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Abstract: Robotic manipulator inverse kinematics (IK) solution has a significant role in robotics. In this 

paper, a new paradigm of particle swarm optimization (PSO) called dual particle swarm optimization 

(DPSO) for the inverse kinematics problem of a robotic manipulator used in the nuclear plant 

decommissioning process is proposed. The introduced approach of particle swarm optimization relies on the 

approach of dividing one particle swarm optimization algorithm into two such that each algorithm optimizes 

separately the problem for position and orientation, in this way the system will achieve faster convergence 

toward desired results with fewer iterations. The proposed algorithm is designed and implemented in 

MATLAB/Simulink to solve the inverse kinematics problem for a 6 degree of freedom selective compliance 

articulated robot arm (SCARA) type robot with joint space constraints. For a real-time experiment, a pair of 

the joysticks was integrated with MATLAB/Simulink. Using a dual joystick, the position and orientation 

for the robot were set. Furthermore, the experimental results demonstrate the effectiveness of DPSO on real-

time within given constraints. 
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1. INTRODUCTION 

Robots capability for the autonomous operation and their 

competence to perform a large number of set of tasks have 

captured the attention of researchers and industries (Graetz and 

Michaels, 2018). The scope of industrial robot applications was 

established from the conventional handling, assembly and 

welding tasks leading to a wide range of production (Abele et 

al., 2007). Robots and their precise operation are getting 

popular. Usage of a robot has been increased in a large number 

of applications such as handling tasks that might be tough or 

risky for human beings (Hao et al., 2011). In industrial 

applications of a robot, the main objective of replacing the 

human with robots is to provide efficiency and accuracy. For 

nuclear applications, the thermal and radioactive environment 

of nuclear plant requires human-less automation (Moore, 1985).  

Attention on nuclear power plants dismantlement after the 

incident of the Fukushima nuclear power plant in Japan has 

been gained all over the world (Abbasi et al., 2019). 
 

Humans provide guidance to the robot to achieve the desired 

task which includes the robot end-effector position and 

orientation (Mehmood et al., 2014). Inverse kinematics (IK) of 

the robotic manipulator help for the robot to find the set of joint 

angles that aligns the robotic manipulator’s posture (position 

and orientation) with the desired posture. The guidance starts 

with planning a trajectory for a robotic manipulator then 

followed by the joint motion controller and thereafter the robot 

control to generate enough joint torque to accurately track the 

trajectory (Siciliano et al., 2010).  

For each given task, it is not possible to directly control the 

manipulator as there is no guidance or path to be tracked for 

the desired task, therefore, a trajectory is planned for a 

manipulator’s end-effector. The planned trajectory is then 

divided into several points so that for each point the inverse 

kinematics is performed to get the desired joint trajectory for 

each link which becomes the desired set point for each link 

joint.  

 

IK solution has a significant role in robotics. Usually, the end-

effector position is considered for a solution as introducing 

orientation will create a lot of problems.  A task is assigned to 

the robot, which is in Cartesian space, where the control is in 

joint space.  Different techniques have been used for IK of a 

robotic manipulator. (Siciliano, 1990) proposed Closed Loop 

Inverse Kinematics (CLIK) algorithm, which performs IK in 

an iterative way for the desired pose (position and orientation). 

The proposed algorithm is based pseudo-inverse of a Jacobian 

matrix J. This approach was analysed on a 6-DOF SCARA 

robot, but the results were not satisfactory because of high 

computational complexity (Siciliano, 1990).  

 

To overcome computational complexity, researchers have 

proposed many different approaches as an alternative. One of 

them is a heuristic optimization technique emerging widely in 

the field. Heuristic techniques include Genetic Algorithm (GA) 

(Zhang and Nelson, 2011), Ant Bee Colony (ABC)(Çavdar et 

al., 2013) or Particle Swarm Optimization (PSO) (Rokbani and 

Alimi, 2013). In these techniques, the solution is iteratively 

improved by adopting a set of operations which mimics a 
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natural process like birds flocking. For non-linear constrained 

problem the most promising solution is particle swarm 

optimization (PSO). Despite the different proposed techniques 

for IK based on simplicity and accuracy, constraints are barely 

considered.   

 

This research proposes a new paradigm of PSO algorithm 

called Dual Particle Swarm Optimization (DPSO) algorithm to 

solve IK of 6-DOF SCARA robot in the presence of joint and 

workspace constraints using a joystick. When using the DPSO, 

the cumulative error of end-effector position and orientation is 

very small as compared to classical GA, PSO and inverse 

Jacobian method. 

 

The paper follows the following pattern: Section 2 presents the 

classical PSO algorithm, inverse kinematics approach using 

PSO and related work. Section 3 presents the problem 

statement of the situation and the proposed algorithm for IK.  

Section 4 presents the system model and kinematics including 

system space limitations. Section 5 discusses the experimental 

setup and simulation results used to validate the proposed 

algorithm and Section 6 entails the concluding remarks of the 

paper. 

2. BACKGROUND 

2.1 Particle Swarm optimization 

PSO is an optimizing technique which tries to improve its 

population solution iteratively. PSO is developed by (Eberhart 

and Kennedy, 1995). In the original formulation, the authors 

presented an optimization technique that contains several 

particles called swarm trying to optimize the problem by 

moving in problems search space. The measure of quality is a 

fitness function (objective function) f(.) which depends upon 

different parameters. The algorithm consist of several particles 

and each particle position is considered as a possible solution 

to that problem. Iteratively the particle changes its position 

with a velocity. After kth iteration, the position and velocity of 

the independent particle of the generated population 𝒫 at kth 

iteration is defined by M-dimensional vectors as follows 

 

𝑥𝑖(𝑘) = [𝑥1
𝑖 (𝑘). . . 𝑥𝑀

𝑖 (𝑘)]
𝑇
          (1) 

 

𝑣𝑖(𝑘) = [𝑣1
𝑖 (𝑘). . . 𝑣𝑀

𝑖 (𝑘)]
𝑇
          (2) 

 

where 𝑖 = 1 .  .  . ‖𝒫‖ , 𝑥  and 𝑣  represent the position and 

velocity of the i-th member of M-dimensional vector 

respectively. In PSO, each particle also knows the information 

about its neighbour, by exchanging their information so that 

they know about the globally best particle in that swarm and 

the swarm must follow the best particle. The communication of 

each particle with their neighbour is defined as 

 

𝑁𝑖(𝑘) = {𝑗 ∈   𝒫: 𝑖 ↔ 𝑗}         (3) 

 

where the symbol ↔ represents the exchange of information 

between particles. The movement and the direction of particles 

within the search space in PSO depends upon the personal best 

solution 𝑋𝑝𝐵
𝑖 (𝑘) and the global best 𝑋𝑔𝐵(𝑘) (Poli et al., 2007). 

When the neighbours communicate, they share the information 

of best-known particle which is globally best in the swarm and 

according to this information, the new globally best particle is 

updated by satisfying the following condition. 

 

𝑋𝑔𝐵(𝑘) = {𝑋𝑝𝐵
𝑖 (𝑘) ∶  𝑓(𝑋𝑝𝐵

𝑖 (𝑘) ) < 𝑋𝑔𝐵(𝑘)}        (4) 

 

where 𝑋𝑔𝐵(𝑘),  𝑋𝑝𝐵
𝑖 (𝑘) and 𝑓(𝑋𝑝𝐵

𝑖 (𝑘) ) are the global best at 

k-th iteration, personal best of i-th particle at k-th iteration and 

objective function to compute personal best of i-th particle at 

k-th iteration respectively. Each particle at every single 

iteration updates their position and compare their personal best 

with the global best. If the personal best of a particle at kth 

iteration in minimization problem is less than the global best as 

described in (4), the global best is updated with that particle 

personal best. Where the personal best of each particle is 

updated according to (5) i.e. if the personal best of i-th particle 

at k-th iteration is less than the last known personal best of the 

same particle   

𝑋𝑝𝐵
𝑖 (𝑘) = {𝑋𝑝𝐵

𝑖 (𝑘) ∶  𝑓(𝑜𝑏𝑗) < 𝑋𝑝𝐵
𝑖 }        (5) 

 

As PSO algorithm starts, the initial population with n-number 

particles are generated within the predefined range with zero 

velocity. At each iteration i-th, particle velocity and position 

are updated by (6) and (7). 

 

𝑣𝑖(𝑘 + 1) =  ω. 𝑣𝑖(𝑘) + 𝑐1. 𝑟𝑎𝑛𝑑. (𝑋𝑝𝐵
𝑖 (𝑘) − 𝑥𝑖(𝑘)) + 

𝑐2. 𝑟𝑎𝑛𝑑. (𝑋𝑔𝐵(𝑘) − 𝑥𝑖(𝑘))  (6) 

 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)  (7) 

 

where ω  represents the inertia coefficient, 𝑐1  and 𝑐2  are the 

learning factor or acceleration factor and 𝑟𝑎𝑛𝑑 represents the 

generation of random number within the specified range 

[−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥]. As the particles get closer to the desired result, 

the velocity is optimized in such way that the process slows 

down so that the solution does not deviate from the desired 

result or have a large or increasing error.   

2.2 Related Work for Inverse Kinematics 

Many researches have performed IK using PSO and evaluated 

their results for different types of robotic manipulators. 

(Rokbani and Alimi, 2013) Analysed the PSO statistically for 

the robotics IK and concluded that PSO can easily take care of 

IK of robotic manipulator without computing the inverse 

model. (Junior et al., 2018) used PSO to solve the IK problem 

for a 4 DOF robotic manipulator based on full resampling of 

the particles. (Collinsm and Shen, 2017) used PSO for a high 

degree of freedom IK which yields the desired position and 

orientation with a very low error.  (Adly and Abd-El-Hafiz, 

2016) proposed single and multiple objective PSO for 5-DOF 

and 7-DOF robotic manipulator end-effector position. While 

(Falconi et al., 2014) presented the idea of IK using PSO for 

the cluttered environment with obstacles. This approach 

divides the particles in a subgroup with specific tasks with 

faster convergence for a 3-DOF planner robot. (Huang et al., 

2012) presented the IK solution based on PSO algorithm 

applicable to 7-DOF robot manipulator and validated the 

results in simulation. An improved PSO (IPSO) is presented by 
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(Du and Wu, 2011) for the solution of IK and simulated the 

algorithm and (Collinsm and Shen, 2017) added a self-collision 

avoidance to the IK using PSO. When compared with DPSO, 

DPSO possesses small error with less calculation time even on 

the real-time experiment. 

3. DPSO INVERSE KINEMATICS 

3.1 Problem Statement 

Initially, to solve the real-time IK of 6-DOF robotic 

manipulator used for nuclear power plant dismantling, the 

inverse Jacobian iterative method was used. The iterative form 

of the Jacobian matrix can be written as (8) 

 

𝜃𝑖+1 =  𝜃𝑖 + 𝑑𝜃 = 𝜃𝑖 + 𝐽−1𝑑𝑃          (8) 

 

where 𝑖  is the number of iterations to be performed, 𝑃 =

[𝑃𝑥  𝑃𝑦 𝑃𝑧 ∅ 𝜃 𝜑]
𝑇
is the posture matrix contains three position 

and three orientation coordinates and 𝐽−1 is the inverse of the 

Jacobian matrix. Where the inverse kinematics is represented 

as 

[𝐷𝜃] = [𝐽−1][𝐷]   (9) 

 

𝑑𝜃5×1 = 𝐽5×6
−1 𝑑𝑃6×1                   (10) 

 

Where the matrix of Jacobian (Park and Lee, 2018) is given as  

 

𝐽 = [
𝑧0 × (𝑜5 − 𝑜0) 𝑧1 × (𝑜5 − 𝑜1) ⋯ 𝑧4 × (𝑜5 − 𝑜4)

𝑧0 𝑧1 ⋯           𝑧4            ] (11) 

 

𝑧0 = [
0
0
1

] , 𝑧1 = 𝑅0
1𝑧0, ⋯ , 𝑧4 = 𝑅3

4𝑧3 =  𝑅0
1 ⋯ 𝑅3

4𝑧0 (12) 

where 𝑜𝑖  and 𝑅𝑖
𝑗
 are the distance between origin and ith-axis 

coordinate and orientation matrix from ith-axis to jth-axis 

respectively. The total 2000 iterations were performed for 

better results of IK when performing only for end-effector 

position. But when the orientation of end-effector was 

introduced in the solution, the results have a very large error 

(0° −  120°) in orientation because of the kinematics structure 

of the robotic manipulator in the current study. Therefore, the 

heuristic approach was used to determine accurate IK.  DPSO 

analysis includes the calculation of end-effector position (in 

Cartesian space) and orientation (roll-pitch-yaw) 

simultaneously but with very low calculation time of 𝑡𝑎𝑙𝑙𝑜𝑤 =
 .25𝑠𝑒𝑐 with a maximum allowable tolerance of position (𝐸𝑝 =

±5𝑚𝑚) and orientation (𝐸𝑜 = ±.008 rad) of the end-effector. 

In real-time the sampling time of a system is very small which 

makes the calculation time much faster, while moving the robot 

desired trajectory is divided into several points and for each 

point, the calculation should be very fast. No work has been 

identified which has proven the effectiveness of PSO to 

perform IK on real-time with given requirements. Therefore, 

the proposed new technique of PSO named DPSO has been 

proposed to solve the IK problem by using two PSO algorithms 

and then integrating them to get better results. 

3.2 Proposed Algorithm 

PSO iteratively improves the solution, the PSO algorithm 

updates each particle constantly based on the best solution so 

far. Each particle move with some velocity towards the desired 

point and the velocity reduces as the particle gets closer to the 

best-known particle in the population.  

 

The proposed scheme utilizes two different PSO algorithms 

working separately, each for analyzing position and 

orientation. The PSO-1 tries to reach to the end effector desired 

position and then PSO-2 will slightly adjust the joint angles to 

obtain the desired orientation. Following are the steps for the 

proposed algorithm. 

 

Step 1: Initial population of N particles is generated randomly 

within the predefined range. Where N is the number of particles 

generated depend upon the robot degree of freedoms and is 

defined as 

N =
𝑛𝑑𝑜𝑓×10

𝑡𝑎𝑙𝑙𝑜𝑤×𝐸𝑝
     (13) 

 

where 𝑛𝑑𝑜𝑓  represents the robot’s number of degrees of 

freedom. 

 

Step 2: Global best is set to infinity. Forward kinematics is 

computed for each particle. The function of the forward 

kinematics of a robot whose joint configuration is defined by 

𝑞𝑖(𝑘) is given by 

 

𝑓𝑘𝑖𝑛𝑒( 𝑞𝑖(𝑘)) =.0 𝑇𝑀( 𝑞𝑖(𝑘)) = [
.0 𝑅𝑀

𝑖 (𝑘) .0 𝑝𝑀
𝑖 (𝑘)

[0 0 0] 1
]  (14) 

 

where .0 𝑅𝑀
𝑖 (𝑘) ∈ ℝ3×3  and .0 𝑝𝑀

𝑖 (𝑘) ∈ ℝ3×1  represents the 

end-effector orientation and position respectively. 

 

Step 3: Compute the objective function for each particle. 

 

𝑓𝑜𝑏𝑗1 = ‖𝑃𝑑 − 𝑃𝑐‖ = 

√(𝑥𝑑 − 𝑥𝑐)2 + (𝑦𝑑 − 𝑦𝑐)2 + (𝑧𝑑 − 𝑧𝑐)2      (15) 

 

where 𝑃𝑑  (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 ) and 𝑃𝑐 (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) are the desired and 

current position in Cartesian space respectively. 

 

Step 4: Particle personal best is computed according to (5), and 

then global best is selected according to (4) i.e. if the objective 

function of an i-th particle is less than the personal best of the 

same particle at k-th iteration the personal best is updated of 

that particle and if the personal best of that particle is less than 

the global best then the global best is updated with the personal 

best of that particle. Update the position for next particle using 

(6) and (7). 

 

Step 5: Compute the personal best and the global best at each 

iteration and check for the stopping criteria. If the algorithm 

has reached the desired joint variable for the required position. 

 

Step 6: If the required position is obtained within 𝐸𝑝 = ±5𝑚𝑚, 

stop the further iterations for the position. 

 

Step 7: Generate M particles around the global best which is 

obtained in step 6. Where M is defined as 

 

M =
𝑖𝑡𝑝𝑠𝑜1×𝑡𝑝𝑠𝑜1

𝐸𝑜×𝑑
   (16) 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10022



 

    

 

where 𝑖𝑡𝑝𝑠𝑜1 , 𝑡𝑝𝑠𝑜1 and d are the total iteration performed in 

PSO-1 to obtain the desired position, time taken by PSO-1 and 

any constant that makes the M < N respectively. In this case d 

= 10. 

 

Step 8: Newly generated particle will start adjusting the joint 

variables in such a way that the end effector position remains 

the same nut the desired orientation is obtained by repeating the 

step 2, step 3, step 4 and step 5. 

 

The velocity of PSO-2 is reduced, as the newly generated 

particles will be moving in the search space near the desired 

position. If the acceleration factor is high, the output error will 

occur because the particle will search in the space out of range. 

To solve this problem, therefore, the new velocity used for 

PSO-2 is defined as 

 

𝑣𝑖(𝑘 + 1) =  ω. 𝑣𝑖(𝑘) + 𝑐2. 𝑟𝑎𝑛𝑑. (𝑋𝑔𝐵(𝑘) − 𝑥𝑖(𝑘))    (17) 

 

The objective function of PSO-2 is 

 

𝑓𝑜𝑏𝑗2 = 𝜌‖𝑃𝑑 − 𝑃𝑐‖ + 𝜎‖𝑂𝑑 − 𝑂𝑐‖ 

= 𝜌𝑓𝑜𝑏𝑗1 + 𝜎√(𝑅𝑑 − 𝑅𝑐)2 + (𝑃𝑑 − 𝑃𝑐)2 + (𝑌𝑑 − 𝑌𝑐)2  (18) 

 

where 𝑂𝑑  ( 𝑅𝑑 , 𝑃𝑑 , 𝑌𝑑 ) and 𝑂𝑐 ( 𝑅𝑐 , 𝑃𝑐 , 𝑌𝑐 ) are the desired 

orientation and current orientation respectively. 𝑅, 𝑃 𝑎𝑛𝑑 𝑌 

represent the roll, pitch and yaw respectively. Also, 0 ≤ 𝜌 ≤
1 and 0 ≤ 𝜎 ≤ 1 are the weighing importance of position and 

orientation. As PSO-2 will search for desired orientation 

without affecting the position, therefore, in proposed algorithm 

𝜌 and 𝜎 are set as 𝜌 = .25 and 𝜎 = .75 respectively.  

 

Step 9: Stop the iterations if the desired orientation is obtained 

within 𝐸𝑜 = ±.008rad. 

 

Step 10: The algorithm will check whether the results are 

within the space limitation of the robot. If not, then the 

algorithm will adjust them within the specified range. 

  

4. SYSTEM DESIGN AND KINEMATIC MODEL 

The robotic manipulator is a 6-DOF SCARA robot. The first 

link is composed of telescopic structure which in actual is the 

prismatic joint. Rest is a 5-DOF robotic arm being used in the 

nuclear-decommissioning operation. The CAD model 

isometric view of SCARA is presented in Fig 1. 

 

  
 

Fig.  1. 6-DOF SCARA type robot CAD model and axis 

configuration  

SolidWorks is used to get the virtual prototype model of the 

actual system as shown with the axis configuration in Fig .1. 

The red lines indicate the axis of rotation and the prismatic joint 

of the 6-DOF SCARA robot. For kinematics, the Denevit-

Hartenberg (DH) parameters of the robot are presented in Table 

1. Robot joint space and prismatic joint limitations are shown 

in Table 2. 

 

Table 1. DH Parameters of Scara Robot 

Joint 𝛉 (𝐫𝐚𝐝) 𝐝 (𝐦) 𝐚 (𝐦) 𝛂 (𝐫𝐚𝐝) 

1 0 𝑑1 ∗  0 0 

2 𝜃2
* 0 0 −

𝜋

2
 

3 𝜃3
* 0. 750 0 

𝜋

2
 

4 𝜃4
* 0 0.820 0 

5 𝜃5
* 0 0 

𝜋

2
 

6 𝜃6
* 0.730 0 0 

 

Table 2. Joint space limitation 

𝒅𝟏
*  𝜽𝟐

* 𝜽𝟑
* 𝜽𝟒

* 𝜽𝟓
* 𝜽𝟔

* 

2.5~10 −2𝜋~2𝜋 −2𝜋~2𝜋 −3𝜋

4
~

3𝜋

4
 

−3𝜋

4
~

3𝜋

4
 

−2𝜋~2𝜋 

 

5. EXPERIMENTAL SETUP AND RESULTS 

MATLAB/Simulink environment is used to program and then 

simulate the proposed algorithm. As the robot is used for the 

nuclear decommissioning process, it is remotely controlled 

using a joystick and virtual reality (VR). Because of the 

dangerous environment, the operator works in off-site in an 

operating room while the robot works in on-site to perform the 

real task. Through joystick, the required position and 

orientation is set and controlled. 

 

The Robot end effector should follow the joystick command in 

such a way that joystick gives the required position and 

orientation and then PSO solves the IK for required data. The 

joint angles are generated which are then used for the forward 

kinematics of robot and movement. Initially, the proposed 

algorithm is executed on MATLAB for the validation of the 

performance and results, then for real-time simulation joystick 

is used.  

5.1 Test Run Simulations 

Initially, the simulations were performed without Joystick to 

evaluate the difference between classical PSO and the proposed 

DPSO algorithm, and thereafter the results of the proposed 

algorithm will be ensured. Randomly generated few desired 

pose (position and orientation) are shown in Table 3. These 

poses were tested for the desired results. The PSO parameters 

for the test run are shown in Table 4. As expected, the algorithm 

proved its efficiency over the test run whose results are 

presented in Table 5. 

 

Where ω𝑑  (in Table 4.), 𝑖𝑡𝑃𝑆𝑂1 , 𝑖𝑡𝑃𝑆𝑂2  and 𝑇𝑅  in Table 5 are 

the damping ratio of inertia coefficient, iterations performed by 
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PSO-1, iterations performed by PSO-2 and run time 

respectively. Initially, the algorithm was not converging 

toward the desired result, so the inertia of the algorithm was 

adjusted at each iteration which is given as 

 

ω = ω𝑑 ×  ω         (19) 

 

Table 3. Desired position and orientation 

No 𝑷𝒅 (𝒙𝒅, 𝒚𝒅, 𝒛𝒅) 𝑶𝒅(𝑹𝒅, 𝑷𝒅, 𝒀𝒅) 

1 −1.99, . 642, −3.14 −2.35, −.82, −1.74 

2 −.6, . 425, −2.84 −1.43, . 87, −3.03 

3 −.002, . 82, −10 1.57, 1.57, 0 

4 1.62, 1.62, −5 −1.57, . 78, 0.78 

 

Table 4. PSO Parameters 

 PSO-1 PSO-2 

𝛚 0.5 0.5 

𝛚𝒅 0.99 0.9 

𝒄𝟏 1.5 0 

𝒄𝟐 1.5 1 

 

Table 5. DPSO Test run results 

No 𝑬𝒑 𝑬𝒐 𝒊𝒕𝑷𝑺𝑶𝟏 𝒊𝒕𝑷𝑺𝑶𝟐 𝑻𝑹 

1 0.000234 0.0033 29 8 0.21 

2 0.000202 0.0056 21 12 0.23 

3 0.000381 0.0049 23 14 0.2 

4 0.000493 0.0009 29 9 0.24 

 

The convergence graphs of classical PSO and the proposed 

algorithm are shown in Figs. 2 and 3, respectively. Fig. 2 shows 

the results that the classical PSO performed the task with an 

average of 75 iterations and slow convergence which is time 

taking whereas Fig. 3 shows the proposed algorithm can 

converge toward the desired point with an average of 32 

iterations in total. 

 
Fig.  2. Classical PSO Objection function evaluation 

 
 

Fig.  3. DPSO objective function evaluation 

In simulations, the average time of simulation when using the 

inverse Jacobian method was 0.15 - 0.2sec with 1000 iterations, 

whereas, for DPSO, the average time of simulation was 0.2sec 

because the number of populations according to (13) are 48, 

therefore, the total iterations performed was 48 ∗ 20 +  34 ∗
12 = 1368. Although the inverse Jacobian method took less 

time than DPSO, the accuracy if inverse Jacobian was not so 

good (55%), while the accuracy of DPSO was up to 99%. 

5.2 Real Experiment with Joystick 

As the proposed algorithm is for the real-time calculation, 

therefore, the test run results cannot validate the proposed 

algorithm. The experimental setup includes joystick which is 

connected to MATLAB/Simulink and will provide the end-

effector desired pose. The experimental setup is shown in Fig. 

4. Two joysticks are being used in this experiment. The left and 

right joystick set the desired point and orientation respectively. 

The values from joystick are then scaled within the robot 

workspace limits. IK using DPSO is performed and thereafter 

generated joint angles are then ported to the virtual physical 

system model in the Simulink. And the error of orientation and 

position is plotted.  

 

Fig. 5. shows the end-effector position error during real-time 

when controlling using a joystick.  

 

 
 

Fig.  4. Experimental setup 

 
 

Fig.  5. Position error in real-time 

Similarly, the real-time orientation error is shown in Fig. 6. 

While experimenting on real-time, a random shape was 

generated as shown in Fig. 7 which shows top view to explain 

the DPSO effectiveness over real-time with the help of red and 

blue plotted points presenting the desired and current position 

of the robot respectively. It was confirmed that the result of 

robot trajectory follows well the joystick command. 
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Fig.  6.  Orientation error in real-time 

 
 

Fig.  7. Generated shape using the joystick 

6. CONCLUSION 

Inverse kinematics have a great role in robotics before 

controlling the robotic manipulator. Usually, end-effector 

position is considered but the solution gets messy when the 

orientation is considered simultaneously because the 

orientation is also an important part for the end-effector 

required pose. Therefore, in this paper, we proposed a novel IK 

approach for inverse kinematics of 6-DOF robot using dual 

particle swarm optimization (DPSO) algorithms each for 

position and orientation respectively. Initially, the classical 

PSO algorithm was used for position and orientation but the 

results were not satisfactory with greater position and 

orientation error and slow convergence. However, after 

analyzing the problem under the given conditions, the defined 

objective functions are capable enough to consider not only the 

end-effector positioning problem but also the final orientation. 

The algorithm first evaluates the desired position using PSO-1 

and then using PSO-2, the algorithm generates the desired 

orientation. The efficiency of DPSO for IK problem has been 

proven through simulations and real-time tele-operation 

implementation. The results demonstrated the capability of the 

proposed approach that it has a big impact on the number of 

iterations needed to complete the objective.  
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