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Abstract: This paper addresses finite-time horizon optimal control for discrete-time dynamics
with additional stochastic disturbances. In contrast to most existing approaches to this problem,
we also minimize the uncertainty of future states arising from stochastic disturbances and from
an uncertain initial state. Thus, the optimal control strategy balances the minimization of the
expected distances to a reference signal, and the minimization of the uncertainty respectively. As
opposed to prior work, the optimization is formulated subject to possible disturbance feedback
policies. This enables to solve one semi-definite program over H steps, instead of solving H
problems over one step, and the resulting reduced complexity allows one to use the scheme
in online and predictive control. The proposed method is applicable to time-varying state
constraints (in the sense of chance constraints) as well as time-invariant input constraints.
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1. INTRODUCTION

This paper addresses the determination of stochastically
robust control strategies over finite horizons for discrete-
time linear systems, which are subject to additive dis-
turbances and have uncertain initialization. For under-
lying Gaussian distributions in modeling both types of
uncertainties, stochastic robustness is understood as the
satisfaction of constraints with respect to a chosen like-
lihood, sometimes referred to as chance constraints, see
e.g. Calafiore and El Ghaoui (2007) for more details. The
main objective of the paper on hand is to provide an
efficient computational scheme to obtain a stochastically
robust stabilizing feedback control law minimizing both,
the expected distances of the states to a reference signal
and the uncertainty of the disturbed system.

The optimization over robust state feedback control laws
for systems with bounded but not probabilistically mod-
eled disturbances is well-studied, also with applications
in online use. Formulating the control law as an affine
function of the disturbances often leads to a synthesis
problem formulated as quadratic program (QP) involving
constraints on the states and inputs, see e.g. Ben-Tal et al.
(2004); Goulart et al. (2006). Formulations for systems
with stochastically modeled disturbances have been set
out in van Hessem and Bosgra (2002) and extended to
constrained problems by Oldewurtel et al. (2008). In these
optimization-based control problems, optimality is under-
stood as the minimization of a weighted compromise be-
tween the convergence of the state to a given reference and
the control costs (measured in terms of the inputs) – the
uncertainties are included in the optimization problems
through the constraints, either to be satisfied strictly or

as chance constraints. In approaches to stochastic optimal
control, the state is in general probabilistically distributed
according to the disturbance model, leading either to
concepts of min-max optimization (often computationally
unfavorable) or to the consideration of the convergence
of expected values. The latter option mostly leads to QP
problems, too, and is used in schemes of predictive control,
e.g. Cannon et al. (2009). The well-established schemes
of H2- and H∞-control, which minimize the effect of the
disturbances onto the outputs in an infinite-horizon set-
ting, see e.g. Doyle et al. (1988), are of less relevance here,
since the focus is on online schemes with consideration
of constraints. For a summarizing overview on optimal
stochastic control, see Mesbah (2016) and the references
therein.

The disturbance rejection in finite-horizon stochastic op-
timal control by use of stochastic reachable sets (without
the formulation of min-max optimization problems) was
first proposed in Asselborn and Stursberg (2015). That
approach determined time-varying affine control laws to
shape the state distribution in order to drive the system
eventually into a target set with high probability. In As-
selborn and Stursberg (2016), this concept was extended
to switched linear systems considering state and input
constraints. In both references, the optimization is over
affine state feedback policies, and the computation of an
H-step optimal control policy is divided into H many
one-step conic optimization problems, which are solved
iteratively. In these approaches, optimality was understood
as the minimization of the uncertainty of the stochastically
distributed state, a new aspect in stochastic optimal con-
trol, differing from the previously cited approaches.
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The paper on hand now aims at linking the methods pro-
posed by Asselborn and Stursberg (2015) and by Goulart
et al. (2006), in order to formulate one H-step stochastic
optimal control problem, which optimizes over disturbance
feedback policies and additionally minimizes the uncer-
tainty of the state.

The paper is organized as follows: Section 2 introduces
some notation used later, and Sec. 3 specifies the system
class and the control problem. Section 4 proposes the
method for controller synthesis, which is then illustrated
by a simulation example in Sec. 5, including some com-
ments on the applicability in online schemes, and Sec. 6
concludes the paper.

2. PRELIMINARIES

This section clarifies some notation used throughout the
paper, and details different mathematical aspects used in
the sequel.

Let sk denote the discrete-time value of a vector s(t) ∈ Rn
at time t = t0 + k · ∆t, with k ∈ N+, and a constant
time step ∆t ∈ R+. The symbol NH denotes the set{
k ∈ N≥0 | k ≤ H − 1

}
.

The expected value of a signal is denoted by s̄ := E[s].

We use (Cs, bs) to denote a convex polyhedron for a vector
s ∈ Rn:

S = {s |Cs · s ≤ bs} ,
and nCs is the number of half-spaces.

An ellipsoidal set is defined by a center point s̄ and a
shape matrix S. In some points, it will be useful to define
an ellipsoidal set as a shaped unit ball:

ε (s̄,S) =
{
s
∣∣ (s− s̄)TS−1(s− s̄) ≤ 1

}
=
{
s
∣∣ s = s̄+ S 1

2 · z, ‖z‖2 ≤ 1
}
.

An affine transformation of an ellipsoidal set with matrix
M and vector v is again an ellipsoidal set according to:

M · ε (s̄,S) + v = ε
(
Ms̄+ v,MSMT

)
.

The volume of an ellipsoid is proportional to the determi-
nant of the shape matrix, i.e.:

vol (ε (s̄,S)) ∝ det(S).

If the determinant is close to zero when minimizing the
volume of an ellipsoid, a common way is to approximate
the minimization of the determinant by the minimization
of the trace of the shape matrix, i.e.:

min det(S) ≈ min trace(S). (1)

In Durieu et al. (1996) it is shown, that the minimization
of the trace balances the length of the semi axis but leads
to a suboptimal volume. In contrast, the minimization of
the determinant (which leads to the optimal volume) may
result in very narrow ellipsoids, which corresponds to a
large uncertainty in one direction, even if the volume of
the ellipsoid approaches zero.

A multivariate normal distribution of an n-dimensional
random vector s with covariance matrix S ∈ Rn×n,S =
ST ≥ 0, and mean value s̄ ∈ Rn is denoted by s ∼ N (s̄,S).

The sum of two normally distributed random variables
s1 ∼ N (s̄1,S1) and s2 ∼ N (s̄2,S2) is again normally
distributed:

s1 + s2 ∼ N (s̄1 + s̄2,S1 + S2) . (2)

The level curves of a Gaussian probability density function
are ellipsoidal.

If c = (Fχ2)−1(δ, n) holds for a probability δ ∈ [0, 1] and
Fχ2 being the cumulative distribution function of a χ2-
distribution, then:

Sδ = ε (s̄, c · S) (3)

denotes an confidence ellipsoid, which contains s with
confidence δ and which is scaled by c, see also Asselborn
and Stursberg (2015). Throughout the paper, the mean
value of a distribution coincides with the center point of
the confidence ellipsoid, and the shape matrix is equal to
the covariance matrix of the distribution, thus we use the
same notation for these quantities.

The symbol ‖sk‖Q = sTk ·Q ·sk denotes a weighted 2-norm
of a vector sk with symmetric and positive semi-definite
weighting matrix Q.

3. SYSTEM AND PROBLEM DEFINITION

The system class under consideration in this paper is a
discrete-time linear system with probabilistically modeled
additive disturbances and initialization:

xk+1 = Axk +Buk + Ewk (4)

x0 ∼ N (x̄0,X0)

wk ∼ N (0,Wk) ,

where xk ∈ Rnx is the state vector, uk ∈ Rnu the input
vector, and wk ∈ Rnw the disturbance vector. The initial
state is normally distributed (n.d.) with covariance matrix
X0 and mean value x̄0. The additive disturbances are also
normally distributed, but with zero-mean and covariance
Wk. The initial state and disturbances are assumed to be
iid.

Assumption 1. The mean value and covariance of the
initial state are known. The covariance matrix of the
disturbance may vary over time, but is assumed to be
known, too.

The state xk and input uk are chance-constrained by poly-
topic sets with a given probability δx, and δu respectively:

Pr(xk ∈ Xk) ≥ δx, Xk = {x |Cxk
· x ≤ bxk} , (5)

Pr(uk ∈ U) ≥ δu, U = {u |Cu · u ≤ bu} , (6)

i.e., xk and uk have to satisfy these constraints at least
with the probabilities δx, and δu respectively. The sets X
and U are assumed to be compact and contain the origin
in their interior.

According to Assumption 1, the initial state and distur-
bance are n.d., which means, that deterministic values
are not available at the time-instance the control law is
determined. Nevertheless, one can predict the behavior
of the state x1 under the impact of the control input u0
according to (4), which is with respect to (2) again n.d:

x1 = Ax0 +Bu0 + Ew0 ∼ N (x̄1,X1) .

With respect to the zero-mean disturbance, the covariance
and mean value of the state at time k = 1 result to:
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x̄1 = Ax̄0 +Bū0

X1 = AX0A
T +BU0BT + EW0E

T .

For determining u0 (and each later input), we refer to
the class of time-varying state feedback control laws as
in Asselborn and Stursberg (2015). However, rather than
choosing an affine structure, we employ the linear equiv-
alent to the deterministic control law in Goulart et al.
(2006):

uk =

k∑
r=0

Kk,rxr. (7)

Here, Kk,r ∈ Rnu×nx denotes the feedback matrix used in
the control law of time k and which is multiplied by the
earlier state at time r. When using such a state feedback
law, the control input uk becomes normally distributed
since xk is n.d., too. We use ūk to denote the input
obtained by applying the control law to the expected state
x̄k. The control law (7) affects the mean value as well
as the covariance of the distribution of x1. This holds,
of course, also for each later input uk and state xk+1,
k ≥ 0, if Kk,0 6= 0. By applying (4) recursively, one can
compute a sequence of n.d. future states for a given input
trajectory. Following the idea of Asselborn and Stursberg
(2015) and using the fact that the system definition is
based on normal distributions, the distribution of state
trajectories can be represented by a sequence of confidence
ellipsoids X δk according to (3). This is an extension of
the ellipsoidal reachable set calculus, see Kurzhanskĭı and
Vályi (2009), to linear stochastic systems.

For the given system class, the main control objective
in this paper is to steer the mean value of the state
to the origin with acceptable costs for the input, and
at the same time to minimize the uncertainty of the
state. This minimization of the uncertainty is equivalent
to minimizing the volume of the confidence ellipsoids
(and thus to minimize the stochastic reachable sets).
The formalization of this ambition leads to the following
optimization problem, formulated for a finite time horizon
of H steps:

min
Kk,r

H∑
k=1

‖x̄k‖Q + ‖ūk−1‖R + ‖trace(Xk)‖S

s.t.: xk+1 = Axk +Buk + Ewk (8)

x0 ∼ N (x̄0,X0) , wk ∼ N (0,Wk) ,

uk =
∑k

r=0
Kk,rxr,

Pr(uk ∈ U) ≥ δu ∀ k ∈ NH .,
Pr(xk+1 ∈ Xk+1) ≥ δx ∀ k ∈ NH .

The solution of this problem aims at bringing the expected
states and inputs as closely as possible to the origin,
at guaranteeing the satisfaction of chance constraints (5)
and (6), and at minimizing the uncertainty of the states
by minimizing the semi axis of the confidence ellipsoids
according to (1). The matrices Q, R, and S are used to
balance between the minimization of the expected values
and the minimization of the uncertainty.

If using the methods of Asselborn and Stursberg (2015)
to solve problem (8), this results in a convex optimization
problem with bi-linear matrix inequalities, which would
not be efficiently solvable for many problem instances.

The next section describes an alternative path (involving
a conic optimization problem with just linear matrix
inequalities), leading to a result which also provides the
solution to (8).

4. CONTROLLER SYNTHESIS

4.1 Equivalence of State and Disturbance Feedback

In order to consider the states and inputs over the horizon
of length H, the following stacked vectors are defined:

x =


x0
x1
...
xH

 , u =


u0
u1
...

uH−1

 , w =


w0

w1

...
wH−1

 .
With matrices A, B, E of adequate size (given in the
appendix A) and the feedback matrix K ∈ RH·nu×(H+1)nx ,
the evolution of states and inputs over the horizon follows
to:

x = Ax0 + Bu + Ew (9)

u = Kx (10)

with

K =

 K0,0 0 · · · 0
...

. . .
...

...
KH−1,0 · · · KH−1,H−1 0

 . (11)

Lemma 2. Given the state equation (9), the state feedback
law (10) can be reformulated into the feedback of the initial
state and disturbances:

u = Kx = Vx0 + Mw,

and vice versa.

Proof. Following the procedure in Goulart et al. (2006),
consider first the computation of matrices (V,M) with
given K. By substituting the input (10) into (9), and
inserting it again in (10), we have:

x = (I −BK)−1(Ax0 + Ew)

⇒ u = K(I −BK)−1Ax0 + K(I −BK)−1Ew

=: Vx0 + Mw,

i.e., a linear function of the initial state x0 and the
disturbance vector w, parameterized by:

V = K(I −BK)−1A, M = K(I −BK)−1E.

In opposite direction, for given matrices V and M, the
state feedback K follows with the left inverse E′ of matrix
E and with x0 = e1 · x = [I, 0, . . . , 0] · x, since x0 is the
first element of x:

w=E′(x−Ax0−Bu)

⇒ u=Vx0 +ME′(x−Ax0−Bu)

= (I+ME′B)−1(Vx0 +ME′x−ME′Ax0)

= (I+ME′B)−1((V−ME′A)e1 +ME′)x (12)

=:Kx.

2

Remark 3. The left inverse E′ exists, if rank(E) = nw, and
then invertibility of both (I −BK)−1 and (I + ME′B)−1

is guaranteed by the structure of the bold matrices. Even
though the left inverse E′ may not be defined uniquely,
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and thus uniqueness of K is not given, each admissible
parameterization of E′, and respectively K, leads to the
same input trajectory u.

Writing the control law as u = Vx0 + Mw is well
motivated, since the uncertainty of x stems from the
uncertainty of the initial state and the disturbances. If
K is structured according to (11), V ∈ RH·nu×nx is full
dimensional, and M ∈ RH·nu×H·nw has the following
structure:

V =


V0
V1
...

VH−1

 , M =


0 0 · · · 0

M1,0 0 · · · 0
...

. . .
. . .

...
MH−1,0 · · · MH−1,H−2 0

 .
A single entry Mk,r ∈ Rnu×nw of M refers to the feedback
matrix used in time-step k to account for the disturbance
wr. The structure of M implies that for a each time-step k
only all prior disturbances wr with r < k are considered,
since they can be determined from state measurements.
With a single entry Vk ∈ Rnu×nx of V, the complete
control law in time k can be extracted by using:

uk = Vk · x0 +

k−1∑
r=0

Mk,rwr. (13)

Remark 4. Since state and disturbance feedback are equiv-
alent in their impact on the state evolution according to
Lemma 2, the alternative problem with optimization over
disturbance feedback policies is possible. The feedback
matrix K can be computed subsequently from V and M.

4.2 Closed loop behavior

To prepare the minimization of the state uncertainty, the
closed-loop behavior of the system is formulated first.
Inserting the control law (13) into (4) results in a state
equation given as linear combination of the initial state
and all prior disturbances:

xk+1 = Akx0 +

k∑
r=0

Ek,rwr, (14)

with closed-loop matrices:

Ak = Ak+1 +

k∑
i=0

Ak−iBVi

Ek,r = Ak−rE +

k∑
i=r+1

Ak−iBMi,r.

This leads to the following expression for the expected
value and the covariance matrix of each state vector:

x̄k+1 = Akx̄0

Xk+1 = AkX0ATk +

k∑
r=0

Ek,rWrE T
k,r. (15)

4.3 Input constraints

The input constraint (6) requires, that each uk is con-
tained in U with likelihood δu. Whereas this introduces
a certain amount of conservatism, it is required that all
δu-confidence ellipsoids Uδuk are within U with respect to
the control policy (13). Note that applying the control law
to ellipsoidal state sets implies the use of ellipsoidal input
sets.

Proposition 5. Let b
(i)
u and C

(i)
u denote the i-th half-

space of the polytopic input constraint parameterized by
(Cu,bu). Then, if for all k ∈ NH and all i ∈ {1, ..., nCu}
the set of LMIs:

Lu(i)
k =

[
(b

(i)
u −C(i)

u Vkx̄0) C
(i)
u ·c

1
2
u rk

? (b
(i)
u −C(i)

u Vkx̄0) ·Inx+k·nw

]
< 0,

is satisfied with:

rk =
[
VkX

1
2
0 , Mk,0W

1
2
0 , . . . , Mk,k−1W

1
2

k−1

]
,

cu = (F 2
χ)−1(δu, nu),

then (6) is satisfied, too.

Proof. According to (13), the δu-confidence ellipsoid with
cu = (F 2

χ)−1(δu, nu) for a specific time-step k is given by:

Uδuk = VkX δu0 +

k−1∑
r=0

Mk,rWδu
r ,

where:

X δu0 = ε(x̄0,cuX0) =
{
x
∣∣ x= x̄0 +(cuX0)

1
2 ·z,‖z‖2≤ 1

}
,

Wδu
k = ε(0,cuWk) =

{
w
∣∣w= (cuWk)

1
2 ·z,‖z‖2≤ 1

}
.

In order to satisfy Uδuk ⊆ U, the row-wise maximization of
uk for each half-space with index i ∈ {1, . . . , nCu

} leads
to:

max
q∈Q

C(i)
u q ≤ b(i)u ,

s.t.: Q =

{
q

∣∣∣∣ q = Vkx0 +
∑k−1
r=0 Mk,rwr,

x0 ∈ X δu0 , wr ∈ Wδu
r

}
.

When using the representation as shaped unit ball, this is
equivalent to:

max
q∈Q

C(i)
u q≤ b(i)u −C(i)

u Vkx̄0,

s.t.: Q=

q
∣∣∣∣∣∣ q=Vk(cuX0)

1
2 ·zk+

k−1∑
r=0

Mk,r(cuWr)
1
2 ·zr,

‖zr‖2≤ 1∀ r∈{0,...,k}

.
The left hand side of the inequality is limited by the 2-
norm of the unit ball, i.e. satisfying the following inequality
is sufficient:∥∥∥C(i)

u Vk(cuX0)
1
2

∥∥∥
2

+

k−1∑
r=0

∥∥∥C(i)
u Mk,r(cuWr)

1
2

∥∥∥
2
. . .

≤ b(i)u − C(i)
u Vkx̄0 ∀ i ∈ {1, . . . , nCu

}.

Lx (i)
k+1 =

[
(b

(i)
xk+1 − C

(i)
xk+1Akx̄0) C

(i)
xk+1c

1
2
x [AkX0, Ek,0W0, . . . , Ek,kWk]

? blkdiag(X0,W0, . . . ,Wk)(b
(i)
xk+1 − C

(i)
xk+1Akx̄0)

]
< 0 (16)
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Using the Schur complement (see e.g. Boyd et al. (1994)),
this inequality is satisfied if the LMI in Proposition 5 is
satisfied. 2

4.4 State constraints

Similarly to the input constraint, the approach is used
that the constraint (5) is satisfied, if all δx-confidence
ellipsoids lie within the admissible state space, requiring
that X δxk ⊆ Xk holds for all time-steps.

Proposition 6. The constraint (5) is satisfied, if for all
i ∈ {1, . . . , nCxk+1

} and all k ∈ NH the LMIs (16) hold.

Proof. With cx = (Fχ2)−1(δx, nx), the confidence ellipsoid
for a specific time-step k+1 (again represented as a shaped
unit ball) is:

X δxk+1 = ε (x̄k+1, cx · Xk+1) (17)

=
{
x
∣∣ x = Akx̄0 + (cx · Xk+1)

1
2 · z, ‖z‖2 ≤ 1

}
.

According to the admissible polyhedral state space Xk,
the following row-wise inequality is obtained for each
i ∈ {1, . . . , nCxk+1

}:

max
q∈Q

C(i)
xk+1

· q ≤ b(i)xk+1
− C(i)

xk+1
Akx̄0,

s.t.: Q =
{
q
∣∣ q = (cxXk+1)

1
2 · z, ‖z‖2 ≤ 1

}
.

This is equivalent to:∥∥∥C(i)
xk+1

(cx · Xk+1)
1
2

∥∥∥
2
≤ b(i)xk+1

− C(i)
xk+1
Akx̄0

⇔ (C(i)
xk+1

c
1
2
xXk+1c

1
2
xC

(i)T

xk+1
) ≤ (b(i)xk+1

− C(i)
xk+1
Akx̄0)2.

With the covariance matrix (15) and the Schur comple-
ment, it follows that this inequality is satisfied, if the LMIs
referred to in proposition 6 hold. 2

4.5 Determination of feedback matrices by SDP

For minimizing the state covariance matrices, and moti-
vated by the scheme in Asselborn and Stursberg (2015),
an artificial matrix Sk+1 = STk+1 < 0 is introduced for all
k ∈ NH as an upper bound for each covariance matrix:

Sk+1 < Xk+1

⇔ Sk+1 −AkX0ATk −
k∑
r=0

Ek,rWrE T
k,r < 0.

This inequality can also be transferred into an LMI using
the Schur complement:

Lsk+1 =

[
Sk+1 [AkX0, Ek,0W0, . . . , Ek,kWk]
? blkdiag (X0,W0, . . . ,Wk)

]
< 0.

With all requirements formulated as matrix inequalities,
the SDP problem to be solved results as follows:

min
V,M

H∑
k=1

‖x̄k‖Q + ‖ūk−1‖R + ‖trace (Sk)‖S

s.t.: x̄k+1 = Ak · x̄0 ∀ k ∈ NH (18)

ūk = Vk · x0 ∀ k ∈ NH
Lsk+1 < 0 ∀ k ∈ NH
Lx (i)

k+1 < 0 ∀ i ∈ {1, . . . , nCxk+1
},∀ k ∈ NH

Lu(i)
k < 0 ∀ i ∈ {1, . . . , nCu

},∀ k ∈ NH .
Let the optimal solution of (18) be denoted by (V?,M?).

Theorem 7. If there exists an optimal solution to (18), an
admissible solution to (8) is given by:

K= (I+M?E′B)−1((V?−M?E′A)[I,0,...,0]+M?E′).

If no state and input constraints are active, K is the
optimal solution to (8), i.e. K? = K. Otherwise, K is
sub-optimal due to the inner approximations used for the
state and input constraints.

Proof. If (V?,M?) solves (18), there exists a matrix
K according to (12). The sequence of uk is obtained
with K from (10) and satisfies the input constraints (6)
due to Proposition 5. Likewise, with the sequence of x̄k
from the first constraint in (18), the states xk in (14)

are contained in the confidence ellipsoids X δxk as defined
in (17). In consequence of Proposition 6, the constraint
(5) is satisfied, and hence, the state and input sequences
obtained from K are feasible for problem (8).

If, when using K, any state xk+1 and any input uk for
k ∈ NH lies in the interior of the sets satisfying the

constraints Lx (i)
k+1 < 0, i ∈ {1, . . . , nCx

} and Lu(i)
k < 0,

i ∈ {1, ..., nCu
} in (18), then there exist no different state

and input sequences with lower costs for the less strict
constraints defined for (8), i.e., K? = K optimally solves
also (8). If one of the constraints in (18) is active, a solution
with (slightly) lower costs may exist for (8). 2

5. NUMERICAL EXAMPLE

To illustrate the proposed method, it is applied to the
dynamics according to (4) with arbitrarily chosen:

A =

[
0.87 0.06 −0.03

0 1.09 1.20
0 0.06 0.91

]
, B =

[
0.64 0
−0.24 0.34
0.62 0.61

]
,

E =

[
0.1 0 0
0 0.2 0
0 0 0.3

]
,

and with the initial state and disturbance distributions:

x̄0 =

[
5
35
2

]
, X0 =

[
0.1 0 0
0 0.15 0
0 0 0.35

]
,Wk = X0 ∀k ∈ NH .

The input constraint is defined by U = {u | ‖u‖∞ ≤ 4},
and the chance constraint for this range is selected to:

Pr(uk ∈ U) ≥ δu = 0.95.

A time-invariant state constraint is defined to:

Xk+1 =

{
x

∣∣∣∣∣−6 ≤ x1 ≤ 7,
−9 ≤ x2 ≤ 55,
−8 ≤ x3 ≤ 7

}
∀k ∈ NH ,

with the probability Pr(xk ∈ Xk) ≥ δx = 0.95.

The time horizon is chosen to H = 20. To demonstrate
the minimization of the covariance matrices, two slightly
different parameterizations of the cost functional are used:

i) Q(i) = I3, R(i) = 0.1, and S = 50
ii) Q(ii) = I3, R(ii) = 0.1, and S = 0

While version i) conforms to the objective of costs balanc-
ing proposed in this paper, the second version represents
the case without minimization of the covariance matrices
(the latter is comparable to stochastic optimal control
without tuning the evolution of the state uncertainty).
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Fig. 1. Control result for the 0.95%-confidence ellipsoids
X 0.95
k with version i) of the cost functional.

(a) cost i) (b) cost ii)

Fig. 2. Control result in terms of confidence ellipsoids
projected onto the x1-x2-space.

Figure 1 shows the control result for version i) of the cost
functional: From the initial 95%-confidence ellipsoid X 0.95

0
(blue), the state is steered to the origin without violating
the state constraints. The uncertainty of the initial state
is reduced significantly, as can be seen from the reduced
size of the ellipsoids over k.

In addition, Fig. 2 part (a) illustrates the projection of
the state evolution onto the first two states. Part (b)
shows for comparison the same for version ii) of the cost
functional: without minimizing the uncertainty, the size of
the ellipsoids increases over the control horizon, while the
expected values are almost the same. In both cases, state
and input constraints are active.

Table 1 contains for the two versions the corresponding
cost measures as the volumes of the confidence ellipsoids
in 3-D aggregated over the time horizon, as well as the
weighted distances of the expected states to the origin.
While the cost for the expected states increases by ap-
proximately 25.5% (when changing from version ii) to i)),
the occupied state space is reduced by 87%. Note that
for a single ellipsoid, the overall 25.5% lower costs for ii)
are practically irrelevant, if the confidence ellipsoids are as
large as for ii).

Note in addition, that if the test is repeated without the
state constraint, the use of version ii) leads to an increase
of the aggregated volume of the ellipsoids to 1138, and the
use of the version i) reduces the value by even 97 %.

Table 1. Comparison of cost function values.

cost i) cost ii) relative for i)∑
k
vol
(
X 0.95

k

)
38.18 293.35 −87 %∑

k
‖x̄k‖Q 13728 10937 +25.5 %

The optimization problems were solved on a 3.4 GHz
Quad-Core CPU using Matlab2018a and the solver Mosek.
With randomized initial mean value x̄0, the optimization
problem is solved in an average computation time of
around 20 s.

This value deserves comments with respect to the use
of the proposed technique in online schemes such as
predictive control: If the solution of (18) is to be carried
out in any time step k, for many applications much
lower computation times than the value provided above
are necessary. To this account, note that for problems
with a horizon of 8 steps and nx = 2 computation
times of below 50 ms are obtained, i.e., the online use
for low-dimensional systems appears possible for some
applications. In addition, the use in online schemes will
often allow to measure the current state, i.e. the setting
simplifies to the case in which uncertainties arise only from
the disturbances, not the uncertain state initialization.

6. CONCLUSION

The paper has proposed a method for solving a stochastic
optimal control problem which accounts for uncertainties
due to imprecise knowledge of the initial state and arising
from uncertainties in balanced manner. The idea is to
employ stochastic reachable sets in terms of confidence
ellipsoids, which contain the state with high probability.
In contrast to previous work, the shaping of these ellip-
soids through linear disturbance feedback control laws is
achieved by a single optimization over a given control hori-
zon, rather than solving H many single-step problems. In
addition to reducing the overall computational time, this
leads to the possibility to balance the convergence towards
the goal with the state distribution over the complete
horizon. As demonstrated for a simulation example, the
state uncertainty can be reduced drastically, while the
convergence of the expected values towards the goal is
only slightly worsened. The proposed method is applica-
ble to time-invariant input constraints, time-varying state
constraints, and time-varying covariance matrices of the
disturbance. In particular with respect to the satisfaction
of state constraints, the method can significantly reduce
the conservatism arising from the state uncertainty in
other schemes, which do not explicitly aim at achieving
small state distributions.

Future work will investigate the use of the findings of this
paper within networked predictive control.
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Appendix A. VECTOR NOTATION

The matrices A ∈ R(H+1)nx×nx and C ∈ R(H+1)nx×H·nx

have the following structure:

A=



Inx

A

...

AH


, C=



0 0 ··· 0

Inx
0 ··· 0

A Inx
··· 0

...
...

. . . 0

AH−1 AH−2 ··· Inx


.

The matrices B ∈ R(H+1)nx×H·nu and E ∈ R(H+1)nx×H·nw

are chosen to B = C(IH ⊗ B), and E = C(IH ⊗ E)
respectively, where ⊗ denotes the Kronecker product.
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