
Deep Learning in Mining and Mineral Processing Operations: A Review 

 

Y. Fu*, C. Aldrich** 



*Western Australian School of Mines, GPO Box U1987, 6844, WA, Australia (e-mail: yihao.fu@postgrad.curtin.edu.au). 

**Western Australian School of Mines, GPO Box U1987, 6844, WA, Australia (e-mail: chris.aldrich@curtin.edu.au) 

Abstract: In this paper, the application of deep learning in the mining and processing of ores is reviewed. 

Deep learning is strongly impacting the development of sensor systems, particularly computer vision 

systems used in mining and mineral processing automation, where it is filling a gap not currently 

achievable by traditional approaches. To a lesser extent, deep learning is also being considered in the 

automation of decision support systems. There is significant scope for the application of deep learning to 

improve operations, but access to industrial data and big data infrastructure in operational environments 

are critical bottlenecks to the development and deployment of the technology. 
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1. INTRODUCTION 

Digitilisation of the manufacturing industries is growing 

rapidly in what is often referred to as the 4th Industrial 

Revolution or Industry 4.0, and in this respect the mining 

industry is no exception. Massive quantities of data drive 

these developments. The knowledge derived from these data 

is obtained by means of machine learning, which has been 

evolving in the broader field of artificial intelligence, since 

the mid-20th century.  

Deep learning, a subset of machine learning, has achieved 

significant breakthroughs in a range of applications in recent 

years (Krizhevsky et al., 2012; Silver et al., 2017). Unlike 

many other machine learning methods, deep learning 

naturally takes advantage of automatically discovering 

features and patterns from data combined with modelling 

structures capable of capturing highly complex behaviour.  

Broadly speaking, these deep learning architectures can be 

catergorised as unsupervised, supervised and hybrid methods, 

as indicated in Fig. 1. Unsupervised methods are typically 

used for feature extraction and can be combined with 

supervised methods designed for regression or classification 

problems to yield hybrid methods. Some examples of these 

hybrid approaches include pretraining of convolutional neural 

networks with deep autoencoders (Wiehan et al., 2016) or 

deep multilayer perceptrons with deep belief networks (Lee 

et al., 2018).  

Convolutional neural networks (CNNs), recurrent neural 

networks (RNNs) and deep belief networks (DBNs) are used 

most commonly in the resource industries. CNNs are 

primarily used the computer-vision related tasks, such as 

image classification, object detection, semantic segmentation 

and instance segmentation. RNNs, including long short term 

memory networks (LSTMa) are sequence modelling 

techniques, where the network retains past information and 

combine them with new input data to make predictions.  

 

Fig.1. Deep learning architectures (DBN – deep belief 

network, DAE – deep autoencoder, RBM – restricted 

Boltzmann machine, DNN – deep neural network, CNN – 

convolutional neural network) 

One major drawback of deep learning is that satisfactory 

performance of the network ideally requires the availability 

of massive amounts of training data. However, this problem 

can be partly circumvented by use of transfer learning 

techniques. Pretrained networks by themselves have been 

shown to work exceptionally well on data sets from new 

domains (e.g. Fu and Aldrich, 2018a, Bewley and Upcroft, 

2016) and may not require large amounts of data to be 

optimised (e.g. Fu and Aldrich, 2019).  

The purpose of this paper is to provide a review of emerging 

applications of deep learning in mining and metallurgical 

operations. 
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2. OPERATION AND PRODUCTION 

The sequence of operations required to extract valuable 

materials in mining operations typically comprise drilling, 

blasting, hauling, processing and transport of the beneficiated 

products or metals.  

2.1 Drilling 

Recent developments have focused on exploiting data 

obtained from operational drilling to get improved estimates 

of the characteristics of the ore body. For example, He et al. 

(2019) have used a CNN to estimate the unconfined 

compressive strength, cohesion and internal friction angle of 

rock. 

Several studies have been conducted in petroleum 

engineering on the use of machine learning in the analysis of 

‘measurement-while-drilling’ (MWD) data, e.g. Klyuchnikov 

et al. (2019) and Flegner et al. (2019).  

Bai et al. (2019) have shown highly significant improvement 

over competitive methods by using a convolutional long short 

term memory fully connected deep neural network to process 

raw signals directly for the detection of external events in 

optical fibres. 

2.2. Blasting  

Blasting is the major rock breakage method for most mines, 

involving the release of massive explosive energy. A poor 

blasting design can cause many adverse effects such as 

ground and air vibration, back-break, and flyrocks (Guo et 

al., 2019). These effects are related to many controllable 

variables (e.g. burden, powder factor, amount of charged 

explosive, etc.) and uncontrollable variables, such as the 

nature of the rock mass being blasted. 

Mining operations rely heavily on the experience and 

empirical judgement of site operators and engineers, but the 

development of sensor technology and big data analytics is 

enabling engineers to make more efficient, cost-effective or 

safer plans that are supported by data.  

For example, Guo et al. (2019) have proposed a deep belief 

network (Hinton et al., 2006) to obtain an accurate estimate 

of the distance of flyrocks. In another study, Nguyen et al. 

(2018) have conducted a comparative study of three types of 

neural networks on the prediction of blast-induced air-blast 

overpressure in an open pit mine.  

In underground mines, poorly-controlled blasting can cause 

severe mine disasters, such as rock bursts and roof caving. In 

order to monitor these microseismic events, Huang et al. 

(2018) have developed a CNN model to predict the time 

delay of arrival and to identify the source location of 

microseismic events based on the recorded seismic waves.  

Pu et al. (2019) have concluded that deep learning could 

overcome some of the deficiencies in traditional data driven 

approaches, as more data become available in the near future.  

2.3. Haulage 

Autonomous haulage vehicles used in mining operations 

have been developed by several manufacturers over the last 

decade (Pradip et al., 2019). Regulations pertaining to mining 

vehicles, and the traffic conditions are simpler than for 

private vehicles operated on public roads.  

As a consequence, the operation of self-driving haulage 

trucks, loaders, dozers and excavators (Siau et al., 2018) has 

become well-established over the last few years. In the 

Pilbara region in Western Australia, large fleets of 

autonomous haulage vehicles are steadily replacing manually 

driven vehicles. Likewise, the use of unmanned aerial 

vehicles (UAV) or drones have also become routine. 

However, there is still a strong need for the improvement of 

technologies, such as localization and navigation, vision-

based sensing, proximity detection and collision avoidance. 

Dadhich et al. (2016) have highlighted the key challenges in 

the automation of earth-moving machines and discussed the 

potential use of reinforcement learning for intelligent 

automatic control.  

The most popular vision-based localization method is called 

the simultaneous localization and mapping (SLAM) 

algorithm (Mur-Artal et al., 2015). However, this algorithm 

does not function well in underground environments, where 

there is dust, varying light conditions, and other ambiguous 

circumstances (Jacobson et al., 2018).  

Sünderhauf et al. (2015) have developed a CNN-based 

robotic recognition system that allows for real-time place 

recognition by applying specialized binary hashing on the 

CNN features in a surface mining environment. Zeng et al. 

(2017; 2019)  have further designed and improved this CNN-

based localization system for vehicles in the underground 

environment.  

Despite the wide use of autonomous vehicles on mine sites, a 

human presence is still required in many applications for 

safety reasons (Bewley and Upcroft, 2016). For example, 

small rock fragments may trigger false alarms for 

autonomous trucks and force the trucks to stop. Alternatively, 

unreliable or late detection of human and other vehicles can 

lead to severe collision. 

Bewley and Upcroft (2016) proposed a CNN based object 

recognition system to detect light vehicles and personnel in 

an active open-pit mine site environment, and the model has 

significantly reduced the false positive rate. Moreover, a 

similar network architecture was used by Somua-Gyimah 

(2018) for terrain recognition and object detection in an open-

pit mining environment and further for the purpose of 

collision avoidance. 

2.4. Mineral Processing 

Important areas of application include ore and rock 

characterization, milling circuits, and froth flotation. The 

application of deep learning in these areas have started to 

receive increasing attention in the wider literature, as 

discussed in more detail below. 

2.4.1. Ore feed characterisation and ore sorting 

Automatic identification of rock and ore properties is an 

important component for many mineral processing tasks, 

such as ore sorting and classification, mineral content 

recognition, and ore property estimation. This is therefore an 
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area likely seeing rapid growth in mineral processing 

operations.  

The distribution of particle sizes has a major impact on 

downstream processing. Conventional methods such as 

watershed segmentation are usually contrast sensitive, as 

separation requires a high contrast between different phases. 

It therefore tends to fail when segmenting particles with 

presence of minerals with similar colours in images 

(Karimpouli and Tahmasebi, 2019b). 

Moreover, traditional approaches are generally time-

consuming and require considerable effort in manual 

adjustment of parameters for contrast adjustment and noise 

reduction (Shu et al., 2018).  

To deal with the difficulties of these conventional methods, 

SegNet (Badrinarayanan et al., 2017), a convolutional 

autoencoder network, was used to segment digital rock 

images. A data augmentation technique, namely hybrid 

pattern and pixel-based simulation (HYPPS), was used to 

generate sufficient images for training the network 

(Karimpouli and Tahmasebi, 2019a). In this approach, the 

CNN performs pixel-to-pixel labelling (segmentation), i.e. 

every pixel in the original image is classified as either 

‘particle’ or ‘background’.  

However, the potential application of CNNs extends beyond 

binary classification tasks (Liang et al., 2019), such as ore 

sorting (Karimpouli and Tahmasebi, 2019b), as some 

network architectures, such as SegNet (Badrinarayanan et al., 

2017), UNet (Ronneberger et al., 2015) and LinkNet 

(Chaurasia and Culurciello, 2017), are designed for semantic 

segmentation.  

With this novel approach, the networks can segment images 

with multi-categorical objects. For example, in the context of 

ore and rock characterization, an image may consist of 

particles of different metal grades (e.g. waste and ore), as 

well as different mineral grains. An effective way to identify 

and count these particles can be beneficial to many aspects in 

mining operations (Hong et al., 2017) and civil industry 

(Iglesias et al., 2019).  

Characterisation of the complex flow of granular solids from 

hoppers, bins and silos is still an open research issue and 

Aldrich & Olivier (2019) have recently made use of a 

convolutional neural network to extract features from mass 

flow measurements to enable better identification of 

avalanching phenomena in the flow. 

2.4.2. Comminution 

Grinding and comminution circuits are critical components in 

processing plants, as they produce the desirable size of ore 

particles, and an inefficient circuit design results in large 

energy consumption. These circuits are notoriously difficult 

to control and deep learning may lead to more advanced 

systems.  

Since deep learning is superior in capturing the highly non-

linear relationship from complex data, several studies have 

appeared in the literature, e.g., missing data imputation using 

variational autoencoders (VAEs) (McCoy et al., 2018), and 

estimation of mill load levels using soft sensor data 

modelling with CNN (Wei et al., 2015). Baek and Choi 

(2019) have trained a five-hidden layer perceptron model to 

predict ore production and crusher utilization. 

The operating states of grinding circuits are monitored from 

multivariate time-series signals (van Duijvenbode and 

Buxton, 2019) as they are or transformed to 2D images using 

distance matrices method (Bardinas et al., 2018), followed by 

feature learning using CNNs. 

One of the emerging trends further driving the application of 

deep learning models in grinding circuits is the deployment 

of novel sensors generating large amounts of data. These 

include MillSlicerTM (https://processiq.com.au/products/ 

milling-flotation-instrumentation/millslicer/) and 

SensoMagTM (Clermont & de Haas, 2010). 

2.4.3. Flotation 

Deep learning has focused mostly on the development of 

more reliable sensor systems for online grade and reagent 

estimation in flotation, specifically based on froth image 

analysis. Traditionally, froth image analysis has focused on 

three related problems, namely the (i) recognition of changes 

in operation conditions from the appearance of the froth, 

often in combination with other variables, the (ii) estimation 

of bubble size distributions, as well as (iii) online estimators 

of grade or other chemical species being floated. Any of a 

number of methods can be used, often highly effectively to 

deal with (i), but (ii) and (iii) are more challenging.   

As far as (i) is concerned, Li et al. (2019) have made use of a 

pretrained CNN to extract features from an antimony froth 

that could then be used as inputs to a classifier to identify 

aberrant froth conditions, but the specific advantages of this 

approach is not clear.   

Little has been done as far as (ii) is concerned, although 

Stone Three in South Africa has patented an approach to 

estimate bubble sizes from froth images, based on the use of 

CNNs. This is an area where there is considerable scope for 

improvement over traditional methods and more work in this 

area is currently underway based on architectures and 

variants thereof similar to U-net (Ronneberger et al., 2015). 

Regarding (iii), in comparatively analyses with other 

multivariate image methods, Horn et al. (2017), Fu and 

Aldrich, (2018a; 2018b; 2019) and Zhang et al. (2020) have 

shown remarkable advantages in accuracy to be gained from 

using CNNs in froth image analysis. This is a major step 

forward towards the online implementation of image sensors 

in advanced online control systems in flotation.  

3. DISCUSSION 

While a variety of deep learning architectures are currently 

being used in the mining and metallurgical industries, 

convolutional neural networks have seen most use by a large 

margin to date, as indicated in Fig. 2.  

This is related to the current focus on sensor data analytics, 

particularly image-based sensors used in the characterisation 

of particulate feeds, drone inspection systems, and also the 

processing of hyperspectral images and multivariate time 

series data, as indicated in section 2. 
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Fig. 2. Application of deep learning architectures in mining, 

namely convolutional neural networks (CNN), long short 

term memory recurrent networks (LSTM), deep belief 

networks (DBN) and deep reinforcement learning (DRL). 

Not all studies of deep learning in the mining industry are 

reported in the academic literature. Local and global 

competitions associated with the solution of real mining 

industrial challenges by use of data analytics, such as Kaggle 

competition (https://www.kaggle.com), and Unearthed 

competition (https://unearthed.solutions), are receiving 

increasing attention from developers and data scientists 

worldwide.  

Mining and other related companies release datasets with 

some specific targets to achieve, and good solutions require 

considerable effort. It is noteworthy that the deep learning 

methods have taken the top prize in many of these practical 

challenges. This includes the detection of rock bridges at 

crushers(1),  the detection and tracking of missing bucket teeth 

in large excavators(2), and ore sorting using digital images(3). 

(1)https://unearthed.solutions/u/challenge/reduce-impact-

rock-bridges-our-telfer-crusher 

(2)https://unearthed.solutions/u/challenge/ground-

engaging-tools-get-detect-and-track-missing-bucket-teeth 

(3)https://unearthed.solutions/u/submissions/cnn-transfer-

learning-applied-rock-sorting-0 

The availability of large amounts of data is key to the 

development and deployment of deep learning systems in the 

industry. Although rapid development in sensor systems have 

led to the collection and storage of such data, these raw data 

are not necessarily useful for model development.  

For example, in flotation systems, while easy to collect 

prodigious numbers of images, these images also need to be 

labelled, which could be a major bottleneck in the 

development of the sensors.  

Finally, most of the deep learning technology being applied 

in the mining and metallurgical industries are still being 

developed outside the mining industry. For example, while 

watershed algorithms are used in a large variety of contexts, 

including the mining industry, more advanced versions of 

these algorithms, or deep watershed algorithms (Couprie et 

al., 2014; Bai & Urtasun, 2016), are currently being 

developed. These algorithms is one example of algorithms 

that would likely also have direct benefits in mining industry 

applications. 

4. FUTURE DEVELOPMENTS 

While digitilisation of the mining industry is advancing in 

many ways, the industry tends to adopt technology, rather 

than leading in its development. Insight into future 

development can therefore be gained from recent 

developments in manufacturing. In this area, some novel 

machine learning methodologies closely tied to deep learning 

are emerging. This includes deep reinforcement learning and 

adversarial learning.  

Deep reinforcement learning facilitates complex decision 

making with obvious applications in advanced control, but 

also beyond this to potentially higher levels of intelligence 

that could benefit haulage vehicle fleet management or plant-

wide control in mineral processing (Shipman and Coetzee, 

2019. A prerequisite for this is the collection of sufficient 

data in real-world settings beyond simulated environments, 

which remains a significant challenge (Aggarwal, 2018). 

Unlike deep reinforcement learning, which can be seen as an 

extension of an existing approach, adversarial learning 

(Cheng and Yu, 2019) improves learning efficiency through 

construction of a generator and a discriminator. By so doing, 

it is not necessary to specify a reward or loss function of the 

system. This enables learning tasks that were not previously 

possible, and has seen applications in image synthesis, 

monitoring and pattern recognition that would directly impact 

mining and automation.  

5. CONCLUSIONS 

Deep learning is rapidly making inroads in mining and 

mineral operations, where it is leading to more reliable sensor 

systems. The online characterization of particulate feeds in 

particular, is set to make a broad impact on operations.  

Convolutional neural networks are the most popular 

architecture in use by a large margin, owing to their 

versatility and ability to deal with image data. 

The development of digital twins of process systems and 

operations, as well as the deployment of novel big data 

sensors continue to drive the development and application of 

to deep learning. 
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