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Abstract: We present a novel solution to the attitude control problem of ground vehicles
by means of the Active Front Steering (AFS) system. The classical feedback linearization
method is often used to track a reference yaw dynamics while guaranteeing vehicle stability and
handling performance, but it is difficult to apply because it relies on the exact knowledge of the
nonlinearities of the vehicle, in particular the tire model. In this work, the unknown nonlinearities
are real-time learnt on the basis of the universal approximation property, widely used in the area
of neural networks. With this approximation method, the Uniform Ultimate Boundedness (UUB)
property with respect to tracking and estimation errors can be formally proven. Preliminary
simulation results show good tracking capabilities when model and parameters are affected by
uncertainties, also in presence of actuator saturation.

Keywords: Automotive control, Nonlinear control, Learning, Uncertain Systems, Neural
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1. INTRODUCTION

In modern automobiles, the wide use of electronics guar-
antees the improvement of safety, maneuverability and
comfort via active control actions [Guiggiani (2014)], [Ra-
jamani (2006)]. This is obtained by using devices apply-
ing forces and torques to the vehicle, with the aim of
tracking a desired, safe, and feasible reference behavior
[Ackermann (1995); Setlur (2006); Burgio (2006)]. The
forces and torques imposed to the vehicle by these de-
vices have to be eventually applied by means of the tires,
which therefore represent the main component in this
regard [Pacejka (2005)]. Hence, it is of great importance to
have an accurate tire modelling, in order to appropriately
impose the desired behavior. The literature on attitude
control problem is rich of papers on the active control of
a vehicle, where Active Front Steering (AFS) is used to
impose a desired lateral behavior. The interested reader
can find in [Acosta (2015)]–[Etienne (2019)] examples of
design and implementations of such active control actions,
often employed in combination with other actuators or
taking into account the effect of saturation.

? This paper has been partially supported by the Project “Co-
ordination of autonomous unmanned vehicles for highly complex
performances”, Executive Program of Scientific and Technological
Agreement between Italy (Ministry of Foreign Affairs and Interna-
tional Cooperation, Italy) and Mexico (Consejo Nacional de Ciencia
y Tecnoloǵıa, Mexico), SAAP3.

A major problem in attitude control arises from inaccurate
knowledge of the parameters appearing in the mathe-
matical model of the vehicle and, in particular, of the
tire model. This affects the performance of the controller
applied to track a yaw reference, while guaranteeing vehi-
cle stability and handling performance, since most classic
nonlinear techniques [Isidori (1995)] are based on the exact
knowledge of system nonlinearities. In [Bianchi (2010)], the
issue of model uncertainty was addressed by means of the
adaptive feedback linearization technique [Sastry (1989)],
but the functional form of the tire functions was assumed
to be known.

In this paper, a novel solution to the attitude control
problem of ground vehicles is proposed. In order to relax
some of the strict model–matching restrictions, the idea
is to ‘learn’ about the unknown nonlinearities using the
universal approximation property [Cybenko (1989)], ac-
cording to which smooth functions can be approximated
arbitrarily well by means of sigmoidal functions with a
sufficient number of parameters. This property is largely
used in the area of neural networks, and was originally
exploited for the control of robot manipulators with un-
certain dynamics [Lewis (1998)]. In the automotive field,
deep learning approaches were recently used in black–box
vehicle modeling [Alexa (2014)], as well as in the control
of its longitudinal and lateral dynamics [Devineau (2018)].
In the present work, the approach originally described
in [Lewis (1998)] for general nonlinear systems is reformu-
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lated for the case of vehicle dynamics, with independent
neural networks for approximating front and rear tire char-
acteristics. The classic Lyapunov–based approach is then
employed to guarantee the Uniform Ultimate Boundedness
(UUB) property [Khalil (2002)] with respect to estimation
errors. Preliminary simulation results show good tracking
capabilities in the presence of uncertain tire characteristics
and parameters, and also considering actuator saturation
(not taken into account in the control design method), and
an additive white noise on the measured states.

The paper is organized as follows. After recalling some
preliminary results in Section 2, Section 3 presents the
model of a ground vehicle, the control problem statement
and the nonlinear linearizing feedback that requires perfect
knowledge of the tire characteristics. In Section 4 the
tire characteristics are supposed to be unknown and are
estimated using the universal approximator. A feedback
controller is then derived that guarantees Uniform Ulti-
mately Boundedness for the closed–loop system. Section
5 provides simulation results that show the effectiveness
of the proposed control technique in a non-ideal control
situation.

2. RECALLS OF KNOWN FACTS

In the following a system of the form

ẋ = f(x) + d (1)

is considered, with x ∈ Rn the system state, f : Rn → Rn,
and d a bounded perturbation signal, such that |d(t)| ≤ d̄,
with d̄ ∈ R+ a bound. The statements below are the
well known Lyapunov theorems, for asymptotic stability
and uniform ultimate boundedness, and the universal
approximation theorem, very popular in the context of
neural networks.

Theorem 1. (Lyapunov(–like) theorems, Khalil (2002)).

1. The system (1) with d ≡ 0 is 0–GAS (Globally
Asymptotically Stable at the origin) if there exists

V (t, x) > 0 for x 6= 0, such that V̇ < 0 for x ∈ Rn \
{0};

2. The system (1) with d ≡ 0 is 0–GES (Globally
Exponentially Stable at the origin) if it is 0–GAS
with exponential convergence, i.e. |x| ≤ ae−bt|x(0)|,
for some a, b > 0, for all x(0) ∈ Rn;

3. The system (1) is UUB (Uniformly Ultimately Bounded)
if there exists V (t, x) > 0 for x 6= 0 in a compact set

Ω ⊆ Rn, such that V̇ < 0 for |x| > R, and for some
R > 0 such that {x ∈ Rn : |x| ≤ R} ⊆ Ω. �

Theorem 2. (Adapted from Cybenko (1989)). Every smooth
function f : R → R can be approximated with arbitrarily
good accuracy as

f(x) = WTσ(V x) + ε (2)

for some weight vectors W,V ∈ Rn, where σ : R→ R is a
sigmoid function. �

The approximation (2) holds for all x in a compact interval
Ω, and the functional estimation error ε is bounded so that
|ε| ≤ εN , with εN being a known bound dependent on Ω.

The theorem above is extensively used in the context of
neural networks, where n is the number of neurons of the

so-called hidden layer in a two–layer neural network [Lewis
(1998)].

In this work, we employ as odd sigmoid function, defined
on the real axis, the hyperbolic tangent

σ(x) = tanh(x) =
ex − e−x

ex + e−x

whose range is the interval [−1, 1], such that σ(0) = 0
and lim

z→+∞
σ(z) = 1. With abused notation, one can

define a vector–valued sigmoid σ(x), for x ∈ Rn, whose
ith component is σ(xi), according to the scalar sigmoid
defined above.

3. PROBLEM SETTING AND FEEDBACK
LINEARIZATION

In what follows, the well–known single track model of a
ground vehicle is considered [Guiggiani (2014)], depicted in
Fig. 1. It describes the lateral and yaw dynamics, essential
to design an active controller for the vehicle attitude

v̇y = −vxωz +
µ

m

(
Fy,f + Fy,r

)
+
µ

m
∆d +

µ

m
∆c

ω̇z =
µ

Jz

(
Fy,f lf − Fy,rlr

)
+
µlf
Jz

∆d +
µlf
Jz

∆c

(3)

where vx, vy are the vehicle longitudinal and lateral
velocity (m/s), ωz is the vehicle yaw angular velocity
(rad/s), m is the vehicle mass (kg), Jz is the vehicle
inertia momentum (kg m2), lf , lr are the distances from
the center of gravity to the front and rear axle (m),
respectively, Fy,f , Fy,r are the front/rear tire lateral forces
(N), respectively, µ is the tire–road friction coefficient
(dimensionless), ∆d (N) is the driver input, actuated by
means of the steering wheel and assumed measurable, and
∆c (N) is the AFS control input. The interested reader can
find in [Acosta (2017)], [Bianchi (2010)] additional details
on the model.

In the following, vx is assumed constant, which is a reason-
able assumption when dealing with the vehicle cornering
behavior.

Fig. 1. Single–track vehicle model.
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The control objective is to track a yaw rate reference signal
ωz,ref for ωz. One can assume that both states vy, ωz are
measurable. In the case that vy is not measurable, one can
use a lateral velocity observer, as the ones implemented in
[Acosta (2017)], [Borri (2017a)].

The nonlinear front and rear lateral forces

Fy,f = Fy,f (αf ), Fy,r = Fy,r(αr) (4)

are odd functions

αfFy,f (αf ) > 0, αrFy,r(αr) > 0, ∀αf , αr ∈ R \ {0}
(5)

depending on the front and rear tire slip angles

αf = −vy + lfωz

vx
, αr = −vy − lrωz

vx
. (6)

Examples of tire functions in the form (4) with property
(5) are the simplified Pacejka’s magic formulae [Pacejka
(2005)]

Fy,f (αf ) = Cy,f sin(Ay,f arctan(By,fαf ))

Fy,r(αr) = Cy,r sin(Ay,r arctan(By,rαr))
(7)

with global maxima Fyf,sat = Cy,f > 0, Fyr,sat = Cy,r > 0
at the saturation points αf,sat and αr,sat, respectively.

In view of the application of the feedback linearization
technique [Isidori (1995)], one can consider the lateral
velocity of the so–called neutral steering point [Guiggiani
(2014)]

vy,n = vy −
Jz
mlf

ωz

whose dynamics is

v̇y,n = −vxωz +
µl

mlf
Fy,r (8)

where l = lf + lr is the vehicle inter-axle length. Note that
vy,n does not depend on Fy,f , neither on ∆c, nor on ∆d.

From the second equation in (3) and from (8), one obtains
the mathematical model

ω̇z =
µ

Jz

(
Fy,f lf − Fy,rlr

)
+
µlf
Jz

∆c +
µlf
Jz

∆d

v̇y,n = −vxωz +
µl

mlf
Fy,r

which is in the form
ẋ1 = f1(x) + bu+ b∆d

ẋ2 = f2(x)
(9)

with x1 = ωz, x2 = vy,n, x = (x1 x2)T , u = ∆c, and

f1(x) =
µ

Jz

(
Fy,f (kfx)lf − Fy,r(krx)lr

)
f2(x) = −vxx1 +

µl

mlf
Fy,r(krx), b =

µlf
Jz

.

Here, the slip angles have been rewritten as linear combi-
nations of the state variables

αf = kfx, kf =

(
− lf
vx

− 1

vx

)
αr = krx, kr =

(
lr
vx

− 1

vx

)
.

In view of tracking a desired yaw velocity x1,ref = ωz,ref ,
we define the tracking error e = ωz − ωz,ref = x1 − x1,ref ,
and consider the linearizing feedback [Isidori (1995)]

u =
−ke+ ẋ1,ref − f1(x)

b
−∆d (10)

with k > 0. The error dynamics becomes

ė = f1(x) + bu+ b∆d − ẋ1,ref = −ke
which is 0–GES. It is reasonable to assume that ẋ1,ref
incorporates an addend b∆d, which is equal to the one
in ẋ1, so that both the control input u and the e dynamics
turn out to be independent of ∆d.

Since the relative degree with respect to x1 is r = 1 < n =
2, one has to consider the resulting zero dynamics

ẋ2|x1≡0 = f2(x)|x1≡0 =
µl

mlf
Fy,r(krx)|x1≡0.

It is easy to check that this dynamics is 0–GAS. In fact,
considering the Lyapunov candidate V(x2) = x22/2, one
has

V̇ =
µl

mlf
x2Fy,r(krx)|x1≡0 < 0, for x2 6= 0

since

Fy,r(krx)|x1≡0 = Fy,r(−x2/vx) = −Fy,r(x2/vx)

and thanks to property (5).

4. CONTROL DESIGN FOR THE PARTIALLY
UNKNOWN MODEL

The control (10) requires the perfect knowledge of the tire
characteristics, which is an assumption that is not usually
fulfilled in practical cases. Hence, following [Lewis (1998)],
in this section the tire characteristics are estimated making
use of sigmoid functions in the form of the universal
approximator (2)

F̂y,f = ŴT
f σ
(
V̂fkfx

)
F̂y,r = ŴT

r σ
(
V̂rkrx

)
with Ŵi, V̂i ∈ Rni the weight vectors, i = f, r, with nf , nr
being the number of hidden-layer neurons of the front and
rear neural networks, respectively.

Furthermore, the presence of an additional bounded dis-
turbance d is considered in the yaw equation of (9)

ẋ1 = f1(x) + bu+ b∆d + d (11)

=
µ

Jz

(
Fy,f (kfx)lf − Fy,r(krx)lr

)
+ b(u+∆d) + d

with |d| ≤ d̄ ∈ R+. This disturbance can take into
account further environmental disturbances and model
uncertainties in the yaw dynamics.

Considering a Taylor series expansion, one can write the
functional estimation errors F̃y,i = Fy,i − F̂y,i, i = f, r, as
follows [Lewis (1998)]

F̃y,i = W̃T
i

(
σ̂i − σ̂′iV̂ikix

)
+ ŴT

i σ
(
Ṽikix

)
+ wi (12)

where wi denote the higher–order terms,

σ̂i = σi

(
V̂ikix

)
, σ̂′i = σ′i

(
V̂ikix

)
, i = f, r

and

W̃i = Wi − Ŵi, Ṽi = Vi − V̂i, i = f, r (13)

are the weight errors with respect to the unknown real
weights Wi, Vi. The higher–order terms are bounded
according to

wi(t) ≤ Ci,0 + Ci,1|Θ̃i|+ Ci,2|e||Θ̃i| (14)
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for computable positive constants Ci,0, Ci,1, Ci,2, where

the aggregate errors Θ̃i := Θi − Θ̂i =
(
W̃T

i Ṽ T
i

)T
=(

WT
i V T

i

)T − (ŴT
i V̂ T

i

)T
are defined with respect to

the unknown real weights.

The linearizing feedback (10) becomes

û =
−ke+ ẋ1,ref − f̂1(x) +

µlf
Jz

uR,f −
µlr
Jz
uR,r

b
−∆d

(15)
where

f̂1(x) =
µ

Jz

(
F̂y,f (kfx)lf − F̂y,r(krx)lr

)
(16)

and

uR,f = −kz,f
(
|Θ̂f |+Θm,f

)
e

uR,r = kz,r

(
|Θ̂r|+Θm,r

)
e

(17)

are robustifying terms, with kz,i > 0 and Θm,i being
known bounds on the unknown target weight norms.

The following theorem is the main result of this section,
and guarantees Uniform Ultimately Boundedness (UUB)
property of the closed–loop system, provided that the
nominal feedback linearization control (10) is replaced
by the control law (15), where the tire functions are
approximated via sigmoid functions.

Theorem 3. Consider the system in (11), with u(t) = û(t)
as in (15), with the robustifying terms (17) such that
kz,i > Ci,2 > 0, i = f, r. Let the weight update laws
of the universal approximator be given by

˙̂
Wf =

µlf
Jz

(
Mfe

(
σ̂f − σ̂′f V̂fkfx

)
− λf |e|MfŴf

)
(18)

˙̂
Wr = −µlr

Jz

(
Mre

(
σ̂r − σ̂′rV̂rkrx

)
+ λr|e|MrŴr

)
(19)

˙̂
Vf =

µlf
Jz

(
NfkfxeŴ

T
f σ̂
′
f − λf |e|Nf V̂f

)
(20)

˙̂
Vr = −µlr

Jz

(
NrkrxeŴ

T
r σ̂
′
r + λr|e|NrV̂r

)
(21)

with Mi > 0, Ni > 0, and λi > 0 being design parameters,
i = f, r. Then, the closed–loop system is UUB with respect
to the tracking error e(t) and the weight errors Θ̃i, with
bounds given by

δe :=
Df +Dr

k
, δi :=

C3,i

2
+

√
Jz (Df +Dr)

µliλi
, (22)

for e(t) and Θ̃i, respectively, where the constants

C3,i : = Θm,i +
Ci,1

λi
,

Di : =
µliλi
Jz

C2
3,i

4
+
d̄

2
+
µli
Jz
Ci,0,

(23)

are defined for i = f, r.

Proof 1. Consider the Lyapunov candidate

V =
1

2
e2 +

1

2
W̃T

f M
−1
f W̃f +

1

2
Ṽ T
f N

−1
f Ṽf (24)

+
1

2
W̃T

r M
−1
r W̃r +

1

2
Ṽ T
r N

−1
r Ṽr

and its time derivative

V̇ = eė+ W̃T
f M

−1
f

˙̃Wf + Ṽ T
f N

−1
f

˙̃Vf

+ W̃T
r M

−1
r

˙̃Wr + Ṽ T
r N

−1
r

˙̃Vr.

From (11), (15), (16), the tracking error dynamics rewrites:

ė(t) = ẋ1(t)− ẋ1,ref (t)

= f1(x(t)) + bû(t) + b∆d(t) + d(t)− ẋ1,ref (t)

= −ke(t) +
µlf
Jz

(F̃y,f (kfx(t)) + uR,f (t))

− µlr
Jz

(F̃y,r(krx(t)) + uR,r(t)) + d(t).

Since ˙̃Wi = − ˙̂
Wi,

˙̃Vi = − ˙̂
Vi, from (13), one can obtain

(time dependencies are omitted for the sake of a more
compact notation):

V̇ = −ke2 +
µlf
Jz

e
(
F̃y,f (kfx) + uR,f

)
− µlr
Jz
e
(
F̃y,r(krx) + uR,r

)
+ ed

− W̃T
f M

−1
f

˙̂
Wf − Ṽ T

f N
−1
f

˙̂
Vf

− W̃T
r M

−1
r

˙̂
Wr − Ṽ T

r N
−1
r

˙̂
Vr,

and by substituting the Taylor expansion of estimation
errors in (12) and the update laws (18)–(21), one further
gets

V̇ = −ke2 + e

(
d+

µlf
Jz

(wf + uR,f )− µlr
Jz

(wr + uR,r)

)
+
µlf
Jz

e
(
W̃T

f

(
σ̂f − σ̂′f V̂fkfx

)
+ ŴT

f σ̂
′
f Ṽfkfx

)
− µlr
Jz
e
(
W̃T

r

(
σ̂r − σ̂′rV̂rkrx

)
+ ŴT

r σ̂
′
rṼrkrx

)
− µlf

Jz
W̃T

f M
−1
f

(
Mfe

(
σ̂f − σ̂′f V̂fkfx

)
− λf |e|MfŴf

)
− µlf

Jz
Ṽ T
f N

−1
f

(
NfkfxeŴ

T
f σ̂
′
f − λf |e|Nf V̂f

)
+
µlr
Jz
W̃T

r M
−1
r

(
Mre

(
σ̂r − σ̂′rV̂rkrx

)
+ λr|e|MrŴr

)
+
µlr
Jz
Ṽ T
r N

−1
r

(
NrkrxeŴ

T
r σ̂
′
r + λr|e|NrV̂r

)
.

The previous expression simplifies to:

V̇ = −ke2 + e

(
d+

µlf
Jz

(wf + uR,f )− µlr
Jz

(wr + uR,r)

)
+
µlf
Jz

λf |e|Θ̃T
f Θ̂f +

µlr
Jz
λr|e|Θ̃T

r Θ̂r.

A bound on the quantity Θ̃T
i Θ̂i is obtained by means of

the following chain of inequalities

Θ̃T
i Θ̂i ≤ Θm,i|Θ̃i| − |Θ̃i|2 = |Θ̃i|

(
Θm,i − |Θ̃i|

)
,

where the bound Θi ≤ Θm,i has been exploited.

We can now plug in the robustifying input defined in (17),
the Taylor error bounds in (14) and the disturbance bound
d̄, which lead to:
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V̇ ≤ −ke2 +

(
d̄+

µ

Jz
lfCf,0 +

µ

Jz
lrCr,0

)
|e|

+
µ

Jz
lf

(
Cf,1|Θ̃f |+ Cf,2|e||Θ̃f |

)
|e|

+
µ

Jz
lr

(
Cr,1|Θ̃r|+ Cr,2|e||Θ̃r|

)
|e|

− µlf
Jz

kz,f

(
|Θ̂f |+Θm,f

)
e2 − µlr

Jz
kz,r

(
|Θ̂r|+Θm,r

)
e2

+
µlf
Jz

λf |Θ̃f |
(
Θm,f − |Θ̃f |

)
|e|

+
µlr
Jz
λr|Θ̃r|

(
Θm,r − |Θ̃r|

)
|e|.

Since kz,i > Ci,2, one further gets

V̇ ≤ −|e|

(
k|e|+ µlf

Jz
λf

(
|Θ̃f |2 −

(
Θm,f +

Cf,1

λf

)
|Θ̃f |

)
−
(
d̄

2
+
µlf
Jz

Cf,0

)
+
µlr
Jz
λr

(
|Θ̃r|2

−
(
Θm,r +

Cr,1

λr

)
|Θ̃r|

)
−
(
d̄

2
+
µlr
Jz
Cr,0

))
.

Completing the squares, we finally obtain:

V̇ ≤ −|e|
[
k|e|+ µlfλf

Jz

(
|Θ̃f | −

C3,f

2

)2

−Df

+
µlrλr
Jz

(
|Θ̃r| −

C3,r

2

)2

−Dr

]
, (25)

with C3,i and Di are defined in (23). Note that the term
in square brackets in the right-hand side of (25) defines a

compact set. So it is readily seen that V̇ < 0 if |e| > δe
or if |Θ̃f | > δf or if |Θ̃r| > δr, where δe, δf , δr are
defined in (22). Hence, according to Theorem 1, the system

is UUB with respect to the error space
(
|e|, |Θ̃f |, |Θ̃r|

)
,

which concludes the proof.

Remark 4. The adaptation rules and the structure of the
controller are derived from a Lyapunov-based analysis,
which consists of a standard backpropagation term, a novel
feed-forward term coming from a certain Taylor series
expansion and an error modification term to keep the pa-
rameters bounded in the absence of persistent excitation.
In terms of a neural network, the structure of the controller
may be seen as composed of 2 two-layer neural networks
to approximate the nonlinearities of front and rear axles
and a limiting term that keeps the control signal bounded
regardless of the neural network weight estimates. �

5. NUMERICAL SIMULATIONS

In this section, we provide simulation results of the pro-
posed control technique, showing the performance of the
controller with adapted weights in the presence of actuator
saturation. Simulations are carried out on a extended
vehicle model resulting in some unmodeled dynamics with
respect to the model (11) used in the control design,
including four independent wheels and tires, a first-order
actuator dynamics and a constant actuation delay of 0.1s,
of the same order of magnitude as the AFS time constant.
In addition, a 15% percentage variation of parameters µ,

m, Jz is introduced with respect to nominal values, as well
as an additive white Gaussian noise with amplitude 0.02
on both state variables.

The vehicle and wheel parameters are equal to m =
1550 kg, lf = 1.17 m, lr = 1.43 m, Jz = 2300 kg m2,
µ = 1.

The tire lateral force functions are given by the Pacejka’s
Magic Formulae (7), with the following parameters

Ay,f = 1.81, Ay,r = 1.68 By,f = 7.2,
By,r = 11 Cyf = 8854 N, Cyr = 8394 N.

For the estimation of tire forces, the weight vectors have
been chosen of dimension 5 (i.e. 5 neurons have been used
for each force in the hidden layer of the neural network
structure). The design parameters have been set equal to

nf = 5, nr = 5, k = 5 Mf = 20, Nf = 20,
λf = 1 Mr = 20, Nr = 20, λr = 1.

The reference yaw rate is the output of a reference gener-
ator model, whose input is the driver-imposed force ∆d,
which is assumed to have a globally asymptotically stable
equilibrium point at the origin.

Unlike many other neural network structures, an offline
learning or training phase is not needed because it is
performed during the simulation, with the weight values
being initialized at some presumable values and then tuned
on-line by means of the update laws (18)–(21) as the
system tracks the desired yaw rate. As the updating of
the weights take place, the tracking performance improves
(in other words, this corresponds to the neural network
learning the approximation function). This is obtained
by means of a learning maneuver consisting in a ramp
steer with a longitudinal velocity of 28 m/s, which is
stopped as soon as the AFS goes into saturation. After
that, the weight values remain approximately fixed at the
value reached at the end of the learning maneuver, and a
more demanding test maneuver is considered, consisting
in a double step steer (see the input driver in Fig. 2,
top panel) of 100◦ with longitudinal velocity of 35 m/s.
Such a maneuver is very hard and the control actuator
reaches the saturation zone (Fig. 2, bottom panel). Fig. 3
shows the comparison in terms of yaw rate between the
feedback linearization controller and the one based on the
approximation and learning controller, which keeps the
vehicle stable and ensures good tracking with a bounded
error.

6. CONCLUSIONS

This work has investigated the problem of active atti-
tude control for ground vehicles via AFS in the case of
unknown or partially known tire functions. In uncertain
cases, control techniques based on perfect knowledge of
the underlying model, such as feedback linearization, are
not guaranteed to work properly. In order to overcome
this issue, approximation and learning is proposed for the
unknown functions, and the closed–loop error boundedness
is proven by means of Lyapunov techniques. Preliminary
simulation results have been obtained by closing the loop
on an non–ideal vehicle model, including model uncer-
tainties and unmodeled dynamics, and confirm that the
approach is promising for future investigations.
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Fig. 2. Driver wheel angle [rad] vs time [s] and Percentage
of actuation [adimensional] vs time [s]: AFS controlled
vehicle (dash-dotted line) and AFS controlled vehicle
with adaptation by learning (dotted line)
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controlled vehicle with adaptation by learning (dotted
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with adaptation by learning (dotted line).
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