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Abstract: In this paper a combination of distributed parameter systems and lumped parameter
systems is investigated, also known as interconnected system. In particular, the heat distribution
and the influence of single chips on a base plate is of interest, here in context of insulated-gate
bipolar transistors. Only temperature measurements on the base plate are available. A method
is presented with which the temperature inside the chip can be estimated. A combination of
model reduction and unknown input observer is utilized.
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1. INTRODUCTION

In recent years, the complexity of the systems to be
controlled has increased continuously and interconnected
systems are one example. In context of this work intercon-
nected systems refers to the connection between lumped
parameter system (LPS) and distributed parameter sys-
tem (DPS) in form of partial differential equations (PDEs).
The reason for the shown methods is the heat distribution
in insulated-gate bipolar transistors (IGBTs). Here, the
junction temperature inside the chips is estimated with the
help of measurements on the base plate. The base plate is
modeled as DPS and the different stack of chips as LPS.
An unknown input observer is necessary, as the junction
temperatures of the IGBTs aren’t measurable due to a lack
of measurements inside the chips.

Some recent investigations into control of interconnected
PDE-ODE systems where done by Susto and Krstic (2010)
with focus on cascaded systems controlled with backstep-
ping. The PDE is considered either as dynamic of the
actuator or sensor. The work of Yilmaz and Basturk (2019)
considers more an output feedback control with periodic
disturbances. In this special case the PDE is the actuator
dynamic. The main goal is in both publications to stabilize
or control the LPS. Both approaches handle the PDE in
an infinite dimensional way and do not consider model re-
duction. For the observer design presented by Zobiri et al.
(2017) an infinite dimensional approach and information
about the input data are considered.

Finite element methods (FEM) are used to solve PDEs
for fluid simulation or structural analysis Reddy (2004).
However, these solutions are high dimensional and not
directly applicable for practical controller and observer de-
sign, real time simulation or online optimization. Different
methods for controller and observer design of PDEs have
been introduced. One approach is the direct use of the
PDE for the controller design as presented by Altmüller
(2014). Therefore the infinite dimensional system is used

to build a model predictive control (MPC) directly or for a
state feedback control (see Deutscher (2012)). Model order
reduction (MOR) is another approach before designing
the controller considered by Hakenberg (2015). Here the
reduced model is used for mathematical system analysis as
well as for the final design of the controller. The advantage
of using a reduced model is the lower dimensionality. In
the presented work MOR is considered before the actual
controller and observer design.

One commonly used model reduction technique is the
proper orthogonal decomposition (POD), also known as
Karhunen-Loeve decomposition or principal component
analysis. This method is based on finding a reduced
set of basis functions for the spacial domain (see Liang
et al. (2002)). The spacial part is split up from the
temporal part to generate a reduced system of ODEs. One
practical adaption is the method of snapshots. The system
dynamics are reflected by the used data sets at certain time
instances. The accuracy of the results are system and data
dependent. The POD approach is used in combination of
MPC based controller design, for example by Hakenberg
and Abel (2013).

The proposed interconnected reduced system has disad-
vantages for observer design due to missing detectable in-
put in the measurements. The so-called observer matching
condition is not fulfilled, if the unknown input is in the
LPS and the measurement is in the DPS. Typically the
observer design for unknown input observer rely on this
condition introduced in Guan and Saif (1991). One method
to overcome this was presented by Floquet et al. (2007)
and by Zhu (2012) and is used in the presented work.

This paper presents a combination of model reduction and
observer design in context of temperature estimation. The
method for temperature estimation is based on measure-
ments on the DPS and combines unknown input data at
the LPS part. Finally the junction temperature in IGBTs
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can be estimated without the visibility of the unknown
input in the measurements.

1.1 Outline

The following section explains the POD based model re-
duction. This is the main part for modelling the PDE of the
interconnected system. Some special acknowledgement due
to the boundary input handling is done. Also the main idea
of lumped modelling is introduced in this section. Section
3 introduces the coupling between the lumped model and
the reduced PDE model. A workflow for temperature esti-
mation in interconnected systems is presented, especially
with unknown input data. Finally some simulation results
are provided for the model reduction as well as for the
designed observer.

2. MODEL ORDER REDUCTION

In this section all preliminaries for POD-Galerkin based
model reduction are introduced. The following model
reduction is considered for a heat transfer problem. The
temperature ϑ in a solid material is given by

∂tϑ(x, t) =∇ · (α∇ϑ(x, t)) in Q = Ω× (0, T )
(1a)

ϑ(xD, t) = 0 on ΣD = ΓD × (0, T )
(1b)

∂xϑ(xN , t) = v(t) on ΣN = ΓN × (0, T )
(1c)

ϑ(x, 0) = ϑ0(x) in Ω (1d)

with the gradient ∇, the divergence ∇ · (·), the thermal
diffusivity α, the homogenous Dirichlet boundary u and
the Neumann boundary v(t). The temperature is initial-
ized with ϑ0(x). This model holds for the spacial domain Ω
and the time domain (0, T ). Additionally we assume that
the boundary Γ = ΓD∪ΓN of Ω is piecewise differentiable.

In general, the analytical solution for a PDE isn’t available,
so we want to find the so called weak solution. The first
step is to multiply (1a) with the test function φ ∈ H1

0 (Ω)
and then integrate over Ω. With partial integration on the
right sided term, the weak formulation of (1) simplifies to∫

Ω

∂ϑ

∂t
· φ(x) dx =−

∫
Ω

α∇ϑ(x, t) ·∇φ(x) dx

−
∫

Γ

αv(t) · φ(x) dS . (2)

The test function φ = 0 on ΓD due to the homogenous
Dirichlet boundary. A function ϑ is called weak solution
of (1), if it satisfy (2) for all test functions and the initial
condition (1d). Next, we approximate ϑ by

ϑ̃(x, t) ≈
N∑
i=1

ai(t)ψi(x) (3)

with the free selectable trial function ψi from H1
0 (Ω).

Consider φ(x) = ψ(x) and (3) the approximation is called
Galerkin method. The time mode ai(t) is later used for the
reduced state space representation. We roughly introduced
the main idea and a detailed mathematical discussion of
Galerkin methods can be found in Fletcher (1984).

The previous steps help us to separate the PDE into a
temporal and a spacial part. Later we use this separation
for the model reduction.

2.1 Proper Orthogonal Decomposition

The POD method is well known in structural mechanics.
In contrast to other model reduction methods, POD re-
quires the solution of the differential equation. This can be
realized with measurements as well as with high-resolution
simulations. In this section the method of snapshots is
considered to find the orthogonal set of basis functions ψi
based on a high-resolution simulation. We define ϑ(x, t) =
ϑj(x) as solution of the PDE in the domain Ω × (0, T )
at some discrete time steps j∆t. The goal is to minimize
the error between ϑ and the approximated model. The
minimization problem can be simplified to

min
ψi(x)

1

n

n∑
j=1

∥∥ϑj(x)− ϑ?j (x)
∥∥2

L2(Ω)
(4)

s.t.(ψi(x), ψi(x))L2(Ω) = δij

ϑ?j (x) =

NPOD∑
i=1

〈ϑj(x), ψi(x)〉L2(Ω)ψi(x)

for the inner product 〈f, g〉L2(Ω) =
∫
L2(Ω)

f · g dx and

for n snapshots. For solving (4) the correlation matrix
Kij = 1

N (ϑj(x), ϑi(x))L2(Ω) is build from the set of

solutions of the PDE. Then the corresponding eigenvalues
λ1 ≥ ... ≥ λl > 0 and the eigenvectors v1, ..., vl of Kij are
computed. Finally the reduced basis functions are

ψi(x) =
1√
λi

n∑
j=1

(vi)jϑj(x).

Following the previous POD based model reduction steps
combining (2) with (3) the unknown time modes ai(t)
build a state space models with NPOD equations. It follows

ȧ(t) =− α 〈∇ψ(x),∇ψ(x)〉L2(Ω) · a(t)

− α〈v(t), τΓ(ψ(x))〉L2(Γ) (5)

with the continuous trace operator τΓ : H1(Ω) → L2(Γ)
providing the boundary of the domain Ω. A detailed
mathematical description of POD and the method of
snapshots can be found in Kunisch and Volkwein (2001).

It should be mentioned, that homogeneous boundary con-
ditions are included in the basis functions due to the
method of snapshots. If we have decomposed a solution
with homogeneous boundary conditions, each resulting
POD basis meets these boundary conditions either of the
Dirichlet or Neumann type.

2.2 Lumped thermal models

In this work, we describe the lumped model as a equivalent
current circuits description, which is a well known model-
ing approach for thermal systems. Therefore the tempera-
ture is mapped onto voltage, heat flux onto current as well
as thermal resistors and capacitors onto equivalent electric
parts. The lumped model is a rough discretization for the
PDE introduced in (1a). We get the thermal resistance

R =
l

κ ·A
with the constant thermal conductivity κ, the length l in
heat transfer direction and the area A where the heat is
transferred through. For the thermal capacitance of a fixed
material we obtain
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C = cp · ρ · l ·A
where cp is the specific heat capacitance, ρ is the density
and V = l · A is the volume of the material. Finally a
differential equation for the temperature behaviour be-
tween two solid materials is set up. We use this simplified
model for 1D heat transfer in a homogenous material, if the
distribution inside the material is not necessarily known.
Combining the thermal resistance and capacity, the time
evolution of the considered temperature ϑC is

ϑ̇C = −
N∑
i=1

1

RiC
ϑC +

N∑
i=1

1

RiC
ϑi + f(t)

including all N neighbours with the connecting thermal
resistors Ri. Additionally f(t) represents possible other
heat source inputs. A deeper description and mathematical
derivation of lumped thermal modelling can be found for
example in Wang (2014).

3. INTERCONNECTED SYSTEM CONTROL

In this section, the connection between the reduced PDE
system and the LPS is discussed. This results from the
problem of estimating the temperatures within an IGBT.
The DPS represents the base plate and the LPS the chips
of the IGBT and can be selected problem specific. An two
dimensional system for the DPS and a first order LPS
are used for simplicity reasons. The goal of this section is
to get a reduced order model that enhances the following
observer design regarding the amount of necessary calcu-
lations. A POD based approach is considered for the DPS
part.

Fig. 1 shows an example of a possible interconnection
between the DPS and a LPS. A dimensionless square with
l = 1 is assumed for the DPS. A constant and known
Dirichlet boundary is assumed for ΓD with a constant
temperature. The coupling between the DPS and LPS is
at ΓN with a width of 0.5. The remaining boundaries are
assumed to be perfectly isolated, the heat flux is zero for
ΓN0. The input temperature Tin isn’t measurable due to
the constructional restrictions of IGBT chips.

Tin

R1 R2

C
ϑC

Ω ΓD

q(t)

ΓN

l

l

ΓN0

Fig. 1. Coupled DPS-LPS with temperature input at the
RC model

For the controller design as well as for the observer design
we combine both systems into one state space model.
Therefore, the Neumann boundary at the DPS is used as
connection, which is proportional to the heat flux density.
The relation to the temperature gradient is

q(t) = −κ∇ϑ(x, t) (6)

with the thermal conductivity κ. This is applicable to
the reduced model with Neumann boundary. So the state
space model (5) becomes

ȧ(t) =− α 〈∇ψ(x),∇ψ(x)〉L2(Ω) · a(t)

+
α

κ
〈q(t), τΓ(ψ(x))〉L2(Γ) (7)

for the 1D rod shown in Fig. 1. On the other side the
presented state space model for the LPS is obviously

ϑ̇C = −
(

1

R1C
+

1

R2C

)
ϑC +

1

R1C
Tin +

1

R2C
ϑ(0, t)

(8)

with the thermal resistances R1 and R2 and the thermal
capacity C. To connect both models, we reformulate q(t)
with respect to ϑC as well as ϑ(0, t) with respect to the
reduced model. The heat flux is simply

q(t) =
ϑC − ϑ(0, t)

R2
(9)

and adding the approximation for the DPS

q(t) =
ϑC −

∑NPOD

i=1 ai(t)ψi(0)

R2
(10)

follows. Similar steps are used for the other coupling, so
that (8) becomes

ϑ̇C =−
(

1

R1C
+

1

R2C

)
ϑC

+
1

R1C
Tin +

1

R2C

NPOD∑
i=1

ai(t)ψi(0). (11)

Here the boundary temperature ϑ(0, t) is replaced by the

approximation
∑NPOD

i=1 ai(t)ψi(0). Combining both models
a state space model can be defined. The resulting state
space model with the state vector

x = [a1, ..., aNPOD
, ϑC ]

T
(12)

and input u = Tin is

ẋ(t) = Ax(t) +Bu(t). (13)

The state matrix and the input matrix are separated
into the DPS part with the reduced state variables
[a1, ..., aNPOD

] and LPS part for the state ϑC and the
coupling matrices combined to

A =

[
A11 A12

A21 A22

]
(14)

B =

[
B1

B2

]
. (15)

More precise the parts for the state matrix are

A11 =− α〈∇ψ(x),∇ψ(x)〉L2(Ω)

− α

κR2
〈τΓ(ψ(x)), τΓ(ψ(x))〉L2(Γ) (16a)

A12 =
α

κR2

∫
Γ

τΓ(ψ(x)) dS (16b)

A21 =
1

R2C
ψ(0) (16c)

A22 =−
(

1

R1C
+

1

R2C

)
(16d)

and the input matrix is

B1 =0 (17a)

B2 =
1

R1C
. (17b)

It should be mentioned that the boundary ϑ(xD, t) is
homogeneous and included in the reduced basis functions
of the reduced DPS system.
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At this point it should be mentioned, that a special
treatment of resistor R2 is necessary due to the connection
between both systems. Because of the discretization for the
method of snapshots, the resistance must also be adapted
to the spatial distribution of ΓN . For the simple case of an
equidistant grid on the boundary the resistor R2 can be
replaced by

R?2 = ∆ΓN ·R2 (18)

for ∆ΓN elements on the boundary. The thermal conduc-
tion between the capacitance C of the LPS and each point
on the boundary ΓN is the new R?2.

3.1 Reduced Model Simulation

The accuracy of the reduced model determined with the
POD-Galerkin method for the PDE is limited to the basis
functions. The resulting shape of the basis function and
therefore the reduced model depends on the data set used
for the method of snapshots. By considering this constraint
we want to use as much information as possible for the
simulation data set. So for the model reduction we choose
the following input for the DPS system

q(t) =

{
1 for 10 < t < 70

0 else.
(19)

So most of the frequencies are included in this steplike
input signal. The reduced basis is selected after the model
reduction. Therefore the most significant basis functions
are selected. The number NPOD of selected basis functions
is determined by ∑NPOD

i=1 λi∑l
j=1 λj

> tol (20)

where λ1 ≥ ... ≥ λl > 0 are the eigenvalues of the corre-
lation matrix from the method of snapshots in decreasing
order of significance. The threshold tol ∈ [0, 1] should be
very close to 1. The selection of the reduced basis depends
on the thermal diffusivity of (1a). For the following studies
α is set to 0.1, κ is set to 1 and the right Dirichlet boundary
is ϑ(xD, t) = 0.

For solving the initial DPS for the POD based model
reduction, the pde toolbox provided by Matlab is used. The
2D plate with unit length is discretised into 122 spacial
steps in each dimension. The simulation takes 100 s into
account sampling time of 0.1 s . The simulations results
are given in Fig. 2 for t = 50s. For the reduced model
two POD modes are selected, so more than 99.9 % of the
”information” defined in (20) is restored.

Next the DPS-LPS system is verified including the pre-
viously calculated reduced PDE system. Therefore we set
R1 = R2 = 10 and C = 1 for the LPS system shown in
Fig. 1. The temperature input Tin at the LPS is

Tin = 0.5 + 0.25 sin(0.02πt). (21)

The simulation time and sampling time are the same like
before. For a better comparison the first three NPOD
temporal modes of the simulated system are shown with
the reduced model in Fig. 3. Each mode is weighted with
its own eigenvalue for visualization reasons. The deviation
between the reduced model and the simulated system is
small with some small deviation for the higher modes.
The relative error for the temporal modes is less than

Fig. 2. Numerical solution of the DPS (1) with Neumann
boundary input at t= 50s.

1 %. The accuracy of the reduced model depends on the
discretization grid used for the method of snapshots.

Fig. 3. Sequence of the first two temporal modes of the full
model ai and the reduced model âi.

The previous section introduced a thermal model combin-
ing a 2D DPS with a LPS. The resulting reduced order
model can be used for online applications like control or
observation tasks.

4. OBSERVER DESIGN

The previous derived interconnected model is used for the
following observer design. The input is assumed to be
unknown. Beside the state estimation the unknown input
can be reconstructed with a reduced-order observer and a
high-order sliding mode observer. Regarding the example
introduced in Fig. 1 sensors are placed only at the DPS.
The investigated system is

ẋ(t) =Ax(t) +Bu(t) (22a)

y(t) =Cx(t) (22b)

with u(t) assumed to be unknown. Additionally, system
(22) is observable and controllable regarding the unknown
input. For common unknown input observers the unknown
input needs to be detected in the measurements. This is
also known as the observer matching condition

rank(B) = rank(CB). (23)

Due to the additional LPS system connected to the DPS,
assumption (23) doesn’t hold for our interconnected sys-
tem. A reduced order observer with auxiliary outputs
is introduced and later a sliding mode observer is used
to estimate unmeasured auxiliary outputs. This part is
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based on Zhu (2012). Unlike in other publications, we only
consider unknown inputs.

The auxiliary outputs should extend the output matrix
in such a way that it has full rank regarding (23). For
rank(C) = p find the smallest integer ri(i = 1, 2, · · · , p)
such that{

CiA
kB = 0, for k = 0, 1, · · · , ri − 2

CiA
ri−1B 6= 0

(24)

holds. Let ri ∈ N be the relative degree of (24) and
(r1, r2, · · · , rp) ∈ N1×p be the vector relative degree of
the system with respect to the unknown input. The new
output matrix Ca is with some selected γi

Ca =



C1

...
C1A

γ1−1

...
Cp
...

CpA
γp−1


=


Ca1

...
Cai

...
Cap

 ∈ Rγ×n (25)

and 1 ≤ γi ≤ ri holds, so it has full rank and

rank(B) = rank(CaB)

holds. Also γ =
∑p
i=1 γi needs to be fulfilled. A reduced

order observer for the unknown input system can be set
up for the system

ẋ(t) =Ax(t) +Bu(t) (26a)

ya(t) =Cax(t). (26b)

It should be mentioned, that the invariant zeros of the
triplets {A,B,C} and {A,B,Ca} are identical (cf. Floquet
et al. (2007)). The system (22) is minimum phase and
so the system with auxiliary outputs is minimum phase,
i.e. with all invariant zeros in the left half plane for a
continuous system.

An observer can be established for some symmetric posi-
tive definite matrix Qa, if there exits a matrix La, a matrix
Fa and a symmetric positive definite matrix Pa such that

(A− LaCa)TPTa + Pa(A− LaCa) =−Qa (27a)

BTPa =FaCa (27b)

holds. More information are given by Corless and Tu
(1998).

The reduced observer is obtained from (Zhu, 2012, Theo-
rem 1). For the available auxiliary output ya the reduced
observer is

˙̂z2 =(Ā22 + K̄aĀ12)ẑ2 + [K̄a(Ā11 − Ā12K̄a)

+ Ā21 − Ā22K̄a]S−1
a ya (28a)

x̂ =WT
a

[
S−1
a ya

ẑ2 − K̄aS
−1
a ya

]
(28b)

for (22) with the estimated state vector x̂. Here Ā is the
transformed state matrix obtained by the Smith orthogo-
nal procedure. Further K̄a = P̄−1

a3 P̄
T
a2 and Sa is a invertible

matrix so that Ca = SaĈa and ĈaĈa
T

= I holds. Wa is
the orthogonal extended matrix of Ĉa. The index numbers
denote block decomposition.

Next we use a sliding mode observer to estimate the
not measurable auxiliary outputs and enable the recon-

struction of the unknown inputs. Therefore Zhu (2012)
proposed the sliding mode observer

˙̂yai,1 =ŷai,1 − wi,1
...

˙̂yai,γi−1 =ŷai,γi − wi,γi−1 (29)

˙̂yai,γi =ŷai,γi+1 − wi,γi
˙̂yai,γi+1 =− wi,γi+1

where

wi,0 =ŷai,1 − yi,1
wi,j =λi,j |wi,j−1|(γi−j+1)/(γi−j+2)

sign(wi,j−1) , j = 1, 2, · · · , γi, γi + 1

and with λi,j(i = 1, · · · , p; j = 1, · · · , γi+1) are all positive
scalar numbers.

Finally the unknown input can be reconstructed. Here
(Zhu, 2012, Theorem 3) is used. The reconstruction is

û = (GTG)−1GT [ξ̂a − C̃a(Ax̂)] (30)

for the unknown input u with

C̃a = [(c1A
γ1−1)T (c2A

γ2−1)T · · · (cpA
γp−1)T ]T , G = C̃aB

and ξ̂a = [ŷa1,γ1+1 · · · ŷap,γp+1]T .

The unknown input observer is introduced in this section.
The complete mathematical derivation and proof can be
found in Zhu (2012).

4.1 Simulation Results

In this section a simulation example is provided combining
the interconnected DPS-LPS with the unknown input
observer. We consider the following system

A =

[−0.6922 −1.4210 −0.1795
−1.4210 −6.7178 −0.3715
−0.1980 −0.4022 −0.2000

]
B =

[
0
0

0.1

]
C = [−2.0050 −4.2085 0]

being the solution from the previously reduced model sim-
ulation 3.1. For this system condition (23) isn’t satisfied.
So the output matrix including the auxiliary outputs is

Ca =

[
−2.0050 −4.2085 0
7.3681 31.1207 1.9233

]
,

if we choose γ1 = r1 = 2. For a certain

Qa =

[
45.1190 −0.0235 0.0006
−0.0235 45.1195 0.0012
0.0006 0.0012 45.1215

]
La, Fa and Pa are available from Corless and Tu (1998).

Further for the resulting Ca we selected Sa, Ĉa and Wa

as described by Zhu (2012). Finally for the sliding mode
observer the parameter λ = [2.5, 20, 0.5]T is chosen.

In Fig. 4 on the left, the error of the auxiliary output is
given. Therefore the sliding mode observer was used to
estimate the unmeasurable output ya1,2. The estimated
output is initialized with ŷa1,2(0) = 0.3. After some time,
the error is small enough and the convergence is satisfied.

With the estimation of the auxiliary outputs, the state
estimation is possible. Fig. 4 shows in the right plot all
errors between the actual states and the corresponding
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estimation. The estimation of the state observer works as
desired.

Finally the reconstruction of the unknown input is shown
in Fig. 5. Therefore the estimation of ẏa1,3 and the state
estimation is used. It should be mentioned that ẏa1,3 is
provided by the sliding mode observer. Also the unknown
input reconstruction is satisfactory.

Fig. 4. Auxiliary output error of the unmeasured out-
put (left); error between the estimation and actual
states(right)

Fig. 5. Comparison of actual input and estimated input

5. CONCLUSION

In the presented work we considered the structure of
interconnected DPS and LPS systems for an unknown
input observer design. First the reduced model for the
interconnected system is derived. Here the connection was
realized on basis of the Neumann condition. The resulting
structure was utilized for an unknown input observer
design. Due to the reduced model the observer needs less
auxiliary outputs regarding other methods. The shown
framework is applicable for the estimation of internal
temperatures in IGBTs, like the junction temperature.

REFERENCES

Altmüller, N. (2014). Model predictive control for par-
tial differential equations. Ph.D. thesis, Universität
Bayreuth.

Corless, M. and Tu, J. (1998). State and input estimation
for a class of uncertain systems. Automatica, 34(6), 757–
764.

Deutscher, J. (2012). Zustandsregelung verteilt-
parametrischer Systeme. Springer-Verlag.

Fletcher, C.A.J. (1984). Computational Galerkin Methods.
Springer.

Floquet, T., Edwards, C., and Spurgeon, S.K. (2007).
On sliding mode observers for systems with unknown
inputs. International Journal of Adaptive Control and
Signal Processing, 21(8-9), 638–656.

Guan, Y. and Saif, M. (1991). A novel approach to the
design of unknown input observers. IEEE Transactions
on Automatic Control, 36(5), 632–635.

Hakenberg, M. (2015). Modellreduktion und Regelung von
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