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Abstract: In variable structured systems, plenty of designs are built to be homogeneous.
Such unperturbed homogeneous dynamics with negative homogeneous degree guarantee finite
time convergence. Previous studies provide lower bounds for parameters that result in such
finite-time convergence property. In this paper, we propose a new perspective on parameter
preference, based on H∞ norm analysis. Contrary to other studies, which propose such norm
non-homogeneous or homogeneous, yet of non-zero degree, we build a homogeneous H∞ norm of
homogeneous degree zero, thus global and constant. Based on data collected of this norm on the
continuous super-twisting-like algorithm, we give recommendations for choosing the parameters.
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1. INTRODUCTION

Homogeneous dynamics are widely used in variable struc-
ture systems. This is particularly the case in sliding mode
algorithms, since negative homogeneous degree of a system
indicates global finite time convergence (FTC) (Bacciotti
and Rosier, 2005). Homogeneous controller and observer
designs have been proposed e.g. by Andrieu et al. (2008);
Bernuau et al. (2014); Levant (2005); Qian and Lin (2006).

The H∞ norm can be interpreted either as the maximum
amplitude of a frequency response for linear time-invariant
systems or as the maximum L2 gain from input to output
(Başar and Bernhard, 1995). When taking the latter
interpretation, concepts based on the H∞ norm can also
be transferred to nonlinear systems (Khalil, 2003; van der
Schaft, 2000).

Hong (2001) applies the H∞ norm to a nonlinear homoge-
neous affine system. In the author’s remark, it is noticed
that such norm might not be constant. Unnoticed by the
author at that time, using traditional Hamilton-Jacobi-
Isaacs inequality and forming quadratic terms of control
and disturbance in the inequality can result in a constant
H∞ norm only if the input and output are of the same
homogeneous weight.

Zhang and Reger (2018, 2019) employ the state transfor-
mation from Moreno and Osorio (2008) and the traditional
Hamilton-Jacobi-Isaacs inequality as in (Başar and Bern-
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hard, 1995; Hong, 2001) to suggest a convex parameter set
for observer design and a lower bound for controller design
by studying theH∞ norm for the super-twisting algorithm
(STA). Yet, despite the optimal parameter range is global,
its corresponding H∞ norm is of non-zero homogeneous
degree, thus is a local norm for the transformed system.

In this paper, we develop a homogeneous H∞ norm of
homogeneous degree zero, thus global and constant, and
apply it to the continuous super-twisting-like algorithm
(CSTLA) in Sánchez et al. (2018). In doing so we can
confidently compare the corresponding H∞ norm using
different parameter sets. In addition we are able to verify
the preferred parameter set derived by a similar method in
Zhang and Reger (2018) by comparing the corresponding
constant H∞ norm. Further, by studying figures indicative
of the behavior of CSTLA, we find the closed analytical
form of this constant H∞ norm for the parameter prefer-
ence range. This means that we provide such worst input
that achieves this norm, thus making the constant H∞
norm a tight maximum L2 gain.

2. SUPER-TWISTING-LIKE ALGORITHM

For the continuous super-twisting-like algorithm (CSTLA)
we first normalize the homogeneous weight of x2 to τ2 = 1
and set the homogeneous degree of the dynamics to d ∈
[−1, 0]. The closed loop system reads (Sánchez et al., 2018)

ẋ1 = −k1dx1c
1

1−d + x2

ẋ2 = −k2dx1c
1+d
1−d + b φ

(1)

where dxcϑ is the sign preserving power d·cϑ = | · |ϑsign(·).
The homogeneous weight of x1 is τ1 = 1 − d and that of
φ is τφ = 1 + d. When d = 0, system (1) is linear, and in
case d = −1, it is in STA form.
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Note that the derivatives of dxcϑ and |x|ϑ with ϑ ∈ (0, 1]
and scalar x ∈ R \ {0} are

ddxcϑ
dx

= ϑ|x|ϑ−1,
d|x|ϑ
dx

= ϑdxcϑ−1,

resp., and x = 0 is a singular point for the derivative when
ϑ ∈ (0, 1). Let us probe system (1) in a different way and
multiply the dynamics by a constant L > 0, i.e.

Lẋ1 = −Lk1dx1c
1

1−d + Lx2

Lẋ2 = −Lk2dx1c
1+d
1−d + Lbφ

as in Levant and Alelishvili (2008), and exchange the

variables (x1, x2, φ) with (x̂1, x̂2, φ̂) = (Lx1, Lx2, Lφ).
Thus we have

˙̂x1 = −L −d
1−d k1dx̂1c

1
1−d + x̂2

˙̂x2 = −L−2d
1−d k2dx̂1c

1+d
1−d + b φ̂

(2)

and if we initialize system (1) at (x1o, x2o) with input φ(t),
then in system (2) we initialize at (Lx1o, Lx2o) with input
Lφ(t). We would end up with the same scaled trajectory

(x̂1, x̂2, φ̂) in (2) when replacing the parameters as per

(k1, k2) 7→ (L
−d
1−d k1, L

−2d
1−d k2). So in this homogeneous

system, such parameter set is not unique. It can always
be scaled in this manner and will result in the same
trajectory by a linear mapping. In view of this, the problem
of choosing the parameter set is turned into finding the
relationship between k1 and k2 when one is fixed, as shown
in Zhang and Reger (2018, 2019).

Remark 1. For all CSTLA, also STA, the pairing relation-
ship is (L

1
2 k1, Lk2). That is why in (Zhang and Reger,

2018) the parameter set for the STA observer is k1 = 2
√
k2.

This means that if k2 is picked L times larger, then k1

should be paired with
√
L times larger, to have the system

result in the same linearly scaled trajectory, i.e. the same
behavior. Levant (2001) offers k1 = 1.5

√
b, k2 = 1.1b for

the STA, which is the parameter set widely used in studies.
The scaling relationship is then mimicked through b.

3. H∞ NORM OF ZERO HOMOGENEOUS DEGREE

When extended to nonlinear systems, the H∞ norm can
be interpreted as the L2 gain from input to output (Khalil,
2003; van der Schaft, 2000). Yet we shall first look at the
linear system, here for d = 0 in (1). We obtain

ẋ1 = −k1x1 + x2

ẋ2 = −k2x1 + bφ

and by linearity, a linearly transformed input Lφ results in
also a linearly transformed state trajectory Lx1(t), Lx2(t).
Thus, the H∞ norm defined for the linear case from input
φ to the state x, i.e.

γ† = sup
φ6=0

‖x‖2
‖φ‖2

using the truncated L2 norm ‖x‖2 =
√∫ T

0
x(t)>x(t) dt of

time signal x, is not changed under this linear mapping.

For cases where d ∈ (−1, 0], the homogeneous CSTLA (1)
allows to construct a norm which is of homogeneous degree
0 which then will retain unchanged under a homogeneous
dilation. For example, if the initial value, input and time
are scaled for system (1) according to

x1(0) → κ1−dx1(0)
x2(0) → κx2(0)
φ(t) → κ1+dφ(κ−dt)

(3)

with κ > 0 and t ∈ [0, T ] leads to the scaled trajectory as

x1(t) → κ1−dx1(κ−dt)
x2(t) → κx2(κ−dt).

(4)

Using transformation ξ =
(
dx1c

1
1−d , x2

)>
, similar to the

one first introduced by Moreno and Osorio (2008), we shall
define a H∞ norm of zero homogeneous degree, see (Zhang
and Reger, 2018; Hong, 2001; Zhou et al., 1996), s.t. for
any d ∈ (−1, 0]

γ′(k1, k2, b) = sup
φ 6=0

‖Eξ‖2
‖dφc 1

1+d ‖2
, (5)

where E = diag
(√
E1,
√
E2

)
, E1, E2 > 0 for emphasis on

which state to minimize. Note that ‖Eξ‖2 and ‖dφc 1
1+d ‖2

are the truncated L2 norm of the transformed variable ξ

and dφc 1
1+d instead of original x and φ. The transformation

is diffeomorphism for d ∈ (−1, 0]. In this sense the norm
shall be called homogeneous L2 gain. Then γ′ will keep
its value under the scaled trajectory of (3) and (4).
Observe that γ′ is of homogeneous degree 0, since both the
numerator and denominator are of homogeneous degree 1.

The H∞ norms in Hong (2001); Zhang and Reger (2018,
2019) are homogeneous, yet of a non-zero degree, and yield
a scaled norm under the homogeneous dilation in (3) and
(4). For example Zhang and Reger (2018) defined the norm

λ = sup
φ∈Φ

‖Eξ‖2
‖φ‖2

,

for (1) with d = −1 (STA case); for the definition of the
set Φ refer to Zhang and Reger (2018). Such norm for (1)
is of homogeneous degree −d, thus serves only as a local
norm. That is, under the scaled trajectory of (3) and (4),
the norm is also scaled by κ−d. As shown by Zhang and
Reger (2018, 2019), the derived norm will require x1 not
leaving a neighborhood of equilibrium to remain valid.

Remark 2. For d = −1, γ′ in (5) is undefined since with
k2 > |bφ| the system enjoys FTC for non-vanishing input
φ. Then γ′ = 0. Whenever k2 < |bφ|, the state may be
excited, depending on the magnitude and persistence time
of φ, and γ′ tends to infinity such that no supremum will
exist. Therefore, Zhang and Reger (2018, 2019) have to
restrict the input φ ∈ Φ to keep the states bounded.

4. METHOD FOR CALCULATING THE H∞ NORM

In order to calculate the norm in (5), let us first introduce

Lemma 3. (Cruz-Zavala and Moreno, 2016; Hestenes,
1966) Let ψ : Rn → R and ω : Rn → R+, that is ω(x) ≥ 0,
∀x ∈ Rn, be two continuous homogeneous functions with
the same homogeneous weight τ = (τ1, · · · , τn) and homo-
geneous degree m, such that

{x ∈ Rn\{0} : ω(x) = 0} ⊆ {x ∈ Rn\{0} : ψ(x) < 0}.
Then there exists a real number γ? such that for all γ ≥ γ?
and all x ∈ Rn\{0}, and some c > 0, we have ψ(x) −
γω(x) < −c‖x‖mτ,p, where the ντ -homogeneous norm is
defined by Bacciotti and Rosier (2005) such that for p ≥ 1

‖x‖τ,p ,
(∑n

i=1 |xi|
p
τi

) 1
p

.
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With such lemma, we may show

Theorem 4. If the unperturbed system (1) with d ∈ (−1, 0]
is locally asymptotically stable for some (k1, k2), then it is
input to state stable (ISS). There exists a storage function
V ∈ C1 of homogeneous degree 2−d and a constant a1, s.t.
for all a1 > a1, Vγ = a1V , which for x ∈ R2\{0} satisfies

V̇γ
∣∣
φ≡0

+ E1|x1|
2

1−d + E2|x2|2 < 0. (6)

For each such Vγ a finite γ? exists, s.t. for all γ > γ?, the
value function satisfies

Jγ , V̇γ + E1|x1|
2

1−d + E2|x2|2 − γ2|φ| 2
1+d ≤ 0. (7)

Then γ? is an upper bound of the H∞ norm γ′ of system
(1). It can be calculated by searching the solutions of

γ?2 = max
x1,x2,φ

ζ(Vγ , E1, E2, x1, x2, φ)

ζ =
V̇γ + E1|x1|

2
1−d + E2|x2|2

|φ| 2
1+d

(8)

on the surface of the unit sphere wrt. x1, x2, φ.

Proof. With stability of the unperturbed homogeneous
system (1) for d ∈ (−1, 0], the dynamics are continuous.
Then there is a storage function V ∈ C1 of homogeneous
degree 2 − d, when φ ≡ 0, to serve as a strict Lyapunov
function (Th. 5.8 in Bacciotti and Rosier (2005), Rosier
(1992)). With the storage function, there is a c > 0 s.t.

V̇φ≡0 ≤ −c‖x‖2τ,1 = −c|x1|
2

1−d − 2c|x1|
1

1−d |x2| − c|x2|2,
see Corollary 5.4 in Bacciotti and Rosier (2005). Thus we
can always find a1 > max(E1, E2)/c, such that Vγ = a1V
satisfies (6). Define the functions

ω(x1, x2, φ) , |φ| 2
1+d

ψ(x1, x2, φ) , V̇γ + E1|x1|
2

1−d + E2|x2|2
and note that both are continuous and of homogeneous
degree 2. Clearly ω(x1, x2, φ) ≥ 0. Since ω(x1, x2, φ) =
0 ⇔ φ = 0, if we can ensure that ψ(x1, x2, 0) < 0 and
according to Lemma 3 some γ? exists s.t. for all γ > γ?,
(7) is satisfied. System (1) is ISS (Başar and Bernhard,
1995) since ψ(x1, x2, 0) < 0 is equivalent to (6), which
is shown above to be valid for each homogeneous storage
function Vγ .

Assume that the evolution of state starts at the origin,
implying Vγ(0) = 0. For any γ > γ?, (7) holds, yielding∫ T

0

Jγdt = Vγ(T )− Vγ(0) + ‖Eξ‖22 − γ2‖dφc 1
1+d ‖22 ≤ 0

which leads to

‖Eξ‖22 ≤ γ2‖dφc 1
1+d ‖22.

Consequently, the smallest γ? that renders Jγ ≤ 0 for all
time is the corresponding constant norm for this Vγ .

Whenever φ 6= 0, the numerator and denominator of ζ in
(8) are of homogeneous degree 2. Therefore ζ is a homo-
geneous function with degree 0. In addition note that the
value of ζ(x1, x2, φ) in the whole space of (x1, x2, φ) ∈ R3

can be projected onto the unit sphere, since by definition
of homogeneity for all κ > 0 we have

ζ(κ1−dx1, κx2, κ
1+dφ) = κ0ζ(x1, x2, φ).

Then we can find κ such that
x′1 = κ1−dx1, x

′
2 = κx2, φ

′ = κ1+dφ,

x′1
2

+ x′2
2

+ φ′
2

= 1

by solving

κ2−2dx2
1 + κ2x2

2 + κ2+2dφ2 = 1. (9)

When κ = 0, the left-hand side of (9) is 0, for κ → ∞,
it tends to infinity. By continuity of the fractional order
polynomial, there exist a solution of κ, which makes the
left-hand side equal to 1. Then ζ(x′1, x

′
2, φ
′) = ζ(x1, x2, φ),

thus we can search only on the unit sphere wrt. x1, x2, φ
to probe the value of ζ in R3. 2

Since the disturbance input φ in (1) is affine, we are able to
simplify the general search of (8) using the next corollary.

Corollary 5. Let f(x) = (f1(x), f2(x))>,B = (0, b)> with

f1(x) = −k1dx1c
1

1−d + x2

f2(x) = −k2dx1c
1+d
1−d

s.t. (1) becomes ẋ = f(x)+Bφ. Then with storage function
Vγ of Theorem 4 the bound γ? follows by search wrt.

γ?2 =
∣∣∣max
x1,x2

η(Vγ , E1, E2, x1, x2)
∣∣∣ 1−d1+d

η = C

∣∣∂Vγ
∂x B

∣∣ 2
1−d

−Jγ
∣∣
φ≡0

, C =

∣∣∣∣1 + d

2

∣∣∣∣
1+d
1−d

−
∣∣∣∣1 + d

2

∣∣∣∣ 2
1−d

(10)
on the curve of the unit circle wrt. x1, x2.

Proof. Choose storage function Vγ in Th. 4 and obtain

Jγ =
∂Vγ

∂x
(f(x) +Bφ) + E1|x1|

2
1−d + E2|x2|2 − γ2|φ|

2
1+d

= Jγ
∣∣
φ≡0

+
∂Vγ

∂x
Bφ− γ2|φ|

2
1+d

since for any (x1, x2) when φ → ±∞, Jγ → −∞. So we
can take the partial derivative against φ to get

∂Jγ
∂φ

=
∂Vγ
∂x

B − 2

1 + d
γ2dφc 1−d

1+d ,

and find the maximum of Jγ with respect to φ along

φ =

∣∣∣∣1 + d

2γ2

∣∣∣∣
1+d
1−d

⌈
∂Vγ
∂x

B

⌋ 1+d
1−d

. (11)

Plugging back this homogeneous worst input φ, we have

Jγ = Jγ
∣∣
φ≡0

+ γ2
−1−d
1−d C

∣∣∣∣∂Vγ∂x B
∣∣∣∣ 2
1−d

.

Note that (6) in Th. 4 indicates Jγ
∣∣
φ≡0

< 0. So solving

for the smallest γ? s.t. Jγ ≤ 0, we have (10). With η of
homogeneous degree 0, its value with (x1, x2) ∈ R2 can be
projected onto the unit circle curve x2

1 + x2
2 = 1. 2

Eventually we shall search for

γ′ = min
Vγ

γ?(Vγ)

where γ′ as in (5) is the L2 gain for given b, k1, k2, E1, E2.
For d = −1 (STA case) it is not defined. However, we may
study the STA case for the limit d→ −1.

Remark 6. Since Jγ in (7) is homogeneous, the scaling in
(2) can be applied to Jγ . Thus we can scale some parameter
in Jγ to reduce the study by one dimension, i.e. without
loss of generality, we can fix b and allow changes to all the
other parameters and learn the behavior of the gain γ′.

5. LYAPUNOV-FUNCTION FAMILY AND SEARCH

5.1 Polynomial Lyapunov Function
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Along with Sánchez and Moreno (2014) we are selecting a
family of homogeneous storage functions of homogeneous
degree 2− d with stabilizing (k1, k2) as per

Vγ = a1V = a1

(
1−d
2−d |x1|

2−d
1−d − a12x1x2 + a2

2−d |x2|
2−d
)

(12)

with a1, a12, a2 > 0. The time derivative expands to

V̇ = (k2a12 − k1)|x1|
2

1−d − a12|x2|2

+ (1 + k1a12)dx1c
1

1−dx2 − k2a2dx1c
1+d
1−d dx2c1−d

− ba12x1φ+ ba2dx2c1−dφ. (13)

With such Vγ equation (11) becomes

φ =

∣∣∣∣ba1(1 + d)

2γ2

∣∣∣∣
1+d
1−d ⌈

−a12x1 + a2dx2c1−d
⌋ 1+d

1−d .

5.2 Rendering Vφ≡0 a Lyapunov function

In order to ensure positive definiteness of V we use Young’s
inequality (Moreno, 2012): For any real numbers a > 0,
b > 0, c > 0, p > 1 and q > 1, with p−1 + q−1 = 1 holds

ab ≤ cp

p
ap +

c−q

q
bq.

First of all, when x1x2 < 0, V is surely positive definite.
So let us look at the case x1x2 > 0. We may then rewrite

V = 1−d
2−d |x1|

2−d
1−d − a12|x1||x2|+ a2

2−d |x2|2−d. (14)

Now we use Young’s inequality, letting p = 2−d
1−d , q = 2−d,

which satisfies p−1 + q−1 = 1. Consequently, we have

|x1||x2| ≤ (1−d)c
2−d
1−d

2−d |x1|
2−d
1−d + c−2+d

2−d |x2|2−d
which yields

V ≥ 1−d
2−d (1− a12c

2−d
1−d )|x1|

2−d
1−d + a2−a12cd−2

2−d |x2|2−d
and for positive definite V leads to

1 ≥ a12c
2−d
1−d and a2 ≥ a12c

d−2.

So finally we require

(1/a12)
1−d ≥ a12/a2 ⇔ a2 ≥ a2−d

12

for positive definite V .

Since the CSTLA is ISS, as shown in Theorem 4, in (13)

we are asking for that V̇φ≡0 < 0, thus

V̇φ≡0 = (k2a12 − k1)|x1|
2

1−d + (k1a12 + 1)dx1c
1

1−dx2

− k2a2dx1c
1+d
1−d dx2c1−d − a12|x2|2 < 0

and obviously we need k2a12 ≤ k1. We may only derive
the analytical region of a12, a2 where Vφ≡0 is a Lyapunov
function for special cases d = 0 (linear) and d = −1 (STA)
by using both Young’s inequality and homogeneity. Thus,
the region of a12, a2 that renders (14) a Lyapunov function
will be found by carrying out search wrt. x1, x2.

Remark 7. Conditions a2 ≥ a2−d
12 and k2a12 ≤ k1 are

necessary conditions for Vφ≡0 to be a Lyapunov function.
They are always satisfied when searching the region of
Jγ |φ≡0 ≤ 0 in the following section. At the same time, the
analytical region for (k1, k2) that renders (12) a Lyapunov
function is not within the scope of this paper.

5.3 Description of simulation process

The search for single γ′(k1, k2, b, E1, E2) is performed as:

1. First find an a1 ≥ 0 small enough, yet under which
the range of (a12, a2) satisfying (6) still exist. Use such
a1 as the first a1.

2. Fix an a1 from Step 1 or Step 5. Search the region
of (a12, a2) satisfying (6), by carrying out a search on
the unit circle x2

1 + x2
2 = 1.

3. Within the region of (a12, a2) in Step 2, carrying out
a maximum search for ζ(a1, a12, a2) in (8) on the unit
sphere x2

1 + x2
2 + φ2 = 1. Or η(a1, a12, a2) in (10) on

the unit sphere x2
1 + x2

2 = 1.
4. Conduct refined searches around the pair (a12, a2)

with the smallest γ?(a1, a12, a2) collected in Step 3.
Record the smallest γ? among this search as γ?(a1).

5. Compare between γ?(a1) and choose the next a1 to
return to Step 2 for next loop from Step 2 to Step 4;
until the gain γ?(a1) cannot be improved noticeably.

6. The smallest of such γ?(a1) will be recorded as γ′ of
this k1, k2, b, E1, E2.

Here γ?2(a1) , mina12,a2 maxx1,x2,φ ζ means to take min-
imum and maximum wrt. any parameter with fixed a1.
Finally, we can change k1, k2 to observe its influence on
γ′, as shown in the next section.

The first subfigure in Fig. 1 shows convergence of γ?2(a1)
formed by the outermost iteration. The second subfigure
shows the range of a12 and a2 and the optimal pair in
red cross by the refined search as described in Step 2, 3,
and 4. The last subfigure shows γ?2(a1, a12, a2) calculated
for each point in the second subfigure. To highlight the
convexity of γ?2(a1, a12, a2) wrt. a12, a2, in this figure we
set a maximum at 500. Since the suboptimal values of
γ?2(a1, a12, a2) are too big, the clear convexity is clouded.

6. ANALYSIS BASED ON COLLECTED DATA

6.1 Figure and analysis of γ′ after search

The qualitative result is probed extending the range of
preferred parameters to CSTLA as in Zhang and Reger
(2018), i.e.

k?1 ,

√
3

2
(1− d)k2, k

?

1 ,
√

2(1− d)k2.

In Fig. 2, γ′ is plotted for different d and k2. The left
subfigure shows γ′ with E1 = 1, E2 = 0, thus only to
channel ξ1, likewise the right subfigure with E1 = 0, E2 =
1 to channel ξ2. Cases d = −0.5,−0.75,−0.9,−0.99 are
plotted with different color, and for each d three sets of
k2 are adopted, which are k2 = 0.99b, k2 = b, k2 = 1.01b.
The full tables of optimal a1, a12, a2 shall be provided in
another paper for lack of space. The findings are as follows:

(1) Similar to the finding of Zhang and Reger (2018,
2019), a bigger k2 will always reduce the gain γ′, so all
three lines from above to below are correspondingly
k2 = 0.99b, k2 = b and k2 = 1.01b.

(2) When k2 = b, k1 > k
?

1(d, k2), all four gains γ′ of
different d coincide. The closed expression for γ′ in
this region is revealed in (15).

(3) γ′ξ1 stops decreasing at latest after k1 > k
?

1 (left plot)
and there is a clear convexity for γ′ξ2 (right plot).
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Fig. 1. Convergence of γ?(a1): d = −0.50, k1 = 1
3 (2k?1+k

?

1),
k2 = b = 3, E1 = 0, E2 = 1.
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Fig. 2. γ′ for different d and k2.

However, the convex shape is shifted from k?1 to k
?

1
with d decreasing from 0 to −1.

(4) Decreasing d from 0 to −1, the difference between
γ′ under k2 = 0.99b and k2 = 1.01b gets more
pronounced in both channels ξ1 and ξ2. This shows
the tendency of the STA case, where k2 > |bφ| will
lead to zero gain, while k2 < |bφ| to infinite gain.

6.2 Intuition from graphical representation

In Fig. 3, we show the worst ζ that can be achieved at
each (ξ1o, ξ2o) for worst φ. This may be done by finding

−1 −0.5 0 0.5 1

−1

0

1

0

5

10

ξ2

ξ1

m
ax

φ
ζ
(ξ

1
,ξ

2
)

Fig. 3. Simulation results for maxφζ(ξ1, ξ2) with optimal
a1, a12, a2, d = −0.5, E1 = 0, E2 = 1, k2 = b = 3,

k1 = 1
3 (2k?1 + k

?

1).

a dilation κ such that (κ1−dx1o)
2 + (κx2o)

2 = 1. Then

with κ ∈ [0, κ], let φ̃ =
√

1− (κ1−dx1o)2 − (κx2o)2. Now
we can project a curve onto the unit sphere and search
for ζ along that curve. The worst φ that achieves such
ζ can be projected back to the original coordinate via
φ = κ−1−dφ̃. The figure resorts to the collected coefficients
a1, a12, a2 of the optimal Lyapunov function as shown in
Fig. 1. Likewise, other cases can lead to such a graph. For
saving space, we provide only one figure here.

Fig. 3 reveals that for nonlinear system (1) the gain γ′ is
not achievable everywhere, and the input should maintain
the trajectory along the peak of Fig. 3 in order to achieve
a higher gain. The behavior will be shown in Section 6.4.
Note that in the linear case, Fig. 3 will yield a uniformly
achievable γ′ (Başar and Bernhard, 1995).

6.3 Gain under constant input

Reflecting on the linear case, when k1 ≥ k1, the worst
input for both channels is the constant input. For (1) a
constant φ will lead to a new equilibrium at (x̄1, x̄2) with

x̄1 =

(
b

k2
φ

) 1−d
1+d

, x̄2 = k1

(
b

k2
φ

) 1
1+d

.

Thus the L2 gains from dφc 1
1+d to both channels are

γ2
ξ1 =

(
b

k2

) 2
1+d

, γ2
ξ2 = k2

1

(
b

k2

) 2
1+d

. (15)

These closed expressions agree with the collected data γ′

in Fig. 2 in the region k1 ≥ k
?

1.

6.4 Worst input that achieves γ′ in time simulation

Other than a constant input, we look for a different worst
input that achieves γ′. Fig. 4 shows that with larger ω
in φ(t) = sin(ωt), the trajectory of ξ1/ξ2 takes more an
“S shape”. Lower ω leads to a trajectory of ξ1/ξ2 more
aligned to a line, more specifically, aligned to the peak

of ζ in Fig. 3 when k1 ≥ k
?

1. In order to avoid chattering
from discretization, we construct such input as

φ(t) = W (D sign (sin(ωt)) + (1−D) sin(ωt)) (16)

where W is the magnitude of φ and ω is the frequency
in rad/s of the sine component. D proportionates the
ratio between the signum function and sine function. The
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Fig. 4. State trajectory under sine input φ = sin(ωt) for
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Table 1. Achieved L2 gain for k2 = b = 3,
T = 10−4s with φ as (16).

d k1 W D f γ2
ξ1

γ2
ξ2

−0.75 10k
?

1 0.5 0.45 0.01 0.9975 1047.3

−0.90 10k
?

1 0.7 0.65 0.01 0.9974 1137.1

−0.99 10k
?

1 0.98 0.96 0.002 0.9989 1192.6

−0.999 10k
?

1 0.999 0.999 0.0001 0.9364 1123.1
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Fig. 5. Time simulation of the second case in Table 1.

resulting L2 gains are listed in Table 1, which again agree

with all the γ′ collected for all k1 ≥ k
?

1. Since γ′ is the
upper bound and the actual achieved gain γ is the lower
bound of the H∞ norm, thus we can say that under the

range of k1 ≥ k
?

1, we reach the true H∞ norm γ′ = γ.

7. CONCLUSION

The CSTLA is studied in view of a homogeneous L2 gain
(H∞ norm) of zero degree, thus is constant and global.
We have verified the H∞ norm optimal parameter range
derived, similar to Zhang and Reger (2018), by calculating
its corresponding global and constant gain. Furthermore
we have provided the closed form of such a γ in (15) for

the recommended region k1 ≥ k
?

1 =
√

2(1− d)k2.

For fixed k2 and controller design, we recommend k1 ≥ k
?

1.
Moreover, even though with larger k1 the worst γ is
constant, yet the worst φ needs to be much slower to reach
such gain. So larger k1 practically renders x1 smaller. For
observer design, we notice optimality for k1 shifting from

k1 =
√

3(1− d)k2/2 to k
?

1 from the linear case to the STA,
which again is in accordance with Zhang and Reger (2018).

Thus, we recommend using k1 = k
?

1 in this case.

Larger k2 coupled with k1 ≥ k
?

1 as recommended above
will reduce γ remarkably.
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Bernuau, E., Efimov, D., Perruquetti, W., and Polyakov,
A. (2014). On homogeneity and its application in sliding
mode control. Journal of the Franklin Institute, 351(4),
1866–1901.

Cruz-Zavala, E. and Moreno, J.A. (2016). Lyapunov Func-
tions for Continuous and Discontinuous Differentiators.
In NOLCOS, 660–665.

Hestenes, M.R. (1966). Calculus of variations and optimal
control theory. John Wiley & Sons.

Hong, Y. (2001). H∞ control, stabilization, and input-
output stability of nonlinear systems with homogeneous
properties. Automatica, 37(6), 819–829.

Khalil, H. (2003). Nonlinear Systems. Prentice Hall.
Levant, A. (2001). Universal single-input-single-output

(SISO) sliding-mode controllers with finite-time conver-
gence. IEEE Transactions on Automatic Control, 46(9),
1447–1451.

Levant, A. (2005). Homogeneity approach to high-order
sliding mode design. Automatica, 41(5), 823–830.

Levant, A. and Alelishvili, L. (2008). Discontinuous
Homogeneous Control. Modern Sliding Mode Control
Theory, New Perspectives and Applications. Springer.

Moreno, J.A. (2012). Lyapunov function for Levant’s
Second Order Differentiator. In CDC, 6448–6453.

Moreno, J.A. and Osorio, M. (2008). A Lyapunov ap-
proach to second-order sliding mode controllers and
observers. In CDC, 2856–2861.

Qian, C. and Lin, W. (2006). Recursive Observer Design,
Homogeneous Approximation, and Nonsmooth Output
Feedback Stabilization of Nonlinear Systems. IEEE
Transactions on Automatic Control, 51(9), 1457–1471.

Rosier, L. (1992). Homogeneous Lyapunov function for
homogeneous continuous vector field. Systems & Control
Letters, 19(6), 467–473.

Sánchez, T., Cruz-Zavala, E., and Moreno, J.A. (2018). An
SOS method for the design of continuous and discontin-
uous differentiators. International Journal of Control,
91(11), 2597–2614.

Sánchez, T. and Moreno, J.A. (2014). A constructive
Lyapunov function design method for a class of homo-
geneous systems. In CDC, 5500–5505.

van der Schaft, A. (2000). L2-Gain and Passivity Tech-
niques in Nonlinear Control. Springer.

Zhang, D. and Reger, J. (2018). H∞ Optimal Parameters
for the Super-Twisting Algorithm with Intermediate
Disturbance Bound Mismatch. In VSS, 302–308.

Zhang, D. and Reger, J. (2019). H∞ Norm Optimal Pa-
rameters for the Super-Twisting Algorithm with State
Dependent Disturbance. In ECC, 3583–3588.

Zhou, K., Doyle, J.C., and Golver, K. (1996). Robust and
Optimal Control. Prentice Hall.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5220


