

Real-Time Inverse Kinematics Using Dual Particle Swarm Optimization DPSO of

6-DOF Robot for Nuclear Plant Dismantling

Hamza Khan1, Hyun Hee Kim2, Saad Jamshed Abbasi1 and Min Cheol Lee*

1School of Mechanical Engineering, Pusan National University
Busan, Korea (Tel: +8210-9535-0496; e-mail: hamzakhan.0496@gmail.com).

(e-mail: saadjamshed93@gmail.com)
2Division of Robotics Convergence, Pusan National University

Busan, Korea (email: sleepingjongmo@nate.com)
* School of Mechanical Engineering, Pusan National University,

Busan, Korea (e-mail: mclee@pusan.ac.kr), corresponding author

Abstract: Robotic manipulator inverse kinematics (IK) solution has a significant role in robotics. In this

paper, a new paradigm of particle swarm optimization (PSO) called dual particle swarm optimization

(DPSO) for the inverse kinematics problem of a robotic manipulator used in the nuclear plant

decommissioning process is proposed. The introduced approach of particle swarm optimization relies on the

approach of dividing one particle swarm optimization algorithm into two such that each algorithm optimizes

separately the problem for position and orientation, in this way the system will achieve faster convergence

toward desired results with fewer iterations. The proposed algorithm is designed and implemented in

MATLAB/Simulink to solve the inverse kinematics problem for a 6 degree of freedom selective compliance

articulated robot arm (SCARA) type robot with joint space constraints. For a real-time experiment, a pair of

the joysticks was integrated with MATLAB/Simulink. Using a dual joystick, the position and orientation

for the robot were set. Furthermore, the experimental results demonstrate the effectiveness of DPSO on real-

time within given constraints.

Keywords: Particle Swarm Optimization-PSO, Inverse Kinematics, Robotic Manipulator, Joystick.

1. INTRODUCTION

Robots capability for the autonomous operation and their

competence to perform a large number of set of tasks have

captured the attention of researchers and industries (Graetz and

Michaels, 2018). The scope of industrial robot applications was

established from the conventional handling, assembly and

welding tasks leading to a wide range of production (Abele et

al., 2007). Robots and their precise operation are getting

popular. Usage of a robot has been increased in a large number

of applications such as handling tasks that might be tough or

risky for human beings (Hao et al., 2011). In industrial

applications of a robot, the main objective of replacing the

human with robots is to provide efficiency and accuracy. For

nuclear applications, the thermal and radioactive environment

of nuclear plant requires human-less automation (Moore, 1985).

Attention on nuclear power plants dismantlement after the

incident of the Fukushima nuclear power plant in Japan has

been gained all over the world (Abbasi et al., 2019).

Humans provide guidance to the robot to achieve the desired

task which includes the robot end-effector position and

orientation (Mehmood et al., 2014). Inverse kinematics (IK) of

the robotic manipulator help for the robot to find the set of joint

angles that aligns the robotic manipulator’s posture (position

and orientation) with the desired posture. The guidance starts

with planning a trajectory for a robotic manipulator then

followed by the joint motion controller and thereafter the robot

control to generate enough joint torque to accurately track the

trajectory (Siciliano et al., 2010).

For each given task, it is not possible to directly control the

manipulator as there is no guidance or path to be tracked for

the desired task, therefore, a trajectory is planned for a

manipulator’s end-effector. The planned trajectory is then

divided into several points so that for each point the inverse

kinematics is performed to get the desired joint trajectory for

each link which becomes the desired set point for each link

joint.

IK solution has a significant role in robotics. Usually, the end-

effector position is considered for a solution as introducing

orientation will create a lot of problems. A task is assigned to

the robot, which is in Cartesian space, where the control is in

joint space. Different techniques have been used for IK of a

robotic manipulator. (Siciliano, 1990) proposed Closed Loop

Inverse Kinematics (CLIK) algorithm, which performs IK in

an iterative way for the desired pose (position and orientation).

The proposed algorithm is based pseudo-inverse of a Jacobian

matrix J. This approach was analysed on a 6-DOF SCARA

robot, but the results were not satisfactory because of high

computational complexity (Siciliano, 1990).

To overcome computational complexity, researchers have

proposed many different approaches as an alternative. One of

them is a heuristic optimization technique emerging widely in

the field. Heuristic techniques include Genetic Algorithm (GA)

(Zhang and Nelson, 2011), Ant Bee Colony (ABC)(Çavdar et

al., 2013) or Particle Swarm Optimization (PSO) (Rokbani and

Alimi, 2013). In these techniques, the solution is iteratively

improved by adopting a set of operations which mimics a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10020

natural process like birds flocking. For non-linear constrained

problem the most promising solution is particle swarm

optimization (PSO). Despite the different proposed techniques

for IK based on simplicity and accuracy, constraints are barely

considered.

This research proposes a new paradigm of PSO algorithm

called Dual Particle Swarm Optimization (DPSO) algorithm to

solve IK of 6-DOF SCARA robot in the presence of joint and

workspace constraints using a joystick. When using the DPSO,

the cumulative error of end-effector position and orientation is

very small as compared to classical GA, PSO and inverse

Jacobian method.

The paper follows the following pattern: Section 2 presents the

classical PSO algorithm, inverse kinematics approach using

PSO and related work. Section 3 presents the problem

statement of the situation and the proposed algorithm for IK.

Section 4 presents the system model and kinematics including

system space limitations. Section 5 discusses the experimental

setup and simulation results used to validate the proposed

algorithm and Section 6 entails the concluding remarks of the

paper.

2. BACKGROUND

2.1 Particle Swarm optimization

PSO is an optimizing technique which tries to improve its

population solution iteratively. PSO is developed by (Eberhart

and Kennedy, 1995). In the original formulation, the authors

presented an optimization technique that contains several

particles called swarm trying to optimize the problem by

moving in problems search space. The measure of quality is a

fitness function (objective function) f(.) which depends upon

different parameters. The algorithm consist of several particles

and each particle position is considered as a possible solution

to that problem. Iteratively the particle changes its position

with a velocity. After kth iteration, the position and velocity of

the independent particle of the generated population 𝒫 at kth

iteration is defined by M-dimensional vectors as follows

𝑥𝑖(𝑘) = [𝑥1
𝑖 (𝑘). . . 𝑥𝑀

𝑖 (𝑘)]
𝑇
 (1)

𝑣𝑖(𝑘) = [𝑣1
𝑖 (𝑘). . . 𝑣𝑀

𝑖 (𝑘)]
𝑇
 (2)

where 𝑖 = 1 . . . ‖𝒫‖ , 𝑥 and 𝑣 represent the position and

velocity of the i-th member of M-dimensional vector

respectively. In PSO, each particle also knows the information

about its neighbour, by exchanging their information so that

they know about the globally best particle in that swarm and

the swarm must follow the best particle. The communication of

each particle with their neighbour is defined as

𝑁𝑖(𝑘) = {𝑗 ∈ 𝒫: 𝑖 ↔ 𝑗} (3)

where the symbol ↔ represents the exchange of information

between particles. The movement and the direction of particles

within the search space in PSO depends upon the personal best

solution 𝑋𝑝𝐵
𝑖 (𝑘) and the global best 𝑋𝑔𝐵(𝑘) (Poli et al., 2007).

When the neighbours communicate, they share the information

of best-known particle which is globally best in the swarm and

according to this information, the new globally best particle is

updated by satisfying the following condition.

𝑋𝑔𝐵(𝑘) = {𝑋𝑝𝐵
𝑖 (𝑘) ∶ 𝑓(𝑋𝑝𝐵

𝑖 (𝑘)) < 𝑋𝑔𝐵(𝑘)} (4)

where 𝑋𝑔𝐵(𝑘), 𝑋𝑝𝐵
𝑖 (𝑘) and 𝑓(𝑋𝑝𝐵

𝑖 (𝑘)) are the global best at

k-th iteration, personal best of i-th particle at k-th iteration and

objective function to compute personal best of i-th particle at

k-th iteration respectively. Each particle at every single

iteration updates their position and compare their personal best

with the global best. If the personal best of a particle at kth

iteration in minimization problem is less than the global best as

described in (4), the global best is updated with that particle

personal best. Where the personal best of each particle is

updated according to (5) i.e. if the personal best of i-th particle

at k-th iteration is less than the last known personal best of the

same particle

𝑋𝑝𝐵
𝑖 (𝑘) = {𝑋𝑝𝐵

𝑖 (𝑘) ∶ 𝑓(𝑜𝑏𝑗) < 𝑋𝑝𝐵
𝑖 } (5)

As PSO algorithm starts, the initial population with n-number

particles are generated within the predefined range with zero

velocity. At each iteration i-th, particle velocity and position

are updated by (6) and (7).

𝑣𝑖(𝑘 + 1) = ω. 𝑣𝑖(𝑘) + 𝑐1. 𝑟𝑎𝑛𝑑. (𝑋𝑝𝐵
𝑖 (𝑘) − 𝑥𝑖(𝑘)) +

𝑐2. 𝑟𝑎𝑛𝑑. (𝑋𝑔𝐵(𝑘) − 𝑥𝑖(𝑘)) (6)

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1) (7)

where ω represents the inertia coefficient, 𝑐1 and 𝑐2 are the

learning factor or acceleration factor and 𝑟𝑎𝑛𝑑 represents the

generation of random number within the specified range

[−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥]. As the particles get closer to the desired result,

the velocity is optimized in such way that the process slows

down so that the solution does not deviate from the desired

result or have a large or increasing error.

2.2 Related Work for Inverse Kinematics

Many researches have performed IK using PSO and evaluated

their results for different types of robotic manipulators.

(Rokbani and Alimi, 2013) Analysed the PSO statistically for

the robotics IK and concluded that PSO can easily take care of

IK of robotic manipulator without computing the inverse

model. (Junior et al., 2018) used PSO to solve the IK problem

for a 4 DOF robotic manipulator based on full resampling of

the particles. (Collinsm and Shen, 2017) used PSO for a high

degree of freedom IK which yields the desired position and

orientation with a very low error. (Adly and Abd-El-Hafiz,

2016) proposed single and multiple objective PSO for 5-DOF

and 7-DOF robotic manipulator end-effector position. While

(Falconi et al., 2014) presented the idea of IK using PSO for

the cluttered environment with obstacles. This approach

divides the particles in a subgroup with specific tasks with

faster convergence for a 3-DOF planner robot. (Huang et al.,

2012) presented the IK solution based on PSO algorithm

applicable to 7-DOF robot manipulator and validated the

results in simulation. An improved PSO (IPSO) is presented by

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10021

(Du and Wu, 2011) for the solution of IK and simulated the

algorithm and (Collinsm and Shen, 2017) added a self-collision

avoidance to the IK using PSO. When compared with DPSO,

DPSO possesses small error with less calculation time even on

the real-time experiment.

3. DPSO INVERSE KINEMATICS

3.1 Problem Statement

Initially, to solve the real-time IK of 6-DOF robotic

manipulator used for nuclear power plant dismantling, the

inverse Jacobian iterative method was used. The iterative form

of the Jacobian matrix can be written as (8)

𝜃𝑖+1 = 𝜃𝑖 + 𝑑𝜃 = 𝜃𝑖 + 𝐽−1𝑑𝑃 (8)

where 𝑖 is the number of iterations to be performed, 𝑃 =

[𝑃𝑥 𝑃𝑦 𝑃𝑧 ∅ 𝜃 𝜑]
𝑇
is the posture matrix contains three position

and three orientation coordinates and 𝐽−1 is the inverse of the

Jacobian matrix. Where the inverse kinematics is represented

as

[𝐷𝜃] = [𝐽−1][𝐷] (9)

𝑑𝜃5×1 = 𝐽5×6
−1 𝑑𝑃6×1 (10)

Where the matrix of Jacobian (Park and Lee, 2018) is given as

𝐽 = [
𝑧0 × (𝑜5 − 𝑜0) 𝑧1 × (𝑜5 − 𝑜1) ⋯ 𝑧4 × (𝑜5 − 𝑜4)

𝑧0 𝑧1 ⋯ 𝑧4] (11)

𝑧0 = [
0
0
1

] , 𝑧1 = 𝑅0
1𝑧0, ⋯ , 𝑧4 = 𝑅3

4𝑧3 = 𝑅0
1 ⋯ 𝑅3

4𝑧0 (12)

where 𝑜𝑖 and 𝑅𝑖
𝑗
 are the distance between origin and ith-axis

coordinate and orientation matrix from ith-axis to jth-axis

respectively. The total 2000 iterations were performed for

better results of IK when performing only for end-effector

position. But when the orientation of end-effector was

introduced in the solution, the results have a very large error

(0° − 120°) in orientation because of the kinematics structure

of the robotic manipulator in the current study. Therefore, the

heuristic approach was used to determine accurate IK. DPSO

analysis includes the calculation of end-effector position (in

Cartesian space) and orientation (roll-pitch-yaw)

simultaneously but with very low calculation time of 𝑡𝑎𝑙𝑙𝑜𝑤 =
 .25𝑠𝑒𝑐 with a maximum allowable tolerance of position (𝐸𝑝 =

±5𝑚𝑚) and orientation (𝐸𝑜 = ±.008 rad) of the end-effector.

In real-time the sampling time of a system is very small which

makes the calculation time much faster, while moving the robot

desired trajectory is divided into several points and for each

point, the calculation should be very fast. No work has been

identified which has proven the effectiveness of PSO to

perform IK on real-time with given requirements. Therefore,

the proposed new technique of PSO named DPSO has been

proposed to solve the IK problem by using two PSO algorithms

and then integrating them to get better results.

3.2 Proposed Algorithm

PSO iteratively improves the solution, the PSO algorithm

updates each particle constantly based on the best solution so

far. Each particle move with some velocity towards the desired

point and the velocity reduces as the particle gets closer to the

best-known particle in the population.

The proposed scheme utilizes two different PSO algorithms

working separately, each for analyzing position and

orientation. The PSO-1 tries to reach to the end effector desired

position and then PSO-2 will slightly adjust the joint angles to

obtain the desired orientation. Following are the steps for the

proposed algorithm.

Step 1: Initial population of N particles is generated randomly

within the predefined range. Where N is the number of particles

generated depend upon the robot degree of freedoms and is

defined as

N =
𝑛𝑑𝑜𝑓×10

𝑡𝑎𝑙𝑙𝑜𝑤×𝐸𝑝
 (13)

where 𝑛𝑑𝑜𝑓 represents the robot’s number of degrees of

freedom.

Step 2: Global best is set to infinity. Forward kinematics is

computed for each particle. The function of the forward

kinematics of a robot whose joint configuration is defined by

𝑞𝑖(𝑘) is given by

𝑓𝑘𝑖𝑛𝑒(𝑞𝑖(𝑘)) =.0 𝑇𝑀(𝑞𝑖(𝑘)) = [
.0 𝑅𝑀

𝑖 (𝑘) .0 𝑝𝑀
𝑖 (𝑘)

[0 0 0] 1
] (14)

where .0 𝑅𝑀
𝑖 (𝑘) ∈ ℝ3×3 and .0 𝑝𝑀

𝑖 (𝑘) ∈ ℝ3×1 represents the

end-effector orientation and position respectively.

Step 3: Compute the objective function for each particle.

𝑓𝑜𝑏𝑗1 = ‖𝑃𝑑 − 𝑃𝑐‖ =

√(𝑥𝑑 − 𝑥𝑐)2 + (𝑦𝑑 − 𝑦𝑐)2 + (𝑧𝑑 − 𝑧𝑐)2 (15)

where 𝑃𝑑 (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑) and 𝑃𝑐 (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) are the desired and

current position in Cartesian space respectively.

Step 4: Particle personal best is computed according to (5), and

then global best is selected according to (4) i.e. if the objective

function of an i-th particle is less than the personal best of the

same particle at k-th iteration the personal best is updated of

that particle and if the personal best of that particle is less than

the global best then the global best is updated with the personal

best of that particle. Update the position for next particle using

(6) and (7).

Step 5: Compute the personal best and the global best at each

iteration and check for the stopping criteria. If the algorithm

has reached the desired joint variable for the required position.

Step 6: If the required position is obtained within 𝐸𝑝 = ±5𝑚𝑚,

stop the further iterations for the position.

Step 7: Generate M particles around the global best which is

obtained in step 6. Where M is defined as

M =
𝑖𝑡𝑝𝑠𝑜1×𝑡𝑝𝑠𝑜1

𝐸𝑜×𝑑
 (16)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10022

where 𝑖𝑡𝑝𝑠𝑜1 , 𝑡𝑝𝑠𝑜1 and d are the total iteration performed in

PSO-1 to obtain the desired position, time taken by PSO-1 and

any constant that makes the M < N respectively. In this case d

= 10.

Step 8: Newly generated particle will start adjusting the joint

variables in such a way that the end effector position remains

the same nut the desired orientation is obtained by repeating the

step 2, step 3, step 4 and step 5.

The velocity of PSO-2 is reduced, as the newly generated

particles will be moving in the search space near the desired

position. If the acceleration factor is high, the output error will

occur because the particle will search in the space out of range.

To solve this problem, therefore, the new velocity used for

PSO-2 is defined as

𝑣𝑖(𝑘 + 1) = ω. 𝑣𝑖(𝑘) + 𝑐2. 𝑟𝑎𝑛𝑑. (𝑋𝑔𝐵(𝑘) − 𝑥𝑖(𝑘)) (17)

The objective function of PSO-2 is

𝑓𝑜𝑏𝑗2 = 𝜌‖𝑃𝑑 − 𝑃𝑐‖ + 𝜎‖𝑂𝑑 − 𝑂𝑐‖

= 𝜌𝑓𝑜𝑏𝑗1 + 𝜎√(𝑅𝑑 − 𝑅𝑐)2 + (𝑃𝑑 − 𝑃𝑐)2 + (𝑌𝑑 − 𝑌𝑐)2 (18)

where 𝑂𝑑 (𝑅𝑑 , 𝑃𝑑 , 𝑌𝑑) and 𝑂𝑐 (𝑅𝑐 , 𝑃𝑐 , 𝑌𝑐) are the desired

orientation and current orientation respectively. 𝑅, 𝑃 𝑎𝑛𝑑 𝑌

represent the roll, pitch and yaw respectively. Also, 0 ≤ 𝜌 ≤
1 and 0 ≤ 𝜎 ≤ 1 are the weighing importance of position and

orientation. As PSO-2 will search for desired orientation

without affecting the position, therefore, in proposed algorithm

𝜌 and 𝜎 are set as 𝜌 = .25 and 𝜎 = .75 respectively.

Step 9: Stop the iterations if the desired orientation is obtained

within 𝐸𝑜 = ±.008rad.

Step 10: The algorithm will check whether the results are

within the space limitation of the robot. If not, then the

algorithm will adjust them within the specified range.

4. SYSTEM DESIGN AND KINEMATIC MODEL

The robotic manipulator is a 6-DOF SCARA robot. The first

link is composed of telescopic structure which in actual is the

prismatic joint. Rest is a 5-DOF robotic arm being used in the

nuclear-decommissioning operation. The CAD model

isometric view of SCARA is presented in Fig 1.

Fig. 1. 6-DOF SCARA type robot CAD model and axis

configuration

SolidWorks is used to get the virtual prototype model of the

actual system as shown with the axis configuration in Fig .1.

The red lines indicate the axis of rotation and the prismatic joint

of the 6-DOF SCARA robot. For kinematics, the Denevit-

Hartenberg (DH) parameters of the robot are presented in Table

1. Robot joint space and prismatic joint limitations are shown

in Table 2.

Table 1. DH Parameters of Scara Robot

Joint 𝛉 (𝐫𝐚𝐝) 𝐝 (𝐦) 𝐚 (𝐦) 𝛂 (𝐫𝐚𝐝)

1 0 𝑑1 ∗ 0 0

2 𝜃2
* 0 0 −

𝜋

2

3 𝜃3
* 0. 750 0

𝜋

2

4 𝜃4
* 0 0.820 0

5 𝜃5
* 0 0

𝜋

2

6 𝜃6
* 0.730 0 0

Table 2. Joint space limitation

𝒅𝟏
* 𝜽𝟐

* 𝜽𝟑
* 𝜽𝟒

* 𝜽𝟓
* 𝜽𝟔

*

2.5~10 −2𝜋~2𝜋 −2𝜋~2𝜋 −3𝜋

4
~

3𝜋

4

−3𝜋

4
~

3𝜋

4

−2𝜋~2𝜋

5. EXPERIMENTAL SETUP AND RESULTS

MATLAB/Simulink environment is used to program and then

simulate the proposed algorithm. As the robot is used for the

nuclear decommissioning process, it is remotely controlled

using a joystick and virtual reality (VR). Because of the

dangerous environment, the operator works in off-site in an

operating room while the robot works in on-site to perform the

real task. Through joystick, the required position and

orientation is set and controlled.

The Robot end effector should follow the joystick command in

such a way that joystick gives the required position and

orientation and then PSO solves the IK for required data. The

joint angles are generated which are then used for the forward

kinematics of robot and movement. Initially, the proposed

algorithm is executed on MATLAB for the validation of the

performance and results, then for real-time simulation joystick

is used.

5.1 Test Run Simulations

Initially, the simulations were performed without Joystick to

evaluate the difference between classical PSO and the proposed

DPSO algorithm, and thereafter the results of the proposed

algorithm will be ensured. Randomly generated few desired

pose (position and orientation) are shown in Table 3. These

poses were tested for the desired results. The PSO parameters

for the test run are shown in Table 4. As expected, the algorithm

proved its efficiency over the test run whose results are

presented in Table 5.

Where ω𝑑 (in Table 4.), 𝑖𝑡𝑃𝑆𝑂1 , 𝑖𝑡𝑃𝑆𝑂2 and 𝑇𝑅 in Table 5 are

the damping ratio of inertia coefficient, iterations performed by

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10023

PSO-1, iterations performed by PSO-2 and run time

respectively. Initially, the algorithm was not converging

toward the desired result, so the inertia of the algorithm was

adjusted at each iteration which is given as

ω = ω𝑑 × ω (19)

Table 3. Desired position and orientation

No 𝑷𝒅 (𝒙𝒅, 𝒚𝒅, 𝒛𝒅) 𝑶𝒅(𝑹𝒅, 𝑷𝒅, 𝒀𝒅)

1 −1.99, . 642, −3.14 −2.35, −.82, −1.74

2 −.6, . 425, −2.84 −1.43, . 87, −3.03

3 −.002, . 82, −10 1.57, 1.57, 0

4 1.62, 1.62, −5 −1.57, . 78, 0.78

Table 4. PSO Parameters

 PSO-1 PSO-2

𝛚 0.5 0.5

𝛚𝒅 0.99 0.9

𝒄𝟏 1.5 0

𝒄𝟐 1.5 1

Table 5. DPSO Test run results

No 𝑬𝒑 𝑬𝒐 𝒊𝒕𝑷𝑺𝑶𝟏 𝒊𝒕𝑷𝑺𝑶𝟐 𝑻𝑹

1 0.000234 0.0033 29 8 0.21

2 0.000202 0.0056 21 12 0.23

3 0.000381 0.0049 23 14 0.2

4 0.000493 0.0009 29 9 0.24

The convergence graphs of classical PSO and the proposed

algorithm are shown in Figs. 2 and 3, respectively. Fig. 2 shows

the results that the classical PSO performed the task with an

average of 75 iterations and slow convergence which is time

taking whereas Fig. 3 shows the proposed algorithm can

converge toward the desired point with an average of 32

iterations in total.

Fig. 2. Classical PSO Objection function evaluation

Fig. 3. DPSO objective function evaluation

In simulations, the average time of simulation when using the

inverse Jacobian method was 0.15 - 0.2sec with 1000 iterations,

whereas, for DPSO, the average time of simulation was 0.2sec

because the number of populations according to (13) are 48,

therefore, the total iterations performed was 48 ∗ 20 + 34 ∗
12 = 1368. Although the inverse Jacobian method took less

time than DPSO, the accuracy if inverse Jacobian was not so

good (55%), while the accuracy of DPSO was up to 99%.

5.2 Real Experiment with Joystick

As the proposed algorithm is for the real-time calculation,

therefore, the test run results cannot validate the proposed

algorithm. The experimental setup includes joystick which is

connected to MATLAB/Simulink and will provide the end-

effector desired pose. The experimental setup is shown in Fig.

4. Two joysticks are being used in this experiment. The left and

right joystick set the desired point and orientation respectively.

The values from joystick are then scaled within the robot

workspace limits. IK using DPSO is performed and thereafter

generated joint angles are then ported to the virtual physical

system model in the Simulink. And the error of orientation and

position is plotted.

Fig. 5. shows the end-effector position error during real-time

when controlling using a joystick.

Fig. 4. Experimental setup

Fig. 5. Position error in real-time

Similarly, the real-time orientation error is shown in Fig. 6.

While experimenting on real-time, a random shape was

generated as shown in Fig. 7 which shows top view to explain

the DPSO effectiveness over real-time with the help of red and

blue plotted points presenting the desired and current position

of the robot respectively. It was confirmed that the result of

robot trajectory follows well the joystick command.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10024

Fig. 6. Orientation error in real-time

Fig. 7. Generated shape using the joystick

6. CONCLUSION

Inverse kinematics have a great role in robotics before

controlling the robotic manipulator. Usually, end-effector

position is considered but the solution gets messy when the

orientation is considered simultaneously because the

orientation is also an important part for the end-effector

required pose. Therefore, in this paper, we proposed a novel IK

approach for inverse kinematics of 6-DOF robot using dual

particle swarm optimization (DPSO) algorithms each for

position and orientation respectively. Initially, the classical

PSO algorithm was used for position and orientation but the

results were not satisfactory with greater position and

orientation error and slow convergence. However, after

analyzing the problem under the given conditions, the defined

objective functions are capable enough to consider not only the

end-effector positioning problem but also the final orientation.

The algorithm first evaluates the desired position using PSO-1

and then using PSO-2, the algorithm generates the desired

orientation. The efficiency of DPSO for IK problem has been

proven through simulations and real-time tele-operation

implementation. The results demonstrated the capability of the

proposed approach that it has a big impact on the number of

iterations needed to complete the objective.

ACKNOWLEDGEMENT

This research was supported by the nuclear research and

development program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Science

and ICT (MSIT, Korea). [NRF-2019M2C9A1057807]

This research was funded by the Technology Innovation

Program (10073147, Development of Robot Manipulation

Technology by Using Artificial Intelligence) funded By the

Ministry of Trade, Industry & Energy(MOTIE, Korea)

REFERENCES

ABBASI, S. J., KALLU, K. D. & LEE, M. C. 2019. Efficient Control of a Non-

Linear System Using a Modified Sliding Mode Control. Applied
Sciences, 9, 1284.

ABELE, E., WEIGOLD, M. & ROTHENBÜCHER, S. 2007. Modeling and

identification of an industrial robot for machining applications.
CIRP annals, 56, 387-390.

ADLY, M. & ABD-EL-HAFIZ, S. Inverse kinematics using single-and multi-

objective particle swarm optimization. 2016 28th International
Conference on Microelectronics (ICM), 2016. IEEE, 269-272.

ÇAVDAR, T., MOHAMMAD, M. & MILANI, R. A. 2013. A new heuristic

approach for inverse kinematics of robot arms. Advanced Science
Letters, 19, 329-333.

COLLINSM, T. J. & SHEN, W.-M. Particle swarm optimization for high-dof
inverse kinematics. 2017 3rd International Conference on Control,

Automation and Robotics (ICCAR), 2017. IEEE, 1-6.

DU, Y. & WU, Y. Application of IPSO algorithm to inverse kinematics
solution of reconfigurable modular robots. 2011 International

Conference on Mechatronic Science, Electric Engineering and

Computer (MEC), 2011. IEEE, 1313-1316.
EBERHART, R. & KENNEDY, J. A new optimizer using particle swarm

theory. MHS'95. Proceedings of the Sixth International

Symposium on Micro Machine and Human Science, 1995. Ieee, 39-
43.

FALCONI, R., GRANDI, R. & MELCHIORRI, C. 2014. Inverse kinematics

of serial manipulators in cluttered environments using a new
paradigm of particle swarm optimization. IFAC Proceedings

Volumes, 47, 8475-8480.

GRAETZ, G. & MICHAELS, G. 2018. Robots at work. Review of Economics
and Statistics, 100, 753-768.

HAO, W. G., LECK, Y. Y. & HUN, L. C. 6-DOF PC-Based Robotic Arm (PC-

ROBOARM) with efficient trajectory planning and speed control.

2011 4th International Conference on Mechatronics (ICOM), 2011.

IEEE, 1-7.

HUANG, H.-C., CHEN, C.-P. & WANG, P.-R. Particle swarm optimization
for solving the inverse kinematics of 7-DOF robotic manipulators.

2012 IEEE international conference on systems, man, and

cybernetics (SMC), 2012. IEEE, 3105-3110.
JUNIOR, J. D. L. S., DE OLIVEIRA JESUS, R. C., MOLINA, L.,

CARVALHO, E. A. N. & FREIRE, E. O. FRPSO: Inverse

Kinematics Using Fully Resampled Particle Swarm Optimization.
2018 Latin American Robotic Symposium, 2018 Brazilian

Symposium on Robotics (SBR) and 2018 Workshop on Robotics in

Education (WRE), 2018. IEEE, 402-407.
MEHMOOD, N., IJAZ, F., MURTAZA, Z. & SHAH, S. I. A. Analysis of end-

effector position and orientation for 2P-3R planer pneumatic

robotic arm. 2014 (iCREATE, 2014). IEEE, 47-50.
MOORE, T. 1985. Robots for nuclear power plants. IAEA Bulletin, 27, 31-38.

PARK, S. & LEE, M. C. 7DOFs Robot Numerical Approach Method with
Jacobian. 2018 International Conference on Information and

Communication Technology Robotics (ICT-ROBOT), 2018. IEEE,

1-4.
POLI, R., KENNEDY, J. & BLACKWELL, T. 2007. Particle swarm

optimization. Swarm intelligence, 1, 33-57.

ROKBANI, N. & ALIMI, A. M. 2013. Inverse kinematics using particle swarm
optimization, a statistical analysis. Procedia Engineering, 64, 1602-

1611.

SICILIANO, B. 1990. Kinematic control of redundant robot manipulators: A
tutorial. Journal of intelligent and robotic systems, 3, 201-212.

SICILIANO, B., SCIAVICCO, L., VILLANI, L. & ORIOLO, G. 2010.

Robotics: modelling, planning and control, Springer Science &
Business Media.

ZHANG, X. & NELSON, C. A. 2011. Multiple-criteria kinematic optimization

for the design of spherical serial mechanisms using genetic
algorithms. Journal of Mechanical Design, 133, 011005.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10025

