c)

P dm ≥ Pdm ≥ P dm ∀ m ∈M, (6d)

where P = [Pd, Pg]
>, losses are assumed as a constant

power demand PL that is calculated through Kron’s Algo-
rithm as is shown in the following subsection .

2.5 Network Losses Model

Network losses in a distribution system are factors that
can be determinant to reach the optimum social welfare.
To get a better solution and given that it is not possible to
solve the system in all possible cases of demand and power
generation (Zhu, 2015), we use an estimation of this power
loss given by the Kron’s formula as follows

PL =

Nk∑

k=1

Nl∑

l=1

pkBklpl +

Nk∑

k=1

Bk0pkd+B00, (7)

where B = [Bll], B0, and B00 are the loss factors, Nl
is the number of generator considered in the estimation
algorithm. In order to calculate an estimation of the
network losses the algorithm in (Mojica-Nava et al., 2017)
is used. This algorithm can calculate loss factors which
give us a closeness estimation of the losses. However, it
is important to highlight that the lines will be considered
but only considering active power, i.e., only the resistive
component of the line is considered. As a result of this
estimation algorithm, it is obtained an average constant
losses power PL to be included in the algorithm as part of
the load to be dispatched.

3. DISTRIBUTED TRANSACTIVE CONTROL
ALGORITHM

In this section, it is presented the main contribution of
this paper. A distributed control algorithm considering
distributed energy integration and flexible power demand
using transactive control based on population games is
developed. Transactive control is responsible for the deter-
mination of how much energy each user will consume and
how much power each generator have to generate to satisfy
the demand while operating the system most economically.

Constraints in (6) could be represented in the form H>P =
PL, where the decision variable are stacked in a vector as
P> = [Pg, Pd]

> = [P1, . . . , PN+M ]>, and H is a vector
indicating the sign depending if the entry is a generator
(+) or a smart load (-). In this work, we use a distributed
replicator dynamics equation (Quijano et al., 2017) to
solve the social welfare problem dynamically associated
with a transactive control problem between microgrids,
distribution system, and consumers. This model is a dy-
namic resource allocation problem among V agents (M
generators and N smart loads).

The feasible set is defined as the set of possible trajectories
of the system restricted by Problem 1 constraints as

∆ = {P ∈ RV : H>P = PL}.
Some assumptions have to be considered to assure optimal
behavior and the existence of solutions of Problem 1.

Assumption 1. It is assumed that the variables start
inside the feasible set ∆, i.e., P (0) ∈ ∆.

Assumption 2. The communication graph connecting
each agent of the system, generators and smart loads, in
the distribution system is connected.

Assumption 3. Every social welfare function SWi(Pi) is
assumed to be differentiable everywhere and with Lipschitz
continuous derivative.

In the next subsection, it is introduced the basic concepts
of population games, which are the cornerstone of the
proposed algorithm.

3.1 Population Games Basics

Population games describe how a mass of agents evolve in
time while they choose a strategy. Those agents follow a
strategy selected from among a finite set of pure strategies.
Due to the size of the population, the analysis focuses on
a utility function associated with the chosen strategy. In
population games, replicator dynamics has been used in
several engineering application considering some benefits
in implementation such as real-time adaptation and ro-
bustness to dynamic environmental uncertainties (Quijano
et al., 2017; Mojica-Nava et al., 2015, 2017).

The dynamic population model describes how a pure
population strategy changes through time. The replicator
dynamics consider a N finite number of generators and
M limited number of consumers in the system, who
adopt a i-th strategy from a finite set of pure strategies.
Accordingly, to achieve an appropriate performance in
steady-state, the demanded power load should be the sum
of all power setpoints (Mojica-Nava et al., 2015). In its
general form, the distributed replicator dynamics equation
can be represented as

Ṗi =

(
1

PL

)
Pi


Fi(Pi)

∑

j∈Ni

Pj −
∑

j∈Ni

PjFj(Pj)


 , (8)

where Fi is the fitness function associated with each
strategy, and Ni is the neighborhood of agent i sharing
information through a communication network. In Quijano
et al. (2017), we can find the simplex invariance for
the distributed replicator dynamics, which means that if
P (0) ∈ ∆, the dynamic variable P (t) evolves inside ∆ and
reaches an equilibrium point as is stated in Theorem 1.

The fundamental concept in the design of the population
games is the appropriate selection of the fitness function
such that the distributed replicator dynamic equation (8)
can be used as a constrained distributed optimization
algorithm (Barreiro-Gomez et al., 2017). In order to obtain
fitness functions to accomplish a stable and convergence
solution, we use Lemma 1, which characterizes an optimal
solution to Problem (1) if the fitness functions fulfill
Assumption 3 (Lamnabhi-Lagarrigue et al., 2017).

Lemma 1. A solution of Problem 1, P ∗ belonging to
the feasible set ∆, is an optimal solution if and only if
∇Ui(P ∗i ) = ∇Uj(P ∗j ) and ∇Ci(P ∗i ) = ∇Cj(P ∗j )for all i, j.
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Proof. Notice that ∇ stands for the Jacobian of
a function. In order to relate the optimality condition
in Lemma 1 with the distributed replicator dynamics
(8), we introduce the Lagrangian function associated to
optimization Problem 1 as

L(P, µ) = SW (P )− µ>
(
H>P −PL

)
, (9)

where µ are the Lagrange multipliers, SW is the social
welfare function, and HP − PL are the constraints in
the system. The optimal solution (P ∗, µ∗), which can
be found by the Kuhn-Tucker first-order conditions for
maximization establishes that P ∗ is a unique solution to
(6) if (P ∗, µ∗) is a saddle point of L(P, µ) (Bertsekas, 1999;
Nedic et al., 2010).

3.2 Distributed Replicator Dynamics and Potential Games

One of the main attributes of potential games is the
existence of a single scalar-valued function, called potential
function, which captures all relevant information about
payoffs of the agents. Assuming there exists a continuously
differentiable potential function h : RV

+ → R, then a
potential game satisfies the following relationship for the
fitness function for each agent

∂h(P )

∂Pi
= Fi(P ) for all i ∈ V. (10)

Equation (10) implies that the population game must
satisfy the externality symmetry defined as

∂Fi
∂Pj

=
∂Fj
∂Pi

for all i, j ∈ V. (11)

In potential games, there is a property that relates Nash
equilibrium to local maximizers of potential function
(Sandholm, 2010), it is stated in the Proposition 1.

Proposition 1. A potential game with the potential func-
tion h satisfies that Nash equilibrium of the potential game
is equal to the solution of the Kuhn-Tucker conditions
of the optimization problem maximize h(P ) subject to
feasible set ∆.

On the other hand, we are interested in the stability of
the game. A significant result in population games about
stability states that a population game satisfying (10)
is a stable game if the potential function h is concave
(Sandholm, 2010).

Having introduced the main concepts of potential popu-
lation games, it is possible to present a definition for the
fitness function relating the population game as a potential
game guaranteeing optimality and stability conditions.
Therefore, the fitness functions are defined as follows

Fi(Pi) = ∇PL = ∇PSW −Hµ, (12)

which introduces an extended system including the La-
grange multipliers dynamics with fitness function defined
as

Fr(µr) = ∇µL = −(H>P − PL), (13)

and dynamic equation

µ̇r = µr


Fr(µi)

∑

j∈Nr

µj −
∑

j∈Nr

µjFj(µj)


 (14)

where r ∈ R = {1, . . . , R} is the number of constraints.
In the next subsection it is presented the optimality and
stability analysis of the extended dynamical system.

3.3 Optimality and Stability Analysis

Consider the extended population game defined by dis-
tributed replicator dynamics (8) and Lagrange multiplier
dynamics (14) with fitness functions (12) and (13), respec-
tively. It is necessary to show that the extended population
game is a potential game to guarantee optimality through
Lemma 1 and Proposition 1. Then, to show the game is
stable, we have to verify that the potential function h is
concave and twice continuously differentiable.

Theorem 1. Let Pi(k), with i ∈ V, be the set points
generated by (8) and (14). Then, Pi(k) with i ∈ V
converges to the optimal solution P ∗i with P ∗i ∈ ∆, that is

lim
k→∞

Pi(k) = P ∗i

Proof. Since we have defined fitness functions as (12) and
(13), by definition it is clear that a potential function for
the population game (8) is h(P, µ) = L(P, µ) = SW (P )−
µ>(HP − PL) and considering the form of the social
welfare function SW defined in (5), it can be shown that
the game satisfies the externality symmetry (11). When
the optimality condition in Lemma 1 is reached then
Fi(Pi) = Fj(Pj) for all i, j and it is noticed that in the
distributed replicator dynamics (8) we have

Fi(Pi)

∑

j∈Ni

Pj −
∑

j∈Ni

PjFj(Pj)




=


Fi(Pi)

∑

j∈Ni

Pj −
∑

j∈Ni

PjFi(Pi)




=


Fi(Pi)(

∑

j∈Ni

Pj −
∑

j∈Ni

Pj)




= 0,

which implies that (8) reaches an equilibrium point inside
the feasible set ∆.

For the stability analysis, we need to verify that the
potential function h(P, µ) is concave. To prove that the
function is concave we check the Hessian matrix of h(P, µ)
is semidefinite negative, i.e, ∇2h(P, µ) 4 0. The Jacobian
is obtained as

∇h(P, µ) =

[
∇Ph
∇µh

]
=

[
∇SW − µ>H
−(Hµ+ PL)

]
.

Hence, the Hessian is obtained as

∇2h(P, µ) =

[
∇2
Ph
∇2
µh

]
=

[
∇2SW

0

]
.

The problem to check the semidefiniteness of the Hessian
of h reduces to check the Hessian of∇2SW . Recall that SW
is as in (5), and deriving twice it is obtained the Hessian
as

∇2SW =

M∑

m=1

βdm −
N∑

n=1

βgn .

As a result to guarantee that ∇2SW ≤ 0, we obtain a
relationship between the coefficients of cost functions of
the generators and utility functions of the smart loads as
follows
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M∑

m=1

βdm ≤
N∑

n=1

βgn (15)

If condition (15) is satisfied, then the algorithm based on
the DRD is stable. In this section, it has been analyzed
the main features of the proposed algorithm in term of
optimality and stability. In the next section, several case
studies are presented to illustrate the effectiveness of the
distributed replicator dynamics to solve the social welfare
problem.

4. SIMULATION RESULTS

In this section, we simulate a microgrid inspired in the
WSCC 9 node model, as is shown in Fig. 1. This model
has three generators (represented by red nodes) and three
loads (represented by blue nodes). They can change their
load depending on the network state. We seek to optimize
the social welfare of the agents in the microgrid, reduc-
ing the cost of generators and maximizing the utility of
consumers. Agents in the microgrid have generation and
consumption of power limited by (2) and (4). The power
limits taken for this test as equal as the cost coefficients
are shown in Table 1.

Table 1. System Parameters in Simulation

Generators

Pgi Pgn βgn ρgn

1 4000 0 0.04 5
2 6000 0 0.03 3
3 7000 0 0.02 1

Consumers

Pdm Pdm βdm ρdm

1 4100 3000 0.03 8
2 5200 4000 0.02 5
3 6300 5000 0.01 4

We use three distributed generators and three distributed
consumers connected indistinctly in a connected graph, in
other words, it is not necessary that the power system has a
particular topology in order to guarantee the convergence
of this algorithm.

Generator 1 Generator 2 Generator 3

0 5 10 15 20 25 30

4,000

5,000

6,000

7,000

Iterations

P
ow

er
[W

]

Fig. 2. Power Delivered by Generators in the Distributed
Transactive Control Algorithm

In order to include the base load inside the transactive
control, we assume that every consumer agent has a base
load, denoted as (Pdm), and has to be supplied regardless
of the price it has, also has a quantity of load with which

you can vary your consumption that is given by Pdm−Pdm .
Fig. 2 shows the convergence of the generators when the
algorithm is executed to the optimum power set level,
taking into account the constraints and load consumed by
the other agents in the system.

Consumer 1 Consumer 2 Consumer 3
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P
ow

er
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]

Fig. 3. Power Delivered by Consumers in the Distributed
Transactive Control Algorithm

In Fig 3 is shown how the consumers adjust their loads
in order to reach the maximum utility in their consume.
As is shown, several consumers prefer to rise their loads
while others reduce their consume. The change of the load
is connected with the valuation that each consumer has
about the power in each time instant. This valuation is
represented in the utility coefficients in (1).

Generator 1 Generator 2 Generator 3

0 5 10 15 20 25 30
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50
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Iterations

P
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Fig. 4. Generators Fitness Function in the Distributed
Transactive Control Algorithm

Furthermore is evidenced in Fig 4 and Fig 5, that genera-
tors converge to the same value of the fitness function as
equal as the consumers. Then, the marginal utilities and
cost are the same for each type of agents, i.e., all generators
converge to a marginal cost, and all consumers converge
to a marginal utility. This marginal utility implies that
generators with lower power cost deliver more power to the
network than generators with higher power cost, making
that the network reaches the optimum state.

5. CONCLUSION AND FUTURE WORK

A distributed replicator dynamics protocol has been pro-
posed to solve a social welfare optimization problem be-
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Fig. 5. Consumers Fitness Function in the Distributed
Transactive Control Algorithm

tween distributed generators and smart loads in a trans-
active control framework. The proposed algorithm consid-
ers utility functions of generator and consumers in order
to reach the optimum social welfare dynamically while
maintaining some system constraints. Distributed trans-
active controllers are capable of handling problems with
distributed information on distribution systems. As future
work, this algorithm could include a dynamical calculation
of losses in the system and an algorithm running in parallel
to estimate the energy valuation of each consumer agent.
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Shiltz, D.J., Cvetković, M., and Annaswamy, A.M. (2016).
An Integrated Dynamic Market Mechanism for Real-
Time Markets and Frequency Regulation. IEEE Trans-
actions on Sustainable Energy, 7(2), 875–885.

Tsitsiklis, J.N. (1984). Problems in decentralized decision
making and computation. Technical report, PhD. dis-
sertation, Dept. Elect. Eng. Comp. Sci., Massachusetts
Institute of Technology, Cambridge.

Yang, B. and Johansson, M. (2010). Distributed optimiza-
tion and games: A tutorial overview. Lecture Notes in
Control and Information Sciences, 406, 109–148.

Zhu, J. (2015). Optimization of power system operation,
volume 47. John Wiley & Sons.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13392


