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1. INTRODUCTION

Representations where errors or measurement noises are present
on both inputs and outputs are usually called errors–in–
variables (EIV) models. This class of models plays an important
role in many engineering applications like, for instance, array
signal processing, fault detection, blind channel equalization,
image processing, etc. (Van Huffel and Lemmerling, 2002).

The identification of EIV models has been deeply investi-
gated in the literature. Many time and frequency domain
methods have been developed for its solution. An exhaus-
tive presentation of this subject can be found in the recent
book (Söderström, 2018), where many different approaches
are deeply analyzed and compared with each other. Among
these methods, one can find the bias–eliminated least squares
(BELS), the Frisch scheme, the generalized instrumental vari-
ables estimates (GIVE), the covariance matching and the max-
imum likelihood.

In particular, the Frisch scheme is one of the more interesting
approaches for the EIV identification. It has its roots in (Frisch,
1934), where the problem was treated in the static case. Subse-
quently, the problem has been proposed for identifying dynamic
systems in (Beghelli et al., 1990) and the further elaboration of
robust selection criteria has allowed its application to real data.
A complete treatment of this subject can be found in (Guidorzi
et al., 2008; Söderström, 2018).

The aim of this paper is not to propose a new solution, but
rather it takes the EIV identification problem as a motiva-
tion/background for studying some mathematical and geometri-
cal aspects that arise when the Frisch scheme is used as solution
method. In particular, by making use of the Discrete Fourier
Transform (DFT) properties, the paper gives a thorough analy-
sis of the analogies and differences between the time and fre-
quency domain formulations. With reference to the frequency
domain, some results reported in the paper concern the gen-
eral aspects of the finite–dimensional discrete–time dynamic
systems. In particular, it is shown how the behavior of noise–

free input–output signals of finite length can be equivalently
represented by periodic sequences.

The organization of the paper is as follows. Section 2 defines
the EIV identification problem in the time and in the frequency
domains. In Section 3 the EIV identification problem is devel-
oped in the time domain and the related Frisch scheme problem
is presented. In Section 4 the EIV identification problem is
presented with a frequency domain formulation. Firstly, an in–
depth analysis of the noise–free case is performed. Then, the
Frisch Scheme problem is formulated in the frequency domain.
Section 5 exploits the geometric properties of the Frisch scheme
in order to characterize the solution sets defined in the previous
Sections 3 and 4. The related main theorems are recalled. The
proofs can be found in (Soverini and Söderström, 2019b), one
of the proofs has not appeared before. In Section 6 the Frisch
method is discussed within the GIVE method, originally pro-
posed in (Söderström, 2011), which represents a more general
framework for the identification of EIV models. Finally, some
concluding remarks are reported in Section 7.

2. STATEMENT OF THE PROBLEM

Consider the linear time–invariant SISO system described by
the linear difference equation

A(z−1) ŷ(t) = B(z−1) û(t), (1)

where û(t), ŷ(t) are the noise–free input and output and
A(z−1), B(z−1) are polynomials in the backward shift oper-
ator z−1

A(z−1) = 1 + α1 z
−1 + · · ·+ αn z

−n (2)

B(z−1) = β0 + β1 z
−1 + · · ·+ βn z

−n. (3)

In the errors–in–variables (EIV) environment the input and
output measurements are both affected by additive noise, so that
the available signals are

u(t) = û(t) + ũ(t) (4)

y(t) = ŷ(t) + ỹ(t). (5)

The following assumptions are made.
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A1. System (1) is asymptotically stable.
A2. A(z−1) and B(z−1) do not share any common factor.
A3. The order n of the system is assumed as a priori known.
A4. The noise–free input û(t) can be either a zero–mean er-

godic process or a quasi–stationary bounded deterministic
signal, i.e. such that the limit

lim
N→∞

1

N

N
∑

t=1

û(t) û(t− τ) (6)

exists ∀τ (Ljung, 1999). Moreover, û(t) is considered as
persistently exciting of a sufficiently high order.

A5. The additive noises ũ(t) and ỹ(t) are zero–mean ergodic
white processes with unknown variances λ∗u and λ∗y , re-
spectively.

A6. ũ(t), ỹ(t) and û(t) are mutually uncorrelated.

Remark 1. The results proposed in the following can be easily
extended to the case when the polynomialsA(z−1) andB(z−1)
have different degrees na and nb. Also the presence of a delay
in the polynomial B(z−1) can be easily taken into account.
However, for simplicity of exposition in this paper the poly-
nomials A(z−1) and B(z−1) have the structure (2)–(3).

Let {u(t)}N−1
t=0 and {y(t)}N−1

t=0 be a set of input and output

observations atN equidistant time instants. For {u(t)}N−1
t=0 , the

corresponding Discrete Fourier Transform (DFT) is defined as

U(ωk) =
1√
N

N−1
∑

t=0

u(t) e−jωkt (7)

whereωk = 2πk/N and k = 0, . . . , N−1. Similarly, let Y (ωk)

be the DFT of {y(t)}N−1
t=0 . The classical EIV identification

problem can be stated as follows.

Identification problem – time domain. Let u(t), y(t) be a
set of noisy measurements generated by an EIV system of
type (1)–(5), under Assumptions A1–A6. Estimate the system
parameters αi (i = 1, . . . , n), βi (i = 0, . . . , n) and the noise
variances λ∗u, λ∗y .

Identification problem – frequency domain. Let U(ωk), Y (ωk)
be a set of noisy DFT measurements generated by an EIV
system of type (1)–(5), under Assumptions A1–A6. Estimate
the system parameters αi (i = 1, . . . , n), βi (i = 0, . . . , n)
and the noise variances λ∗u, λ∗y .

3. TIME DOMAIN SETUP

In this section a time domain description for the EIV model
(1)–(5) is introduced. This setup has been originally developed
in (Beghelli et al., 1990) and subsequently proposed in several
papers, see e.g. (Diversi et al., 2006; Guidorzi et al., 2008;
Söderström, 2018).

3.1 The noise–free case

Introduce the parameter vectors

θα = [1α1 . . . αn]
T (8)

θβ = [β0 β1 . . . βn]
T (9)

and define the following vector

θ = [ θTα − θTβ ]T , (10)

with dimension
pθ = 2n+ 2. (11)

By defining the vectors

ϕ̂(t) =[ ŷ(t) . . . ŷ(t− n) û(t) . . . û(t− n) ]T (12)

ϕ(t) =[ y(t) . . . y(t− n) u(t) . . . u(t− n) ]T (13)

ϕ̃(t) =[ ỹ(t) . . . ỹ(t− n) ũ(t) . . . ũ(t− n) ]T , (14)

the EIV model (1)–(5) can be rewritten in the following form

ϕ̂T (t) θ = 0 (15)

ϕ(t) = ϕ̂(t) + ϕ̃(t). (16)

In the noise–free case, from equation (15) a matrix form can be
derived, by computing the following pθ×pθ sample covariance
matrix

Σ̂t =
1

N − n

t=N−1
∑

t=n

ϕ̂(t) ϕ̂T (t), (17)

where the subscript t has been introduced to denote that the

matrix Σ̂t has been computed with the time domain data û(t),

ŷ(t), and to distinguish it from the matrix Σ̂f that will be
defined in Section 4. It then holds

Σ̂t θ = 0. (18)

It is worth recalling that the matrix Σ̂t can also be rewritten in
the following way, resembling the procedure of Section 5 for
the frequency domain data. Define the Hankel matrices

X̂y =









ŷ(n) . . . ŷ(0)
ŷ(n+ 1) . . . ŷ(1)

...
...

ŷ(N − 1) . . . ŷ(N − n− 1)









(19)

X̂u =









û(n) . . . û(0)
û(n+ 1) . . . û(1)

...
...

û(N − 1) . . . û(N − n− 1)









(20)

and construct the matrix of the input–output samples

X̂ = [X̂y | X̂u]. (21)

The equation (1) for t = n, . . . , N − 1 can be rewritten as

X̂ θ = 0. (22)

Relation (18) is then obtained, by computing the sample covari-
ance matrix as follows

Σ̂t =
1

(N − n)
(X̂T X̂). (23)

Remark 2. Because of Assumptions A2 and A4, relation (15),
or relation (1), cannot be satisfied by polynomials A(z−1) and
B(z−1) with degree lower than n. Therefore, when the number
of equations is such that N − n ≥ 2n− 1, i.e N ≥ 3n− 1, the

matrix Σ̂t in (17), or in (23), is positive semidefinite, with only
one zero eigenvalue, i.e.

Σ̂t ≥ 0 dimker Σ̂t = 1. (24)

3.2 The noisy case

When N → ∞, we can define the covariance matrix

Σ̂t = E [ϕ̂(t) ϕ̂T (t)], (25)

where E[·] denotes the mathematical expectation.

In the presence of noise, because of Assumptions A5–A6, we
obtain the following pθ × pθ positive definite noisy covariance
matrix

Σt = E [ϕ(t)ϕT (t)] = Σ̂t + Σ̃∗
t , (26)
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where

Σ̃∗
t =

[

λ∗y In+1 0
0 λ∗u In+1

]

. (27)

Starting from an assumed knowledge of the noisy matrix Σt, it
is then possible to write the following system of 2n+2 algebraic
non–linear equations

(

Σt − Σ̃∗
t

)

θ = 0, (28)

with 2n+3 unknowns, i.e. the 2n+1 free coefficients of θ and
the two variances λ∗u and λ∗y .

The Frisch scheme (Beghelli et al., 1990; Guidorzi et al., 2008;
Söderström, 2018). The relation (28) is the basis of the Frisch

scheme method. As stated in Remark 2, the matrix Σ̂t = Σt −
Σ̃∗

t is singular (positive semidefinite) with one eigenvalue equal
to zero and θ is the corresponding eigenvector. For a given Σt

and assuming that Σ̃∗
t has the simple structure of type (27), the

problem is to find appropriate estimates of the noise variances
and then determine the parameter vector θ.

For this purpose, one can proceed characterizing the solution set
defined below. This study can be seen as a first step towards the
solution of the EIV identification problem in the time domain.
It turns out that the equations (28) alone are not enough to
determine a unique solution.

Frisch scheme solution set – time domain. For a given Σt,
determine the set of non–negative definite diagonal matrices of
type

Σ̃t = diag
[

λy In+1, λu In+1

]

(29)

such that

Σt − Σ̃t ≥ 0 det
(

Σt − Σ̃t

)

= 0. (30)

The theorems characterizing the solution set will be presented
in Section 5.

4. FREQUENCY DOMAIN SETUP

In this section a frequency domain description for the EIV
model (1)–(5) is introduced. This setup has been originally
developed in (Soverini and Söderström, 2014, 2015).

4.1 The noise–free case

The transfer function of (1) is represented as

G(e−jω) =
B(e−jω)

A(e−jω)
. (31)

Similarly to equation (7), let Û(ωk) and Ŷ (ωk) be the DFTs
of the signals û(t) and ŷ(t) appearing in equation (1). It is a
well–known fact (Pintelon et al., 1997; McKelvey, 2002) that
for finite N , even in absence of noise, the ratio of the DFTs
Ŷ (ωk) and Û(ωk) (ωk = 2πk/N ) is not equal to the true
transfer function

G(e−jωk) 6= Ŷ (ωk)

Û(ωk)
. (32)

Rather, it can be proved that the DFTs Ŷ (ωk) and Û(ωk) satisfy
exactly an extended model that includes also a transient term,
i.e.

A(e−jωk ) Ŷ (ωk) = B(e−jωk) Û(ωk) + T (e−jωk), (33)

where T (z−1) is a polynomial of order n− 1

T (z−1) = τ0 + τ1 z
−1 + · · ·+ τn−1 z

−n+1 (34)

that takes into account the effects of the initial and final condi-
tions of the experiment.

By considering the whole number of frequencies, relation (33)
can be rewritten in a matrix form. For this purpose, introduce
the vector containing the transient coefficients

θτ = [τ0 . . . τn−1]
T (35)

and define the following vector

Θ = [ θTα − θTβ − θTτ ]T , (36)

with dimension
pΘ = 3n+ 2. (37)

In absence of noise, the parameter vector (36) can be recovered
by means of the following procedure. Define the row vectors

Zn+1(ωk) = [1 e−jωk . . . e−j(n−1)ωk e−jnωk ] (38)

Zn(ωk) = [1 e−jωk . . . e−j(n−1)ωk ], (39)

whose entries are constructed with multiple frequencies of ωk,
and construct the following matrices

Π =







Zn+1(ω0)
...

Zn+1(ωN−1)






Ψ =







Zn(ω0)
...

Zn(ωN−1)






. (40)

of dimensionN × (n+ 1) and N × n, respectively.

Remark 3. It can be observed that the entries of the matrices in
(40) are of type

fik = e−j 2π

N
(i−1)(k−1), i = 1, . . . , N, k = 1, . . . , n. (41)

They also constitute the entries of the N ×N Fourier matrix

FN =
1√
N

[fik], i, k = 1, . . . , N. (42)

In particular, when N = n, it results in FN = 1√
N
Ψ.

From the DFT samples Û(ωk) and Ŷ (ωk) construct the follow-
ing N ×N diagonal matrices

V̂ diag
U = diag [Û(ω0), Û(ω1), . . . , Û(ωN−1)] (43)

V̂ diag
Y = diag [Ŷ (ω0), Ŷ (ω1), . . . , Ŷ (ωN−1)]. (44)

Compute the N × (n+ 1) matrices

Φ̂Y = V̂ diag
Y Π Φ̂U = V̂ diag

U Π (45)

and construct the N × pΘ matrix

Φ̂ = [Φ̂Y | Φ̂U | Ψ]. (46)

Thus, eq. (33) for k = 0, . . . , N − 1 can be rewritten as

Φ̂Θ = 0. (47)

It then holds
Σ̂Θ = 0, (48)

where Σ̂ is the pΘ × pΘ matrix

Σ̂ =
1

N
(Φ̂HΦ̂) (49)

and (·)H denotes the transpose and conjugate operation.

Remark 4. Because of Assumptions A2 and A4, relation (33)
cannot be satisfied by polynomials A(z−1) and B(z−1) with
degree lower than n. Therefore, when the number of equations

is such that N ≥ 3n − 1, the matrix Σ̂ in (49) is positive
semidefinite, with only one zero eigenvalue, i.e.

Σ̂ ≥ 0 dimker Σ̂ = 1. (50)

Remark 5. It is worth observing the analogies between the time
domain relations (22), (18) and the frequency domain relations
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(47), (48). Also Remark 2 is analogue to Remark 4. Finally,
observe that both (24) and (50) hold if the data length satisfies
the same condition N ≥ 3n − 1, where 3n − 1 is the number
of the free coefficients of the vector Θ in (36). In other words,
also in the time domain, the data length must take into account
the transient effect, due to the initial conditions, even if they do
not explicitly appear as unknowns in the system of equations
(22). Of course, one could expand the model (15) involving n
additional parameters describing the initial conditions and then
consider the equations (22) for t = 0, . . . , N − 1. However, the
net effect is null, since n additional equations are used, and n
more unknowns are introduced.

Remark 6. If the signals û(t) and ŷ(t) happen to beN–periodic,
then the term T (e−jωh) in equation (33) is identically zero
(Pintelon and Schoukens, 2012). In this case, the matrix in (46)
can be reduced to the N × (2n+ 2) matrix

Φ̂per = [Φ̂Y | Φ̂U ]. (51)

It then holds
Φ̂per θ = 0 (52)

and
Σ̂per θ = 0, (53)

where Σ̂per is the (2n + 2) × (2n + 2) positive semidefinite
matrix

Σ̂per =
1

N
(Φ̂H

per Φ̂per) (54)

and θ is the 2n+ 2 parameter vector defined in (10).

In the following it will be shown how it is possible to reorganize
the equations in order to eliminate θτ . Two ways are possible.
One can start from the equation (47) that involves the “data”

matrix Φ̂. Alternatively, it is possible to consider the equation

(48) and work on the “covariance” matrix Σ̂.

Method a Relation (47) can be expanded as follows

Φ̂Y θα − Φ̂U θβ −Ψ θτ = 0. (55)

From (55) we obtain

θτ = (ΨH Ψ)−1ΨH Φ̂Y θα − (ΨH Ψ)−1ΨH Φ̂U θβ

= (ΨH Ψ)−1ΨH
(

Φ̂Y θα − Φ̂U θβ

)

. (56)

The expression (56) can then be substituted into (55). Defining
the matrix

Ψ̄ = Ψ(ΨH Ψ)−1ΨH , (57)

it is possible to construct the new “data” matrix

Φ̄ = [ (I − Ψ̄) Φ̂Y | (I − Ψ̄) Φ̂U ], (58)

such that
Φ̄ θ = 0. (59)

Remark 7. From (56), one can observe that only two ways are
possible, in order to have θτ = 0, which correspond to the
following conditions

Φ̂Y θα − Φ̂U θβ = 0 (60)

(ΨH Ψ)−1ΨH = 0. (61)

The condition (60) means that the sequences Û(ωk), Ŷ (ωk) are
N–periodic, with a finite value N . In fact, (60) coincides with
the relation (52). The condition (61) holds only when N → ∞.
In fact, it is possible to show that

(ΨH Ψ)−1ΨH → 0 when N → ∞, with velocity
1

N
. (62)

The proof of (62) can be found in (Soverini and Söderström,
2019b).

A similar result can be proved also for the matrix Ψ̄, defined in
(57) and appearing in (58). In fact, it can be seen that its entries
ψ̄ij (i, j = 1, . . . , N ) are bounded by |ψ̄ij | ≤ n/N . Thus, the
following property holds

Ψ̄ → 0 when N → ∞, with velocity
n

N
. (63)

From (58), thanks to (63), it readily follows that the sequences

Û(ωk), Ŷ (ωk) become asymptotically periodic, whenN → ∞.

It is worth observing that relations (58)–(59) have been derived
from the relations (46)–(47). Looking at (58), one can wonder
if it is possible to go further, asking if and how it is possible to
map a structure of type (46)–(47), related to non periodic data,
into a reduced structure of type (51)–(52), where equivalent
periodic data are linked by the same system parameters θα,
θβ . For this purpose, the following result can be proved. A
constructive proof is reported in (Soverini and Söderström,
2019b).

Existence of equivalent periodic signals. Given two non peri-
odic DFT sequences of length N

V̂U = [Û(ω0) . . . Û(ωN−1)]
T (64)

V̂Y = [Ŷ (ω0) . . . Ŷ (ωN−1)]
T (65)

such that relations (46)–(47) hold, it is “generically” possible
to find (up to a scalar factor) two equivalent periodic sequences
with length N

V̂C = [Ĉ(ω0) . . . Ĉ(ωN−1)]
T (66)

V̂D = [D̂(ω0) . . . D̂(ωN−1)]
T (67)

such that

[Φ̂C | Φ̂D] θ = 0, (68)

where

Φ̂C = V̂ diag
C Π Φ̂D = V̂ diag

D Π (69)

and V̂ diag
C , V̂ diag

D are defined according to (43)–(44).

Method b Partition the matrix Σ̂, defined in (49), as follows

Σ̂ =







Σ̂11 Σ̂12 Σ̂13

Σ̂21 Σ̂22 Σ̂23

Σ̂31 Σ̂32 Σ̂33






, (70)

where Σ̂11 and Σ̂22 are square matrices of dimension n+1 and

Σ̂33 is a square matrix of dimension n. Relation (48) can be
expanded as follows

Σ̂11 θα − Σ̂12 θβ − Σ̂13 θτ = 0 (71)

Σ̂21 θα − Σ̂22 θβ − Σ̂23 θτ = 0 (72)

Σ̂31 θα − Σ̂32 θβ − Σ̂33 θτ = 0. (73)

From (73) we obtain

θτ = Σ̂−1
33

(

Σ̂31 θα − Σ̂32 θβ

)

. (74)

The expression (74) can then be substituted into (71) and (72).
Defining the following matrices

Σ̂red =

[

Σ̂11 Σ̂12

Σ̂21 Σ̂22

]

T̂ =

[

Σ̂13Σ̂
−1
33 Σ̂31 Σ̂13Σ̂

−1
33 Σ̂32

Σ̂23Σ̂
−1
33 Σ̂31 Σ̂23Σ̂

−1
33 Σ̂32

]

(75)

it is possible to define the following problem of reduced dimen-
sion

Σ̂f = Σ̂red − T̂ (76)

Σ̂f θ = 0. (77)
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The subscript f denotes that the matrix Σ̂f has been computed

with the DFTs Û(ωk), Ŷ (ωk), by using the frequency domain
representation (33).

Remark 8. The following results have been verified numerically.

1. The matrix Σ̂f in (76) coincides with the positive semidef-
inite matrix

Σ̂f =
1

N
(Φ̄H Φ̄), (78)

where Φ̄ is defined in (58).

2. The matrix Σ̂f in (76) or (78) coincides with the matrix

Σ̂t in (23) if Σ̂t is obtained by dividing with N , instead of
(N − n).

For noise–free data, the ratio

ρ̂ =
||T̂ ||F

||Σ̂red||F
(79)

may be taken as a measure of the effect of the transient term,
where || · ||F is the Frobenius norm of a matrix.

Remark 9. Given the input–output DFTs Û(ωk), Ŷ (ωk), the
ratio ρ̂ depends on both the parameters and the order of the
system. Note that ρ̂ is a function of the data length N . In
particular, ρ̂→ 0 if N → ∞, and

ρ̂max = ρ̂ (Nmin), (80)

where Nmin = 3n − 1 is the minimum length of the input–
output sequence, i.e. the minimum number of equations so that
relation (50) holds.

4.2 The noisy case

In the presence of noise, the previous procedure can be modified
as follows. With the noisy input–output DFT samples U(ωk)
and Y (ωk) construct the N ×N diagonal matrices

V diag
U = diag [U(ω0), U(ω1), . . . , U(ωN−1)] (81)

V diag
Y = diag [Y (ω0), Y (ω1), . . . , Y (ωN−1)]. (82)

Then, compute the matrices

ΦY = V diag
Y Π ΦU = V diag

U Π (83)

and construct the N × pΘ matrix

Φ = [ΦY |ΦU | Ψ] . (84)

Because of Assumptions A5–A6, whenN → ∞, we obtain the
following pΘ × pΘ positive definite matrix

Σ = lim
N→∞

1

N
(ΦHΦ) = Σ̂ + Σ̃∗ , (85)

where
Σ̃∗ = diag

[

λ∗y In+1, λ
∗
u In+1, 0 In

]

. (86)

From (48) and (85), the parameter vector Θ, defined in (36),
can be obtained as the kernel of

(

Σ− Σ̃∗
)

Θ = 0 , (87)

where the first entry is normalized to 1.

Remark 10. The noise Assumptions A5–A6 are necessary in

order to obtain a diagonal matrix Σ̃∗, as defined in (86), when
N → ∞. On the other hand, one can observe that for large N
the effect of the transient polynomialT (z−1) is negligible since

it vanishes with order O (1/
√
N) (Pintelon and Schoukens,

2012) and the data could be treated as periodic, as done in
Remark 6. This is a common procedure used in many frequency

domain identification approaches, see e.g. (Ljung, 1993; Smith,
2014).

At this point, one can proceed as in Section 4.1, in order to
eliminate θτ . Partition the matrix Σ, defined in (85), according

to the matrix Σ̂ in equation (70). Expanding relation (87) as in
(71)–(73), we obtain

Σ̂11 θα − Σ12 θβ − Σ13 θτ = 0 (88)

Σ21 θα − Σ̂22 θβ − Σ23 θτ = 0 (89)

Σ31 θα − Σ32 θβ − Σ33 θτ = 0. (90)

Next (90) implies

θτ = Σ−1
33

(

Σ31θα − Σ32 θβ

)

. (91)

Substitute now the expression (91) in (88)–(89), define the
matrices

Σred =

[

Σ11 Σ12

Σ21 Σ22

]

, T =

[

Σ13Σ
−1
33 Σ31 Σ13Σ

−1
33 Σ32

Σ23Σ
−1
33 Σ31 Σ23Σ

−1
33 Σ32

]

(92)

and set

R = Σred − T. (93)

Defining the matrix

R̃∗ = diag
[

λ∗y In+1, λ
∗
u In+1

]

(94)

it is then possible to derive the system of equations (cf. (77))
(

R − R̃∗
)

θ = 0. (95)

Equation (95) constitutes a system of 2n + 2 algebraic non–
linear equations with 2n + 3 unknowns, i.e. the 2n + 1 free
coefficients of θ and the two variances λ∗u and λ∗y .

Remark 11. With reference to relation (95) we can repeat
considerations similar to those given after equation (28) and we
can define an analogue Frisch scheme problem in the frequency
domain. Similarly to the time domain, we can characterize the
properties of the solution set defined below, and this study
can be seen as a first step towards the solution of the EIV
identification problem in the frequency domain. It is worth
observing the analogy of the time domain relations (29), (30)
with the following relations (96), (97).

Frisch scheme solution set – frequency domain. Assigned R,
determine the set of non–negative definite diagonal matrices of
type

R̃ = diag
[

λy In+1, λu In+1

]

(96)

such that

R− R̃ ≥ 0 det
(

R− R̃
)

= 0. (97)

The theorems characterizing the solution set will be presented
in Section 5.

Remark 12. As a final consideration of this section, we can
state that to take into account the transient effect, by including
the vector θτ in (36), has a twofold meaning, theoretical and
practical. From the theoretical point of view, this is the only way
that allows a one to one correspondence between the time and
the frequency domain approaches, as proved in the paper. From
the practical point of view, if the vector θτ is not considered,
it means that the data are treated as periodic even when they
are not. When the data length N is large, this effect can be
considered as negligible for many practical applications, see
Remark 10. However, it is never null. With reference to the
identification of FIR models, this aspect is well illustrated in
(Soverini and Söderström, 2019a) by the numerical example 2.
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5. THE FRISCH SCHEME CONTEXT

The purpose of this subsection is to exploit some geometric
properties of the Frisch scheme (Beghelli et al., 1990; Guidorzi
et al., 2008; Söderström, 2018) in order to characterize the
solution sets defined in Sections 3.2 and 4.2.

It must be observed that, interchanging the notation Σt with
R, the formulation of the Frisch scheme in the time domain,
involving the equations (27)–(30), is formally equal to the
formulation in the frequency domain, involving the equations
(94)–(97). In fact, both Σt and R are real–valued, positive
definite matrices, with dimension pθ×pθ. Moreover, the matrix

Σ̃∗
t in (27) coincides with R̃∗ in (94), as well the structure of the

matrices Σ̃t in (29) coincides with that of the matrices R̃ in (96).

On the basis of the previous observation, it can be concluded
that the Frisch scheme can be studied in the time and in the
frequency domain. The properties of the locus of the solutions
in the noise plane R2 will be the same. In the following we
formulate the theorems by making reference to the frequency
domain problem, equal theorems hold for the time domain.

Remark 13. The theorems concern some geometric properties
of the equations (96)–(97). It is worth recalling that these equa-
tions arise from the study of the EIV dynamic system defined
by the relations (1)–(5) under the Assumptions A1–A6. This
setup is known as the “dynamic” Frisch scheme (Beghelli et al.,
1990), since it can be considered as a subcase of the classical
scheme proposed by the Nobel prize laureate Ragnar Frisch in
1934 (Frisch, 1934), with reference to the algebraic processes.
The Frisch scheme is an interesting compromise between the
generality of the EIV environment and the possibility of per-
forming real applications. It must be observed that the Frisch
scheme encompasses some other important methods, like the
Least Squares method and the Eigenvector method. In the alge-
braic case, the Frisch scheme does not lead to the determination
of a single optimal solution. Rather, it leads to the determination
of a whole family of solutions which are compatible with a
given set of noisy observations. It will be shown that this fact
is true also for the dynamic case, if we limit its study to the set
of equations (96)–(97). Indeed, in the dynamic case, the shift–
invariant property of the process allows to add further equations
and this fact makes it is possible to determine a unique solution.
This aspect will be only briefly discussed in Section 6, since it
goes beyond the aim of the paper.

Partition the positive definite matrix R as follows

R =

[

R11 R12

R21 R22

]

, (98)

where R11 and R22 are square matrices of dimension n + 1.
Then, the following theorems hold. The proofs can be found
in (Soverini and Söderström, 2019b). In particular, the proof of
Theorem 3 has not appeared anywhere before.

Theorem 1. The maximal admissible value of the input noise
variance λmax

u compatible with the conditions (97) is obtained
when λy = 0 and is given by

λmax
u = min eig

(

R22 − R21R
−1
11 R12

)

. (99)

Similarly, the maximal admissible value of the output noise
variance λmax

y compatible with the conditions (97) is obtained
when λu = 0 and is given by

λmax
y = min eig

(

R11 − R12R
−1
22 R21

)

. (100)

Theorem 2. The set of all matrices R̃ satisfying the conditions
(97) defines the points P = (λu, λy) of a continuous curve

S(R) belonging to the first quadrant of the noise space R2.
This curve defines λy uniquely from λu, and vice versa.

Theorem 3. The curve S(R) in Theorem 2 describes a convex
set in the first quadrant of R2, whose concavity faces the origin.

Corollary 1. Every point P = (λu, λy) of S(R) can be

associated with a noise matrix of type R̃(P ) (96) and with a
coefficient vector θ(P ), satisfying the relation

(

R− R̃(P )
)

θ(P ) = 0. (101)

Corollary 2. When N → ∞, the point P ∗ = (λ∗u, λ
∗
y) belongs

to S(R) and the corresponding coefficient vector θ(P ∗) is
characterized (after a normalization of its first entry to 1) by
the true system parameter vector, i.e. θ(P ∗) = θ.

Theorem 4. Let ξ = (ξ1, ξ2) be an arbitrary point of the first
quadrant of R2 and r the straight line from the origin through
ξ. Its intersection with S(R) is the point P = (λu, λy), with

λu = ξ1 / λM λy = ξ2 / λM (102)

λM = max eig
(

R−1R̃ξ

)

(103)

R̃ξ = diag
[

ξ2 In+1, ξ1 In+1

]

. (104)

6. THE FRISCH SCHEME AND THE GIVE FRAMEWORK

The determination of the pointP ∗ on S(R) leads to the solution
of the identification problem. Unfortunately, the theoretic prop-
erties of S(R) described so far do not allow to distinguish point
P ∗ from the other points of the curve. However, on the contrary
to the static case, the shift–invariant structure of the underlying
dynamic system allows to add further equations, which lead to
the determination of a unique solution.

Note that (95) consists of 2n+2 algebraic non–linear equations.
The number of unknowns is 2n+3, i.e. the free coefficients of θ
in (10) and the two variances λ∗u and λ∗y . A general framework
has been originally introduced in (Söderström, 2011), where the
Generalized Instrumental Variable Estimation (GIVE) method
was proposed with reference to SISO EIV systems affected by
additive white noises. The GIVE method provides a unique
general framework for the whole class of bias–compensating
methods, including iterative solutions, like the BELS methods
(Söderström et al, 2005).

To explain how the Frisch scheme can be formalized and solved
within the GIVE framework, we can write the equation (95) as

f1 = 0. (105)

This is an undetermined system of equations, with 2n+2 equa-
tions and 2n+3 unknowns. Its general solution can therefore be
described with a parametrized form, using a single parameter.
There are several possibilities for this parameterization. For
example, one can choose the slope ξ2/ξ1 of the line r defined in
Theorem 4. As an alternative, one can choose one of the noise
variances, λu or λy . In the GIVE context, the Frisch scheme
equations (105) must be complemented with one or more equa-
tions. For example, high order Yule–Walker equations can be
exploited for this purpose. For details, see (Diversi et al., 2006)
for the time domain approach and (Soverini and Söderström,
2015) for the frequency domain case. These additional equa-
tions can be symbolically written as
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f2 ≈ 0. (106)

Several situations can occur.

1 A first case is when there is a single additional equation,
so that dim (f2) = 1. Then, the total system of equations

f =

[

f1
f2

]

= 0 (107)

has 2n + 3 equations and 2n + 3 unknowns. By solving
f1 = 0, one can get f2 = 0 as a single equation in the
remaining unknown parameter.

2 A second case is when more than one equation is added,
so that dim (f2) > 1. Then, the total system of equations

f =

[

f1
f2

]

≈ 0 (108)

is overdetermined and cannot be solved exactly. In this
second case, two options are possible.
2.1 As a first option, the system of equations (108) is

solved approximately in a weighted least squares
sense

min ||f ||2
W
, (109)

whereW is a possible nonnegative definite weighting
matrix, chosen by the user.

2.2 Another option is to require the equations f1 hold ex-
actly, and to minimize the equations f2 in a weighted
least squares sense, i.e. to find

min ||f2||2W2
(110)

with f1 = 0, and W2 is a possible weighting matrix.

Indeed, the selection criteria proposed for identifying the
EIV models with the Frisch scheme (Guidorzi et al., 2008;
Söderström, 2018) fall in the case 2.2. In this case it is appropri-
ate to use one of the parameterizations defined above. Instead,
the GIVE method performs directly the minimization of the
condition (109), containing the unknowns λu, λy and θ1, where
θ1 collects the 2n+1 free parameters of θ. It is worth observing
that the criterion (110) falls within (109) with a suitable choice
of W. For solving (109) it is not possible to make use of
the one–dimensional parameterization of the Frisch scheme.
However, one can observe that the criterion (109) is quadratic
on θ1 and it is possible to write a concentrated loss function of
the two variables λu and λy that allows a robust solution of the
optimization problem. For the details, see (Söderström, 2018).

Remark 14. It is worth observing that the algorithmical aspects
described at the previous points do not affect the statistical
properties of the estimates, since the asymptotic accuracy de-
pends only on the set of equations used to define the prob-
lem and not on the way the equations are solved (Söderström
et al, 2005). Nevertheless, in practice, different identification
algorithms that are based on the same set of equations can
lead to different estimation results, in terms of computational
complexity and speed of convergence.

7. CONCLUSIONS

This paper has proposed an unifying framework for the time
and frequency domain definitions of the Frisch scheme. By
making use of the DFT properties, a thorough analysis of the
analogies and differences between these two different formula-
tions has been carried out and some new results have been re-
ported with reference to the frequency domain. Then, the paper
has also reported the main results concerning the mathematical

and geometrical aspects of the Frisch scheme, that hold both in
time and frequency. Finally, the paper has briefly recalled the
links between the Frisch scheme and the GIVE method.
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