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Abstract: The maintenance of cooperative behaviors in many complex social systems has
always been a great challenge. It has been suggested that costly punishment and reward can
both facilitate the evolution of cooperation. Recent theoretical work, however, reveals that the
positive role of centralized punishment in promoting cooperation has been challenged when
violators can bribe centralized authorities to escape from sanctions. Naturally, the question
arises as to how cooperation evolves when defectors can bribe rewarders for getting the reward.
Here, we propose an evolutionary game theoretical model in which defectors can choose to bribe
the rewarders probabilistically, and meanwhile rewarders will stochastically receive bribes from
defectors in the public goods game. We theoretically study deterministic dynamics in infinite
populations, and find that cooperators, defectors, and rewarders can coexist and the fraction of
each strategist in the population remains unchanged in the coexistence state. Furthermore, we
numerically investigate stochastic dynamics in finite populations, and reveal that cooperative
behaviors can be maintained since the population can spend most of the time in the region
where cooperators, defectors, and rewarders coexist.

Keywords: Evolutionary game theory, public goods games, corruption, reward, cooperation,
stochastic dynamics

1. INTRODUCTION

The emergence of cooperative behaviors in the multi-
agents system is an attractive research topic (see Nowak
et al. (2004); Nowak (2006); Perc et al. (2017); Govaert
et al. (2017); Kawano et al. (2017); Xiao et al. (2020)). A
simple definition of cooperation is that one individual pays
a cost for another to receive a benefit, which renders that
cooperation is an irrational choice and will be eliminated
by natural selection. However, cooperation is a ubiquitous
phenomenon in nature and human society. In order to solve
this inconsistency, several incentive mechanisms have been
proposed in recent years for explaining the emergence of
public cooperation, such as reward and costly punishment
(see Rand et al. (2009); Gao et al. (2015); Chen et al.
(2015); Liu et al. (2019); Wang et al. (2019)).
Many experimental and theoretical studies have confirmed
that individuals are willing to incur costs to punish unco-
operative individuals (see Fehr and Gächter (2002); De
Quervain et al. (2004); Chen et al. (2014); Wang et al.
(2018)). However, the effect of centralized punishment
in promoting cooperation has been challenged by recent
theoretical research which shows that the existence of
corruption under which free-riders bribe corrupt officials to
avoid punishment has undermined the positive role of pool
punishment in cooperation (see Abdallah et al. (2014)).
In reality, this form of corruption is widespread, and
possibly causes a large decrease in public good provision
⋆ This research was supported by the National Natural Science
Foundation of China (Grants Nos. 61976048 and 61503062)

(see Huang et al. (2018)). Recent behavioral experiments
have further confirmed that empowering leaders reduce
cooperative contributions once they fall into corruption,
which is contrary to findings about typical institutional
punishment (see Muthukrishna et al. (2017)).
Reward is an established alternative to punishment, al-
though there has been relatively little research in the past.
Different from costly punishment, reward, as a positive
incentive, is used to increase contributors’ welfare (see
Sigmund et al. (1993); Szolnoki and Perc (2010); Sasaki
and Unemi (2011); Szolnoki and Perc (2012)). Previous
literatures assume that punishment mechanism is vulner-
able to corruption because its purpose is to reduce the
payoff of free-riders (see Abdallah et al. (2014); Huang
et al. (2018); Liu et al. (2019)). However, there is little
literature to investigate whether the effectiveness of pool
reward in promoting cooperation can be undermined when
defectors have the opportunity to enhance their benefit by
bribing rewarders.
With this in mind, we thus introduce corrupt rewarders
and defectors into the public goods game (PGG) with
pool reward. We assume that defectors bribe rewarders
probabilistically in order to get the bonus, and meanwhile
pool rewarders receive bribes from defectors stochastically.
We theoretically analyze replicator dynamics in infinite
populations, and reveal that cooperators, defectors, and
rewarders can coexist steadily in the population. Further-
more, we provide numerical examples to verify our theoret-
ical results. Finally, we numerically investigate stochastic
dynamics in finite populations with behavioral mutations.
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Since stochasticity is present, there is no fixation and the
population can spend most of the time in the coexistence
states of cooperators, defectors, and rewarders. Our results
clearly suggest that cooperation can indeed be maintained
no matter whether the population size is finite or infinite.

2. MODEL

2.1 PGG

We use the PGG to investigate the evolution of coopera-
tion. From time to time, N players are randomly drawn
from the population to form a group and play a one-shot
PGG. Each player chooses whether to participate in the
PGG as a cooperator (C) or defector (D). Each C pays a
cost c to contribute to the common pool, whereas D refuses
to do so. The accumulated contribution is multiplied by
an enhancement r (with 1 < r < N), and shared evenly
among all participating players of the group.

2.2 Pure pool reward

In the pool rewarding stage, each player can decide
whether or not to contribute an amount GR to the reward
pool before participating in the PGG, and the contributors
are responsible for rewarding players who contribute to
the PGG. Considering that in real society, it could be
inefficient or even impossible to perform both coopera-
tion and reward simultaneously due to the limitation of
resource or time, here we assume that players in the group
can only play one of three roles, pure cooperator (C,
performs cooperating but never rewarding), pure defector
(D, performs neither cooperating nor rewarding), or pure
rewarder (R, performs rewarding but never cooperating).
Then each C player can receive α from each R player of the
group. It’s worth mentioning that some defectors choose to
bribe rewarders probabilistically in order to enhance their
own earnings, and meanwhile some rewarders choose to
accept bribes stochastically in real society. In this way,
we assume that defectors will choose to pay bribes h
(h < α) to each corrupt rewarder with probability p. With
probability 1 − p, defectors do not offer bribes to each
corrupt rewarder. Similarity, rewarders decide to accept
bribes b from each corrupt defector with probability q,
while with 1 − q probability, rewarders are unwilling to
accept bribes. The concrete parameters are shown in Table
1.

Table 1. Notation symbols and meanings

Symbols Meanings
N Group size
r Multiplication factor
c Cost of cooperation
GR Cost of pool reward
α Bonus from pool rewarders
h Bribes provided by the defectors
b Bribes received by the rewards
p Probability that defectors fall into corruption
q Probability that rewarders fall into corruption

Based on these assumptions, the payoffs of a pure coop-
erator, C, a pure defector, D, and a pure rewarder, R,
who play the PGG with NC pure cooperators, NR pure

rewarders, and ND pure defectors (NC+NR+ND = N−1)
in one group can be, respectively, given by

πC =
rc(NC + 1)

N
− c+NRα, (1)

πD =
rcNC

N
− pqNRh+ pqNRα, (2)

πR =
rcNC

N
−GR + pqNDb, (3)

where NRα denotes the expected reward from rewarders
of the group.
We assume that individuals tend to copy others when-
ever these appear to be more successful. Then the social
learning approach is suitable for investigating strategy
evolution as time goes by. In the following sections we
will respectively study evolutionary dynamics in infinite
and finite well-mixed populations.

3. EVOLUTIONARY DYNAMICS IN INFINITE
WELL-MIXED POPULATIONS

For studying the evolutionary dynamics of different strate-
gies in infinite well-mixed populations, we choose to use
replicator equation (see Schuster and Sigmund (1983);
Hofbauer and Sigmund (2003)). We denote by x, y, and
z the frequencies of C,D, and R, respectively. Thus,
x, y, z ≥ 0 and x + y + z = 1. The replicator equation
can be written as 

ẋ = x(PC − P̄ ),

ẏ = y(PD − P̄ ),

ż = z(PR − P̄ ),

(4)

where PC , PD, and PR denote the expected payoffs of C,D,
and R, respectively, and P̄ = xPC + yPD + zPR gives the
average payoff of the entire population. Correspondingly,
we have

Pi =

N−1∑
NC=0

N−NC−1∑
ND=0

(
N − 1

NC

)(
N −NC − 1

ND

)
xNCyND

zNRπi,

where i = C,D, or R.
After taking some calculations, the average payoffs of these
three strategies can be, respectively, written as

PC =
rc

N
(N − 1)x+

rc

N
− c+ (N − 1)zα,

PD =
rc

N
(N − 1)x+ pq(N − 1)zα− pq(N − 1)zh,

PR =
rc

N
(N − 1)x−GR + pq(N − 1)yb,

where (N −1)x denotes the expected numbers of coopera-
tors among the N − 1 co-players, and (N − 1)zα gives the
expected bonus from rewarders.
The population dynamics, including the distribution and
stability of equilibrium points, can be studied analyti-
cally. For convenience, we introduce the abbreviation σ =

c−rc/N
(α−pqα+pqh)(N−1) , ξ = rc/N−c+GR+α(c−rc/N)/(α−pqα+pqh)

pq(N−1)b ,

φ = c−rc/N−GR

(N−1)α , and ς = pq(N−1)b−GR

(α−h+b)(N−1)pq .
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We first investigate the distribution of interior equilibrium
points of replicator equation (4). Solving PC = PD results
in z = σ. Similarly, by solving PC = PR, we have y = ξ.
Thus, there is an interior equilibrium point (1−σ−ξ, ξ, σ)
when 0 < ξ < 1, σ < 1, and 0 < ξ + σ < 1.
Then we investigate the dynamics on each edge of the
simplex S3. On the edge CD we have z = 0, resulting
in ẏ = y(1 − y)(PD − PC) = y(1 − y)(c − rc

N ) > 0. Thus
the direction of the dynamics goes from C to D. On the
edge CR we have y = 0, resulting in ẋ = x(1 − x)(PC −
PR) = x(1−x)[ rcN −c+(N−1)zα+GR]. Solving PR = PC

results in z = φ. Thus there exists a boundary equilibrium
point (1−φ, 0, φ) when 0 < φ < 1 is satisfied. On the edge
DR we have x = 0, and the replicator equation changes to
ż = z(1− z)(PR −PD). Solving PR = PD results in z = ς.
Thus there exists a boundary equilibrium point (0, 1−ς, ς)
when 0 < ς < 1 is satisfied.
Thus, there are at most six equilibria (x, y, z) = (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1 − φ, 0, φ), (0, 1 − ς, ς), and (1 − σ −
ξ, ξ, σ) in the replicator equation (4). Here the first five
are boundary fixed points, while the last one is an interior
fixed point. Furthermore, we study the stability of these
equilibria by judging the sign of the eigenvalues of Jaco-
bian matrix (see Khalil (1996)). Here we set that{

f(x, y) = x[(1− x)(PC − PR)− y(PD − PR)],

g(x, y) = y[(1− y)(PD − PR)− x(PC − PR)].
(5)

Then the Jacobian matrix of the system is

J =

[
∂f(x,y)

∂x
∂f(x,y)

∂y
∂g(x,y)

∂x
∂g(x,y)

∂y

]
, (6)

where

∂f(x, y)

∂x
= (1− x)[rc/N − c+ (N − 1)(1− x− y)α

+GR − pq(N − 1)yb]− y[pq(N − 1)(1− x− y)α

− pq(N − 1)(1− x− y)h+GR − pq(N − 1)yb]

+ x
{
− [rc/N − c+ (N − 1)(1− x− y)α+GR

− pq(N − 1)yb] + (1− x)[−(N − 1)α]− y[−pq(N − 1)α

+ pq(N − 1)h]
}
,

∂f(x, y)

∂y
= x

{
(1− x)[−(N − 1)α− pq(N − 1)b]− [pq(N

− 1)(1− x− y)α− pq(N − 1)(1− x− y)h+GR − pq(N

− 1)yb]− y[−pq(N − 1)α+ pq(N − 1)h− pq(N − 1)b]
}
,

∂g(x, y)

∂x
= y

{
(1− y)[−pq(N − 1)α+ pq(N − 1)h]

− [rc/N − c+ (N − 1)(1− x− y)α+GR − pq(N − 1)yb]

− x[−(N − 1)α]
}
,

∂g(x, y)

∂y
= (1− y)[pq(N − 1)(1− x− y)α− pq(N

− 1)(1− x− y)h+GR − pq(N − 1)yb]− x[rc/N − c

+ (N − 1)(1− x− y)α+GR − pq(N − 1)yb]

+ y
{
− [pq(N − 1)(1− x− y)α− pq(N − 1)(1− x− y)h

+GR − pq(N − 1)yb] + (1− y)[−pq(N − 1)α+ pq(N

− 1)h− pq(N − 1)b]− x[−(N − 1)α− pq(N − 1)b]
}
.

Accordingly, the concrete expressions of the Jacobian
matrix at the above six fixed points can be respectively
written as
(1) For (x, y, z) = (0, 0, 1), the Jacobian matrix is

J =

[
a1 0
0 pq(N − 1)(α− h) +GR

]
,

where a1 = GR + rc
N − c+ (N − 1)α.

(2) For (x, y, z) = (1, 0, 0), the Jacobian matrix is

J =

[
c− rc

N −GR −GR

0 c− rc
N

]
.

(3) For (x, y, z) = (0, 1, 0), the Jacobian matrix is

J =

[
rc
N − c 0
a2 pq(N − 1)b−GR

]
,

where a2 = pq(N − 1)b−GR + c− rc
N .

(4) For (x, y, z) = (0, 1 − ς, ς), then the Jacobian matrix
is

J =

[
a3 0
a4 ς(1− ς)pq(N − 1)(h− b− α)

]
,

where a3 = GR + rc
N − c− pq(N − 1)b+ (N − 1)ς(α+ pqb)

and a4 = ς(1− ς)(N − 1)pq(h−α)− (1− ς)[ rcN − c+ (N −
1)ςα+GR − pq(N − 1)(1− ς)b].
(5) For (x, y, z) = (1 − φ, 0, φ), then the Jacobian matrix
is

J =

[
−φ(1− φ)(N − 1)α a5

0 a6

]
,

where a5 = φ(1 − φ)[−(N − 1)α − pq(N − 1)b] − (1 −
φ)[pq(N−1)φ(α−h)+GR] and a6 = pq(N−1)φ(α−h)+
GR.
(6) For (x, y, z) = (1−σ−ξ, ξ, σ), we define the equilibrium
point as (x∗, y∗, z∗) hereafter, then the Jacobian matrix is

J =

[
a7 a8
a9 a10

]
,

where
a7 = −x∗(1− x∗)(N − 1)α− x∗y∗(N − 1)pq(h− α),

a8 = −x∗(N − 1)[(1− x∗)(pqb+ α)− y∗pq(α+ b− h)],

a9 = y∗(1− y∗)(N − 1)pq(h− α) + x∗y∗(N − 1)α,

a10 = −y∗(N − 1)[(1− y∗)pq(α+ b− h)− x∗(pqb+ α)].

We then distinguish six substantially different parameter
regions based on the above theoretical analysis, and the
corresponding algebra derivation is not presented here
because of the limited space. We accordingly summary the
distribution and stability of equilibria as follows.
(1) In the condition of GR < c − rc/N < (pqh + α −
pqα)[pq(N − 1)b − GR]/[pq(α − h + b)], the replicator
equation (4) has six equilibria which are (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1− φ, 0, φ), (0, 1− ς, ς), and (1− σ − ξ, ξ, σ), re-
spectively. According to the sign of the largest eigenvalues,
the first five are unstable, and the last one is a stable fixed
point.
(2) In the condition of c − rc/N < GR < (pqh + α −
pqα)[pq(N − 1)b − GR]/[pq(α − h + b)] or c − rc/N <
(pqh + α − pqα)[pq(N − 1)b − GR]/[pq(α − h + b)] <
GR, the replicator equation (4) has five equilibria which
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Fig. 1. The system converges to the mixture equilibrium of
the three strategists. The triangle represents the state
space, ∆ = {(x, y, z) : x, y, z ≥ 0 and x+ y + z = 1}.
Filled circles represent stable fixed points whereas
open circles represent unstable fixed points. Panel (a)
depicts that a stable interior equilibrium appears in
the simplex S3, which means that these three strate-
gists coexist in the population. Panel (b) depicts time
series of the frequencies of three strategies C (pure
cooperators, black solid line), R (pure pool rewarders,
red dash line), and D (pure defectors, blue dot line).
Initial conditions are: (x, y, z) = (1/3, 1/3, 1/3). Pa-
rameters: N = 5, r = 3, c = 1, GR = 0.3, α = 0.5,
h = 0.4, b = 0.4, q = 1, and p = 1.

are (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1 − ς, ς), and (1 − σ −
ξ, ξ, σ), respectively. According to the sign of the largest
eigenvalues, the first four are unstable, and the last one is
a stable fixed point.
(3) In the condition of GR < (pqh+α−pqα)[pq(N −1)b−
GR]/[pq(α − h + b)] < c − rc/N < (N − 1)α + GR or
0 < (pqh + α − pqα)[pq(N − 1)b − GR]/[pq(α − h + b)] <
GR < c− rc/N < (N − 1)α+GR, the replicator equation
(4) has five equilibria which are (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1−φ, 0, φ), and (0, 1−ς, ς), respectively. According to the
sign of the largest eigenvalues, the first four are unstable,
and the last one is a stable fixed point.
(4) In the condition of 0 < (pqh+ α− pqα)[pq(N − 1)b−
GR]/[pq(α − h + b)] < c − rc/N < GR, the replicator
equation (4) has four equilibria which are (1, 0, 0), (0, 1, 0),
(0, 0, 1), and (0, 1−ς, ς), respectively. According to the sign
of the largest eigenvalues, the first three are unstable, and
the last one is a stable fixed point.
(5) In the condition of (pqh + α − pqα)[pq(N − 1)b −
GR]/[pq(α−h+b)] < 0 < GR < c−rc/N < (N−1)α+GR,
the replicator equation (4) has four equilibria which are
(1, 0, 0), (0, 1, 0), (0, 0, 1), and (1 − φ, 0, φ), respectively.
According to the sign of the largest eigenvalues, the
equilibria (1, 0, 0), (0, 0, 1), and (1− φ, 0, φ) are unstable,
while (0, 1, 0) is stable.
(6) In the condition of (pqh + α − pqα)[pq(N − 1)b −
GR]/[pq(α − h + b)] < 0 < c − rc/N < GR, the
replicator equation (4) has three equilibria which are
(1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. According to
the sign of the largest eigenvalues, the equilibria (1, 0, 0)
and (0, 0, 1) are unstable, while (0, 1, 0) is stable.
In the following, we provide three representative numer-
ical examples to confirm the above theoretical analysis.
The evolutionary dynamics of these three strategies are
depicted in the state space S3 = {(x, y, z) : x, y, z ≥ 0, x+
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Fig. 2. The system converges to mixture equilibrium of
defectors and rewarders. Panel (a) depicts that all
the interior curves of simplex S3 coverage to the fixed
point on DR edge, which means that defectors and
pure pool rewarders can coexist steadily in the popu-
lation. Panel (b) depicts time series of the frequencies
of three strategies C,D, and R. Initial conditions are:
(x, y, z) = (1/3, 1/3, 1/3). Parameters: N = 5, r = 3,
c = 1, GR = 0.5, α = 0.5, h = 0.1, b = 0.8, q = 1, and
p = 0.8.

y + z = 1}. Accordingly, the three homogeneous states C
(x = 1), D (y = 1), and R (z = 1) correspond to three
corners of the simplex S3.

3.1 The mixture equilibrium of the three strategies

We first present the evolutionary dynamics of the system
for GR < c − rc/N < (pqh + α − pqα)[pq(N − 1)b −
GR]/(pqb+pqα−pqh). In this situation, the system has all
six equilibrium points (see Fig.1(a)). The interior equilib-
rium point is stable, and all interior orbits converge to this
point, irrespective of the initial conditions. Besides, there
is an unstable boundary equilibrium on the edge CR and
DR, respectively. A representative time evolution of the
frequencies of these three strategies is plotted in Fig.1(b).
It suggests that all mentioned three strategists can coexist
when the system reaches the steady state. Furthermore, for
the given model parameters, the frequency of cooperators
is the highest, while the frequencies of rewarders and
defectors are both lower in the steady state.

3.2 The mixture equilibrium of defection and pure reward

When 0 < (pqh+α−pqα)[pq(N − 1)b−GR]/(pqb+pqα−
pqh) < c − rc/N < GR, there is no interior equilibrium
point in the state space. As shown in Fig.2(a), there are
four equilibrium points in the state space. All interior
curves converge to the boundary equilibrium point on
DR edge, irrespective of the initial conditions. This result
reveals that the system will remain in a mixed state of
pure rewarders and defectors where cooperation is extinct.
In Fig.2(b), we provide a specific example of how the
frequency of three strategies varies over time when the
initial fractions of these three strategies are the same.
The result shows that rewarders and defectors can coexist
steadily, while the frequency of cooperators is reduced to
zero.

3.3 The global attractor D

Finally, we present a numerical example to confirm that
the equation system can converge to full defection state.
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Fig. 3. The system converges to a homogeneous state in
which all play D. Panel (a) depicts that the interior
curves converge to the vertex D. Panel (b) depicts
time series of the frequencies of C,D, and R. Initial
conditions are: (x, y, z) = (1/3, 1/3, 1/3). Parameters:
N = 5, r = 3, c = 1, GR = 0.8, α = 0.8, h = 0.3, b =
0.3, q = 0.5, and p = 1.
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− 1− 1
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Fig. 4. An example of a local phase space and possible tran-
sitions in one-step process. The vector in the central
circle represents the configuration of the population
at a given time t. The vectors of the surrounding six
circles represent the adjacent six configurations that
may be reached at the next time step, respectively.
The sum of these vectors is the so-called gradient
of selection of configuration i (see Vasconcelos et al.
(2013)).

Supposing (pqh+α−pqα)[pq(N −1)b−GR]/(pqb+pqα−
pqh) < 0 < c − rc/N < GR, then the interior fixed
point and the boundary equilibrium point on DR and CR
edge cannot appear. As shown in Fig.3(a), there are three
fixed points in the simplex S3. All interior orbits converge
to the vertex D, which is a global attractor. Besides, no
boundary equilibrium point can be detected on the three
edges. Figure 3(b) shows that the frequency of D reaches
one with time.

4. EVOLUTIONARY DYNAMICS IN FINITE
WELL-MIXED POPULATIONS

However, the real population of human society is usually
finite and rather small, which is contrary to the hypothesis
underlying the dynamics portrayed in Sec. 3. In finite
populations, stochastic effects may play an important role
in evolutionary dynamics. To characterize the stochastic
effects, we assume that there are iC Cs, iR Rs, and Z −
iC − iR in a finite well-mixed population of Z individuals.

N players are randomly sampled from the population and
assembled into a group to participant in the PGG. It is
worth noting that sampling of individuals is no longer
binomial, but obeys a hypergeometric distribution. Thus
the average payoffs of C, D, and R in a configuration
i = {iR, iC} using a multivariate hypergeometric sampling
can be, respectively, written as

fC(iR, iC) =

N−1∑
NC=0

N−NC−1∑
NR=0

(
Z − 1

N − 1

)−1(
iC − 1

NC

)
(
iR
NR

)(
Z − iC − iR

N −NC −NR − 1

)
πC ,

fD(iR, iC) =

N−1∑
NC=0

N−NC−1∑
NR=0

(
Z − 1

N − 1

)−1(
iC
NC

)
(
iR
NR

)(
Z − iC − iR − 1

N −NC −NR − 1

)
πD,

fR(iR, iC) =

N−1∑
NC=0

N−NC−1∑
NR=0

(
Z − 1

N − 1

)−1(
iC
NC

)
(
iR − 1

NR

)(
Z − iC − iR

N −NC −NR − 1

)
πR,

where πC , πD, and πR, respectively, denote payoff values
of C,D, and R, which are defined by Eqs.(1-3).
We adopt a stochastic birth-death process combined with
the pairwise comparison rule to describe how the number
of individuals adopting a given strategy evolves in time
for finite populations (see Vasconcelos et al. (2013); Hilbe
et al. (2018)). Concretely, we assume that time evolves
in discrete steps. At every time step, a randomly selected
player L is updated. With probability µ, L undergoes a
mutation, and he/she adopts a strategy randomly from
the remaining available strategies space. While with prob-
ability 1 − µ, another randomly selected player U acts as
a role model for player L. The learner compares his/her
payoff (fL) with that of the role model (fU ), and individual
L decides to adopt U ’s strategy with a probability

1

1 + eβ(fL−fU )
, (7)

where β ≥ 0 is the intensity of selection. In the limit case
β → ∞, the more successful strategy of the role model
always succeeds in enforcing his/her strategy to the learner
L, but never otherwise. β → 0 indicates the so-called weak
selection limit where strategy adoption becomes random
independently of the payoff differences. In between these
extremes, for a finite value of β, it is likely that a better
performing strategy is imitated.
Therefore, the probability to choose an individual out
of iSk

players with strategy Sk and transform it into a
different strategy Sl, under the pairwise comparison rule
with an arbitrary mutation rate µ, is given by

TSk→Sl
= (1− µ)

[ iSk

Z

iSl

Z − 1
(1 + eβ(fSk

−fSl
))−1

]
+ µ

iSk

(d− 1)Z
, (8)

where Sk, Sl = C,D, or R, and d represents the number of
alternative strategies in the strategy space (here d = 3).
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Fig. 5. Dynamics of the system with pure cooperators (C), pure defectors (D), and pure rewarders (R) in the simplex
S3. Panels (a-c) show the stationary distribution and gradient of selection when model parameters are respectively
coincide with those in infinite populations (Fig.1, Fig.2, and Fig.3, respectively). Each panel contains all possible
configurations of the finite population. Each configuration is represented by a circular dot. Red areas indicate those
configurations in which the population spends more time, thus providing a contour representation of the stationary
distribution, whose magnitude is shown using the red-green-blue scale indicated. The arrows show the so-called
gradient of selection, which provides the most likely direction of evolution from a given configuration. Panel (a)
shows that the population spends most of the time in configuration where three strategists coexist. Panel (b)
shows that the population spends most of the time in configuration where defectors and pure rewarders coexist.
Panel (c) shows that the population spends most of the time in the region of full defection. Parameter values are
: Z = 100, N = 5, r = 3, c = 1, µ = 1/Z, β = 2, GR = 0.3, α = 0.5, h = 0.4, b = 0.4, q = 1, and p = 1 in (a);
Z = 100, N = 5, r = 3, c = 1, µ = 1/Z, β = 2, GR = 0.5, α = 0.5, h = 0.1, b = 0.8, q = 1, and p = 0.8 in (b);
Z = 100, N = 5, r = 3, c = 1, µ = 1/Z, β = 2, GR = 0.8, α = 0.8, h = 0.3, b = 0.3, q = 0.5, and p = 1 in (c).

The evolutionary dynamics among C,D, and R can
be described by embedded Markov process over a two-
dimensional space. The study of Markov process consists
in determining its probability density function (PDF) evo-
lution, pi(t), which provides information on the prevalence
of each configuration at time t. Since i(t) has the Markov
property, its transition probability evolves in time accord-
ing to the discrete time Master Equation (see Van Kampen
(1992)). Here, the gain-loss equation allow us to compute
pi(t) as

pi(t+ τ)− pi(t) =
∑

i′
{Tii′pi′ (t)− Ti′ ipi(t)}, (9)

where Tii′ means the transition probability from i
′

to adja-
cent configuration i. Fig.4 illustrates a local representation
of the phase space and possible transitions for a two-
dimensional one-step process. Similarly, the transitions
from neighboring state i into state i

′
are represented by

Ti′ i. The transition matrix Λ = [Tij]
T collects the different

(transition) probabilities for the population to move from
state j to the other state i. Following previous works (see
Imhof et al. (2005); Vasconcelos et al. (2013, 2014)), the
so-called stationary distribution is obtained by making the
left-hand side of Eq.(9) be equal to zero, which transforms
Eq.(9) into an eigenvector search problem, namely, the
eigenvector associated with the eigenvalue 1 of the transi-
tion matrix Λ.
In addition to the stationary distribution, another im-
portant quantity for studying the evolutionary dynamics
in finite populations is the gradient of selection. We can
compute the gradient of selection which describes the most
likely direction of evolution of the system from each con-
figuration i, by resorting to calculating the first coefficient

of the Kramers-Moyal expansion of the Master Equation
(Details can be found in Helbing (1993); Vasconcelos et al.
(2013)). Then the drift vector describing the deterministic
part of the dynamics is given by

∇i = (TR+
i − TR−

i )uR + (TC+
i − TC−

i )uC , (10)
where uR and uC are two-dimensional unit column vectors
with direction of ∂i

∂iR
and ∂i

∂iC
, respectively. Besides, TR±

i
(TC±

i ) represents the probability to increase (decrease) by
one the number of individuals adopting strategy R(C),
which can be computed as

TR±
i = Ti{iR±1,iC∓1,iD} + Ti{iR±1,iC ,iD∓1}, (11)

TC±
i = Ti{iR∓1,iC±1,iD} + Ti{iR,iC±1,iD∓1}, (12)

where the terms on the right side can be obtained by
equation (8). The gradient of selection can be obtained
by solving equation (10). The results are shown by the
arrows in Fig.5.
Since the stochastic effects can drive the system from the
vicinity of one configuration of the state space to the other,
which makes an analytical description of the dynamics
difficult. Here we provide a numerical investigation to
explore the dynamics of the population by calculating the
stationary distribution and gradient of selection. In partic-
ular, in order to compare with the evolutionary dynamics
in infinite populations, we provide three representative nu-
merical examples, where model parameters are consistent
with those in Fig.1, Fig.2, and Fig.3, respectively.
As shown in Fig.5(a), defectors can rapidly outcompete
cooperators (see arrows), and the population spends most
of the time in the interior configurations where three
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strategists coexist. This means that cooperation can sur-
vive in the population even if the reward system is in-
volved with corruption. Once when we modify the model
parameters, the situation is quite different. As shown in
Fig.5(b), the population does not spend most of the time
in the interior configurations, but instead remains most
of the time in the configurations nearby the middle part
on DR edge. Finally, for the model parameters of Fig.3,
we find that defectors rapidly outcompete cooperators and
rewarders, and the population spends most of the time in
configurations of pure defectors(see Fig.5(c)).

5. CONCLUSIONS

In summary, we have introduced probabilistic corrupt
defectors and rewarders into the PGG and respectively
investigated their consequence on the evolution of co-
operation and reward in infinite and finite well-mixed
populations. We have firstly shown that cooperation can
be maintained in an infinite well-mixed population. Both
theoretical and numerical results confirm that cooperators,
defectors, and rewarders can coexist stably in the pop-
ulation. Furthermore, when the population size is finite,
stochastic dynamics show that the population can spend
most of the time in the interior region where cooperators
can survive. All these results confirm that cooperative
behaviors can be maintained even the reward system may
suffer from corruption. Besides, it is worth pointing out
that in our model, defection will be the most advantageous
strategy when corruption is impossible. In this way, the
introduction of probabilistic corruption between defectors
and rewarders can stabilize cooperation.
Several previous studies have explored the evolution of
cooperation and reward in the PGG (see Szolnoki and
Perc (2010); Sasaki and Unemi (2011); Szolnoki and Perc
(2012)). We have made three key assumptions that differ-
entiate the current work from previous studies. First, we
propose a different form of pool reward, in which rewarders
need to contribute a constant cost to the reward pool,
just like pool punishment (see Sigmund et al. (2010)).
Second, we consider that a single individual can afford
to perform either cooperation or reward, but not both.
Third, we introduce corruption into the PGG, in which
defectors can choose to bribe the rewarders probabilisti-
cally, and meanwhile rewarders will stochastically receive
bribes from defectors. All these differences in model as-
sumptions lead to interesting evolutionary outcome, that
is, the coexistence of cooperation, defection, and reward
can be globally stable.

REFERENCES

Abdallah, S., Sayed, R., Rahwan, I., LeVeck, B. L., Ce-
brian, M., Rutherford, A., and Fowler, J. H. (2014).
Corruption drives the emergence of civil society. J. R.
Soc. Interface, 11 : 20131044.

Chen, X., Szolnoki, A., and Perc, M. (2014). Probabilistic
sharing solves the problem of costly punishment. New
J. Phys., 16 : 083016.

Chen, X., Szolnoki, A., and Perc, M. (2015). Competition
and cooperation among different punishing strategies in
the spatial public goods game. Phys. Rev. E, 92 : 012819.

De Quervain, D. J., Fischbacher, U., Treyer, V., and
Schellhammer, M. (2004). The neural basis of altruistic
punishment. Science, 305 : 1254–1258.

Fehr, E. and Gächter, S. (2002). Altruistic punishment in
humans. Nature, 415 : 137–140.

Gao, L., Wang, Z., Pansini, R., Li, Y. T., and Wang, R.
W. (2015). Collective punishment is more effective than
collective reward for promoting cooperation. Sci. Rep.,
5 : 17752.

Govaert, A., Ramazi, P., and Cao, M. (2017). Convergence
of imitation dynamics for public goods games on net-
works. 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pages 4982–4987.

Helbing, D. (1993). Boltzmann-like and Boltzmann-
Fokker-Planck equations as a foundation of behavioral
models. Physica A, 196 : 546–573.

Hilbe, C., Šimsa, Š., Chatterjee, K., and Nowak, M. A.
(2018). Evolution of cooperation in stochastic games.
Nature, 559 : 246-249.

Hofbauer, J. and Sigmund, K. (2003). Evolutionary game
dynamics. Bull. Am. Math. Soc., 40 : 479–519.

Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., and
Sigmund, K. (2007). Via freedom to coercion: the
emergence of costly punishment. Science, 316 : 1905–
1907.

Huang, F. and Chen, X., and Wang, L. (2018). Evolution
of cooperation in a hierarchical society with corruption
control. J. Theor. Biol., 449 : 60–72.

Imhof, L. A., Fudenberg, D., and Nowak, M. A. (2005).
Evolutionary cycles of cooperation and defection. Proc.
Natl. Acad. Sci. USA., 102 : 10797–10800.

Khalil, H. (1996). Nonlinear Systems. Prentice-Hall NJ.
Kawano, Y., Gong, L., Anderson, B. D., and Cao, M.

(2017). Evolutionary dynamics of two communities
under environmental feedback. IEEE Contr. Syst. Lett.,
3 : 254–259.

Liu, L., Chen, X., and Szolnoki, A. (2019). Evolutionary
dynamics of cooperation in a population with proba-
bilistic corrupt enforcers and violators. Math. Models
Methods Appl. Sci., 29 : 2127–2149.

Liu, L., Chen, X., and Perc, M. (2019). Evolutionary
dynamics of cooperation in the public goods game with
pool exclusion strategies. Nonlinear Dynam., 97 : 749–
766.

Muthukrishna, M., Francois, P., Pourahmadi, S., and
Henrich, J. (2017). Corrupting cooperation and how
anti-corruption strategies may backfire. Nat. Hum.
Behav., 1 : 0138.

Nowak, M. A., Sasaki, A., Taylor, C., and Fudenberg,
D. (2004). Emergence of cooperation and evolutionary
stability in finite populations. Nature, 428 : 646–650.

Nowak, M. A. (2006). Five rules for the evolution of
cooperation. Science, 314 : 1560–1563.

Perc, M., Jordan, J. J., Rand, D. G., Wang, Z., Boccaletti,
S., and Szolnoki, A. (2017). Statistical physics of human
cooperation. Phys. Rep., 687 : 1–51.

Rand, D. G., Dreber, A.,Ellingsen, T., Fudenberg, D., and
Nowak, M. A. (2007). Positive interactions promote
public cooperation. Science, 325 : 1272–1275.

Schuster, P. and Sigmund, K. (1983). Replicator dynamics.
J. Theor. Biol., 100 : 533–538.

Sigmund, K. and Hauert, C. and Nowak, M. A. (2001).
Reward and punishment. Proc. Natl. Acad. Sci. USA.,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17185



98 : 10757–10762.
Szolnoki, A. and Perc, M. (2010). Reward and cooperation

in the spatial public goods game. EPL, 92 : 38003.
Sigmund, K., De Silva, H., Traulsen, A., and Hauert,

C. (2010). Social learning promotes institutions for
governing the commons. Nature, 466 : 861–863.

Sasaki, T. and Unemi, T. (2011). Replicator dynamics in
public goods games with reward funds. J. Theor. Biol.,
287 : 109–114.

Szolnoki, A. and Perc, M. (2012). Evolutionary advantages
of adaptive rewarding. New J. Phys., 14 : 093016.

Van Kampen, N.G. (1992). Stochastic Processes in Physics
and Chemistry. Elsevier.

Vasconcelos, V. V., Santos, F. C., and Pacheco, J. M.
(2013). A bottom-up institutional approach to coopera-
tive governance of risky commons. Nat. Clim. Change,

3 : 797–801.
Vasconcelos, V. V., Santos, F. C., Pacheco, J. M., and

Levin, S. A. (2014). Climate policies under wealth
inequality. Proc. Natl. Acad. Sci. USA., 111 : 2212–
2216.

Wang, Q., He, N., and Chen, X. (2018). Replicator
dynamics for public goods game with resource allocation
in large populations. Appl. Math. Comput., 328 : 162-
170.

Wang, S., Chen, X., and Szolnoki, A. (2019). Exploring
optimal institutional incentives for public cooperation.
Commun. Nonlinear Sci. Numer. Simul., 79 : 104914.

Xiao, Z., Chen, X., and Szolnoki, A. (2020). Leaving bads
provides better outcome than approaching goods in a
social dilemma. New J. Phys., 22 : 023012.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17186


