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Abstract: This study presents a method to reduce the number of scheduling variables in a linear
parameter-varying (LPV) model of a diesel engine air path system. The reduction of these
scheduling variables is very important because it exponentially decreases the computational
complexity for the gain-scheduled LPV controller synthesis. Principal component analysis (PCA)
and autoencoder (AE) based neural networks are applied to the LPV diesel engine’s air path
model, and the relationship between the accuracy of the reproduced scheduling variables and
the number of the reduced scheduling parameters is evaluated via conduction of numerical
simulations.
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1. INTRODUCTION

Modern diesel engines are typically equipped with vari-
able geometry turbochargers (VGT) and an exhaust gas
recirculation (EGR) system to meet the lower NOx, partic-
ulate matter (PM) emission, and higher thermal efficiency
requirements (Xie et al., 2013; Stefanopoulou et al., 2000;
Abd-Alla, 2002). However, these technologies increase the
complexity of the system architecture and make it dif-
ficult to design the control system. In commercial vehi-
cles, conventional controllers employ lookup tables that
are optimized from the results of various experiments.
However, the effort involved in constructing these tables
has considerably increased because of the complexity of
recent engines. Therefore, model-based controller design
approaches are required as an alternative to traditional
controller design methods.

The plant model of the diesel engines is highly nonlinear,
and the controller gains have to be scheduled along with
the operational conditions. For this control problem, a
gain-scheduled H∞ control (GS control) method can be
a promising approach because it can cope with the plant
nonlinearity, while also taking into account the plant un-
certainties. In GS control, the plant model has to be rep-
resented by a linear parameter-varying (LPV) system. In
most previous studies, the number of scheduling variables
is restricted to one or two, because the number of the linear
matrix inequalities (LMIs) to be solved for the GS control
grows exponentially with the number of scheduling vari-
ables, and this produces a conservative result. However,
in the LPV model of the diesel engine, many scheduling
variables appear. Conventionally, the ad hoc reduction
of the scheduling variables can be employed (Jung and
Glover, 2006; Xiukun Wei and del Re, 2006; Liu et al.,
2007; Lihua Liu et al., 2008); however, this compromises on

the model accuracy, while making the synthesis problem
tractable.

For the reduction of the scheduling variables, several ap-
proaches have been proposed. One such approach is a
procedure based on principal component analysis (PCA)
proposed by Kwiatkowski and Werner (2008). The ability
of the PCA to reduce the data dimension makes it possible
to reduce the number of scheduling variables in the LPV
models. However, the PCA cannot capture the nonlinear
nature of the scheduling variables, and a method based
on the autoencoder (AE) neural networks was proposed
by Rizvi et al. (2018). Unlike the PCA, the AEs can
capture the nonlinear nature of the scheduling variables
by employing the nonlinear activation function. In this
study, we apply the PCA-based and AE-based reduction
methods on the scheduling variables for the LPV model
of the diesel engine air path system, and the relationship
between the accuracy of the reduced model and the num-
ber of scheduling variables is evaluated via conduction of
numerical simulations.

2. LPV MODEL REDUCTION

2.1 Problem formulation

An LPV state-space (LPV-SS) model is defined as follows:

ẋt = A(θt)xt +B(θt)ut
yt = C(θt)xt +D(θt)ut

(1)

where xt ∈ Rnx , ut ∈ Rnu , and yt ∈ Rny represent
the state vector, control input, and output at time t,
respectively. The LPV-SS matrices A(θt), B(θt), C(θt) and
D(θt) are assumed to be affine functions of θt as:

Q(θt) = Q0 +

l∑
i=1

θt,iQi, Qi ∈ R(nx+ny)×(nx+nu) (2)
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where

Q(θt) =

[
A(θt) B(θt)
C(θt) D(θt)

]
∈ R(nx+ny)×(nx+nu). (3)

The scheduling variables θt ∈ Rl are a continuous function
of the measurable signal µt ∈ Rs as:

θt = p(µt), p : Rs → Rl. (4)

For the given system Eq. (1), the problem of LPV model
reduction can be defined as follows: find a mapping

ρt = q(θt) = q(p(µt)), q : Rl → Rm, (5)

where m < l, such that the system matrices in

ẋt = Â(ρt)xt + B̂(ρt)ut,

yt = Ĉ(ρt)xt + D̂(ρt)ut
(6)

have an affine dependence on ρt, and the LPV-SS of Eq. (6)
approximates that of Eq. (1) sufficiently well.

2.2 PCA-based method

Let us assume that the scheduling variable θt have been
sampled at the time instants t = jTs, j = 0, 1, . . . , N − 1;
thus, the following matrix is defined as:

Θ = [ θ(0) · · · θ((N − 1)Ts) ] ∈ Rl×N . (7)

The rows Θi of the data matrix need to be normalized by
an affine map Ni to achieve scaled, zero mean data

Θn
i = Ni(Θi), Θi = N−1i (Θn

i ) (8)

and a normalized data matrix

Θn = [ θn(0) · · · θn((N − 1)Ts) ] ∈ Rl×N

=N (Θ) (9)

is defined.

In order to apply the PCA to the normalized data, a
singular value decomposition is introduced as follows:

Θn = [Us, Un]

[
Σs [0, 0]
0 [Σn, 0]

] [
V T
s

V T
n

]
(10)

where Σs has m significant singular values, and Σn has l−
m less significant singular values. Therefore, the following
approximation holds

Θ̂n =
[
θ̂n(0) · · · θ̂n((N − 1)Ts)

]
∈ Rl×N (11)

=UsΣsV
T
s

'Θn.

The matrix Us ∈ Rl×m represents the basis of the signifi-
cant column space of the data matrix Θn, and can be used
to obtain a reduced mapping q from θt to ρt by computing

ρt = UT
s N (θt). (12)

The matrix

Q̂(θt) =

[
Â(ρt) B̂(ρt)

Ĉ(ρt) D̂(ρt)

]
∈ R(nx+ny)×(nx+nu) (13)

in Eq. (6) can be calculated by substituting

θt = N−1(Usρt) (14)

into Eq. (3). Note that N−1 denotes the row-wise rescaling
map.
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Fig. 1. Structure of autoencoder (two-layer).
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Fig. 2. Diesel engine air path system

2.3 Autoencoder neural network-based method

An autoencoder is a special neural network that is defined
and trained to replicate its input at the output. The
autoencoder has two parts: an encoder and a decoder,
and each can have multiple layers. Fig. 1 is a simple
autoencoder equipped with a single encoder layer and a
single decoder layer. The weighting and bias parameters

are optimized by minimizing the error between θnt and θ̂nt .
The nonlinear activation functions can be used for both of
the encoder and decoder layers to obtain a reasonable low
dimensional transformation of the scheduling variables.

The nonlinear mapping obtained between θnt and θ̂nt for the
reduced scheduling variables leads to solving of the other
optimization problem to obtain a reduced LPV model for
controller design (Rizvi et al., 2018).

3. DIESEL ENGINE AIR PATH SYSTEM

3.1 Plant model

The plant to be controlled is a direct-injection diesel engine
manufactured by Toyota. It has four cylinders with a 2.8-
L displacement. As shown in Fig. 2, the engine has a
variable-geometry turbocharger (VGT) and an exhaust-
gas recirculation (EGR) system.

The control inputs are the VGT valve closing uvgt [%
closed] and EGR valve opening uegr [% open]; in addition,
the controlled variables are the intake manifold pressure
pim [kPa] and EGR ratio regr ∈ [0, 1] which is defined as

regr =
Wegr

Wegr +Wpt
(15)
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Table 1. List of variables

Symbol Description Units

Wc Compressor mass flow [kg/s]
Wpt Pre-Throttle mass flow [kg/s]
Wegr EGR mass flow [kg/s]
Wei Cylinder mass flow [kg/s]
Wt Turbine mass flow [kg/s]
Wf Fuel mass flow [kg/s]

ppt Pre-throttle manifold pressure [kPa]
pim Intake manifold pressure [kPa]
pem Exhaust manifold pressure [kPa]

Pc Compressor power [W]
Pt Turbine power [W]

Tem Exhaust manifold temperature [K]
Teo Cylinder out temperature [K]

Apt Effective opening area
(Pre-throttle) [m2]

Aegr Effective opening area(EGR) [m2]
Avgt Effective opening area(VGT) [m2]

regr EGR ratio [%]

ηtc Turbocharger efficiency

ωe Engine speed [rpm]

Qf Fuel injection quantity [mm3/st]

where Wegr [kg/s] and Wpt [kg/s] denote the EGR flow
and throttle flow, respectively. Furthermore, we define the
engine speed as ωe [rpm]. The variables and constants
used in the model are listed in Table 1 and Table 2.
For simplicity, we assume that cp, the specific heat at a
constant pressure, and cv, the specific heat at a constant
volume, are constants, and all the gases considered in this
research obey the ideal gas law.

The diesel engine air path model can be described by
the following four differential equations (Hirata et al.,
2018a,b).

ṗim =
γR

Vim
(TptWpt + TegrWegr − TimWei), (16)

ṗem =
γR

Vem
(TeoWei + TeoWf − TemWegr − TemWt),

(17)

ṗpt =
γR

Vpt
(TicWc − TptWpt), (18)

Ṗc =
1

τc
(ηtcPt − Pc) (19)

where

Wei =
ωeVdηv

120RTim
pim,

Wpt =Apt
ppt√
RTpt

ψ

(
pim
ppt

)
,

Wegr =Aegr
pem√
RTem

ψ

(
pim
pem

)
,

Wt =Avgt
pem√
RTem

ψ

(
pcab
pem

)
,

Wc =
Pc

cpTcab

[(
ppt
pcab

) γ−1
γ − 1

] ,

Table 2. List of constants

Symbol Description Units

pcab Ambient pressure [Pa]

Tpt Pre-throttle manifold
temperature [K]

Tim Intake manifold temperature [K]
Tcab Ambient temperature [K]
Tic Intercooler out temperature [K]
Tegr EGR cooler out temperature [K]

ηv Cylinder efficiency

R Specific gas constant [J/kg/K]
cp Specific heat [J/kg/K]

at constant pressure
γ Ratio of specific values

Vim Volume (Intake manifold) [m3]
Vem Volume (Exhaust manifold) [m3]
Vpt Volume (Pre-throttle manifold) [m3]
Vd Volume (Cylinder) [m3]

τc Time constant (Compressor) [s]

ρf Fuel density [kg/mm3]

Ncyl Number of cylinder

Pt =WtcpTem

[
1−

(
pcab
pem

) γ−1
γ

]
,

Wf = ρfQf
Ncyl

2
· ωe

60

In this model, Tem = Teo is assumed, and Teo is calculated
using a nonlinear function of a fuel injection quantity Qf

followed by a first-order lag filter (Hirata et al., 2018b).

3.2 LPV model representation

By defining the state vector x, control input u, and
output y as x = [pim, pem, ppt, Pc]

T , u = [Avgt, Aegr]T ,
y = [pim, regr]T , we have the following LPV model.

ẋ=A(θt)x+B(θt)u, (20)

y =C(θt)x+D(θt)u (21)

where

θt = [θ1, . . . , θ9] ,

A(θt) =



− γVdηv
120Vim

θ1 0
γ

Vim
θ2 0

γR

120Vem
θ3 0 0 0

0 0 − γ

Vpt
θ2

γRTic
VptCpTcab

θ4

0 0 0 − 1

τc


,

B(θt) =


0

γRTegr
Vim

θ5

− γ

Vem
θ6 −

γ

Vem
θ7

0 0
ηtccp
τc

θ8 0

 ,

C(θt) =

[
10−3 0 0 0

0 θ9 0 0

]
, D(θt) = 0.

The elements of the scheduling variables θt are described
as follows:
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Fig. 3. Simulation pattern (engine speed ωe and fuel
injection quantity Qf ).

θ1 = ωe,

θ2 =Apt

√
RTptψ

(
pim
ppt

)
,

θ3 = Temωe

(
Vdηv
RTim

+
ρfQfNcyl

pim

)
,

θ4 =
1[(

ppt
pcab

) γ−1
γ − 1

] ,

θ5 =
ψ
(

pim
pem

)
pem

√
RTem

,

θ6 =
√
RTempemψ

(
pcab
pem

)
,

θ7 =
√
RTempemψ

(
pim
pem

)
,

θ8 = pem

√
Tem
R

ψ

(
pcab
pem

)[
1−

(
pcab
pem

) γ−1
γ

]

θ9 =

Aegr√
RTem

ψ
(

pim
pem

)
Aegr

pem√
RTem

ψ
(

pim
pem

)
+Apt

ppt√
RTpt

ψ
(

pim
ppt

) ,
where

ψ

(
pout
pin

)
=

1√
2
, (0 ≤ pout

pin
< 0.5)√

2
pout
pin

(
1− pout

pin

)
, (0.5 ≤ pout

pin
< 1)

.

3.3 LPV model reduction by PCA-based method

Θ in Eq. (7) was obtained by performing the mode
operation test in which the engine speed and fuel injection
quantity were varied as shown in Fig. 3. Since the sampling
period of simulation was 1 ms and the obtained data was
comparatively longer, the data was re-sampled with the
sampling period of 200 ms. The data length was reduced
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Fig. 4. Normalized scheduling variables θni .
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Fig. 5. Sum of RMSE of estimated θn for different number
of scheduling variables.

from 160001 to 801. Furthermore, it was normalized so as
to have zero mean and unit variance, and Θn in Eq. (9)
was obtained. The time responses of θni , i = 1, . . . , 9 are
shown in Fig. 4.

Then, we applied the singular value decomposition Eq. (10)
to Θn for m = 1, 2, . . . , 9, and the estimated scheduling
parameters Θ̂n in Eq. (11) were calculated. The sum of
the RMSE

J =

l∑
i=1

√
(θni − θ̂ni )2

N

was shown in Fig. 5. This RMSE was reduced by increasing
the number of the reduced scheduling variables. For

m = 2, the time responses of θn and θ̂n are shown in
Fig. 6. From this figure, some estimation error is confirmed
for θn1 , θn4 , and θn9 . These errors were reduced by increasing
the number of the reduced scheduling variables to m = 3
as shown in Fig. 7. θn4 still reflects some error; however,
other variables replicate the original scheduling variables
well. This can be confirmed by Fig. 8 which indicates the
RMSE of θni for m = 1, 2, 3.
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Fig. 6. Estimation result (m=2).
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Fig. 7. Estimation result (m=3).
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3.4 LPV model reduction by autoencoder-based method

We constructed an autoencoder to have four layers for both
the encoder and decoder parts. A selu (scaled exponential
linear unit) function was used as an activation function for
the first three layers and a linear function was used for the
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Fig. 9. Estimation result (m=2).
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Fig. 10. Estimation result (m=1).

Table 3. Structure of autoencoder

Layer Activation func. size

Encoder-1 selu 9
Encoder-2 selu 7
Encoder-3 selu 5
Encoder-4 linear m

Decoder-1 selu 5
Decoder-2 selu 7
Decoder-3 selu 9
Decoder-4 linear 9

last layer for both the encoder and decoder parts. The selu
is defined as follows:

selu(x) =

{
λx (x > 0)
λα(ex − 1) (x ≤ 0)

(22)

where α and λ are constants, and they are chosen such that
the mean and variance of the inputs are preserved between
the two consecutive layers (Klambauer et al., 2017). The
structure of the autoencoder neural network is shown in
Table 3. A Keras neural network API in the Tensorflow
library that is written in Python was used to optimize the
autoencoder.

The autoencoder was trained so as to minimize the mean
squared reconstruction error of θn− θ̂n for the normalized
data Θn —the same data that was used for the PCA-
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Fig. 11. Estimation error (m=1,2, and 3).

based method. An Adagrad optimizer was used to learn
the neural network.

The time response of the reconstructed scheduling vari-

ables θ̂n is shown in Fig. 9 for m = 2. From this figure, we
can confirm that all the reconstructed scheduling variables
replicate the original ones, even though the number of the
reduced scheduling variables is two. Fig. 10 shows the re-
sult when m = 1, and it can be seen that the performance
is similar to the PCA-based method for m = 2. This can be
confirmed by comparing Fig. 8 and Fig. 11 which indicate
the RMSE of θni for m = 1, 2, 3.

4. SUMMARY

In this study, we applied two scheduling parameter reduc-
tion methods on the LPV model of a diesel engine air path
system, and the accuracy of the reconstructed scheduling
variables was evaluated. In the PCA-based method, a
minimum of three scheduling variables were required to
replicate θn. On the other hand, we confirmed through
simulations that the AE-based method exhibits the po-
tential to reduce the number of the scheduling variables
by one, as compared to the PCA-based method. As a po-
tential future work, a gain-scheduled H∞ controller can be
designed using the reduced LPV model, and the evaluation
of the relationship between the control performance and
the number of the reduced scheduling variables will be
insightful.
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