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Abstract: In this paper, we consider stochastic master equations describing the evolutions
of quantum systems interacting with electromagnetic fields undergoing continuous-time mea-
surements. In particular, we study feedback control of quantum spin- 1

2 systems in the case of
unawareness of initial states and in presence of measurement imperfections. We prove that the
fidelity between the true quantum filter and its estimation (with arbitrary initial state) converges
to one under appropriate assumption on the feedback controller. This shows the asymptotic
convergence of such filters. In the more general case of spin-J systems, we discuss heuristically
the asymptotic behavior of the true quantum filter and the associated estimation, and the
possibility of exponentially stabilizing such systems towards an eigenvector of the measurement
operator by an appropriate feedback.
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1. INTRODUCTION

Classical filtering (see, e.g Kallianpur (2013); Xiong
(2008)) optimizes the estimation of the state of a clas-
sical system from noisy observations. The quantum ana-
logue was developed in the 1960s by Davies (1969, 1976)
and extended by Belavkin in the 1980s Belavkin (1983,
1989, 1992), relying on quantum probability theory and
quantum stochastic calculus (Hudson and Parthasarathy
(1984); Hudson (2003); Meyer (2006)). The modern treat-
ment of quantum filtering has been established in Bouten
et al. (2009). Roughly speaking, quantum filtering the-
ory gives a matrix-valued stochastic differential equation
called stochastic master equation, to describe the time evo-
lution of the state of an open quantum system interacting
with an electromagnetic field under homodyne detection.

In real experiments, different types of imperfections, such
as detection inefficiencies and unawareness of initial states,
may be present (see e.g., Sayrin et al. (2011)). In the
case of unawareness of initial states and known physical
parameters such as detection inefficiencies, one considers
estimated quantum filters which are designed based on
measurements. The main question is whether the esti-
mated filter “forgets” its initial state and has the same
asymptotic behaviour as if it was correctly initialized. This
problem can be posed when a feedback depending on the
estimated quantum filter is applied. Since the observation
process depends on the true quantum state, we deal with
coupled stochastic master equations whose asymptotic be-
havior is not at all a trivial problem.

? The authors thank the support from Agence Nationale de la
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For uncontrolled system, this problem has been investi-
gated in some recent papers. In the series of papers van
Handel (2006, 2009a,b), a sufficient observability condi-
tion has been established so that the convergence of the
estimation towards the true state is guaranteed. However,
such condition is not easy to verify even if the system
is finite dimensional. In Diósi et al. (2006), the prob-
lem of convergence is addressed assuming either the true
quantum filter or its estimated state is always pure. The
authors prove that the fidelity is a sub-martingale for this
case. Then, in Rouchon (2011), by applying Uhlmann’s
technique (Nielsen and Chuang, 2000, Theorem 9.4), the
author shows that the fidelity between the state of the
discrete-time quantum filter and its associated estimated
state is a sub-martingale via a Kraus map. However,
this sub-martingale property of the fidelity cannot ensure
the convergence of the estimated filter state towards the
true one. In Amini et al. (2011) the authors show that
the fidelity is a sub-martingale for continuous-time quan-
tum filters with perfect measurement for arbitrary mixed
states. By the quantum repeated interaction approach,
such result has been extended to the continuous-time
jump-diffusion stochastic master equations with general
measurement imperfections in Amini et al. (2014). Then,
in Benoist and Pellegrini (2014), for quantum filters de-
scribed by jump-diffusion stochastic differential equations,
the authors show that when the control input is turned off,
under perfect Quantum Non-Demolition (QND) measure-
ments and a non-degeneracy assumption, the convergence
is ensured.

Concerning the feedback stabilization of discrete-time
QND measures, in Mirrahimi et al. (2009); Amini et al.
(2013), the authors show the robustness of their feedback
strategies with respect to initial states. Following Bouten
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and van Handel (2008), this is referred to as quantum
separation principle. For continuous-time case, stabiliza-
tion results for the case of unknown initial states have not
been addressed so far. On the other hand, for angular mo-
mentum systems and without initialization imperfections,
in Mirrahimi and van Handel (2007), the authors show
the asymptotic convergence towards a chosen eigenvector
of the measurement operator Jz. In the same context,
in Liang et al. (2019a), we provide general conditions
on the feedback controller and a local Lyapunov type
condition which ensure exponential convergence towards
a chosen eigenvector of Jz.

In this paper, we first analyze the dynamics of quantum
spin- 1

2 systems in presence of feedback control. We suppose
imperfections in measurements and unawareness of the
initial state. We show that the true filter and filter estimate
have the same asymptotic behavior under appropriate as-
sumption on the feedback. For spin-J systems, we discuss
heuristically the asymptotic behaviors of the true quantum
filter and its associated estimated filter and the possibil-
ity of exponentially stabilizing such systems towards an
eigenvector of the measurement operator Jz by a candidate
feedback controller. We precise that our results don’t prove
the robustness properties of feedback strategies considered
in Liang et al. (2019a, 2018). Numerical simulations are
provided in order to illustrate our results and to support
the efficiency of the proposed candidate feedback.

2. MODEL DESCRIPTION

Here, we consider quantum spin- 1
2 systems. The stochastic

master equations describing the evolution of the true
system state and the corresponding estimated state are
given as follows,

dρt=Fût
(ρt)dt+L(ρt)dt+G(ρt)

(
dYt−2

√
ηMTr(σzρt)dt

)
,

dρ̂t=Fût
(ρ̂t)dt+L(ρ̂t)dt+G(ρ̂t)

(
dYt−2

√
ηMTr(σz ρ̂t)dt

)
,

where

• the quantum state of the spin- 1
2 system is denoted as

ρ, and belongs to the space S2 := {ρ ∈ C2×2| ρ =
ρ∗,Tr(ρ) = 1, ρ ≥ 0}. The estimated state is denoted
as ρ̂ ∈ S2,
• the matrices σx, σy and σz correspond to the Pauli

matrices.
• Fu(ρ) := −i[ωσz+uσy, ρ], L(ρ) := M(σzρσz−ρ) and
G(ρ) :=

√
ηM

(
σzρ+ ρσz − 2Tr(σzρ)ρ

)
.

• Yt denotes the observation process of the quantum
spin- 1

2 system, which is a continuous semi-martingale
whose quadratic variation is given by [Y, Y ]t = t.
Its dynamics satisfies dYt = dWt + 2

√
ηMTr(σzρt)dt,

where Wt is a one-dimensional standard Wiener pro-
cess,
• ût := u(ρ̂t) denotes the feedback controller as a

function of the estimated state ρ̂t,
• ω is the difference between the energies of the excited

state and the ground state, η ∈ [0, 1] describes the
efficiency of the detector, and M > 0 is the strength
of the interaction between the system and the probe.

By replacing dYt = dWt + 2
√
ηMTr(σzρt)dt in the equa-

tion above, we obtain the following matrix-valued stochas-
tic differential equations describing the time evolution of

the pair (ρt, ρ̂t) ∈ S2 × S2,

dρt=Fût
(ρt)dt+L(ρt)dt+G(ρt)dWt, (1)

dρ̂t=Fût(ρ̂t)dt+L(ρ̂t)dt+2
√
ηMG(ρ̂t)Tr

(
σz(ρt − ρ̂t)

)
dt

+G(ρ̂t)dWt. (2)

If u ∈ C1(S2,R), the existence and uniqueness of the
solution of (1)–(2) can be shown by similar arguments as
in (Mirrahimi and van Handel, 2007, Proposition 3.5). Re-
call that a density operator can be uniquely characterized
by the Bloch sphere coordinates (x, y, z) as

ρ =
1+ xσx + yσy + zσz

2
=

1

2

[
1 + z x− iy
x+ iy 1− z

]
.

The vector (x, y, z) belongs to the ball

B := {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1}.
The stochastic differential equation (1) expressed in the
Bloch sphere coordinates takes the following form

dxt =

(
−ωegyt −

M

2
xt + ûtzt

)
dt−

√
ηMxtztdWt, (3a)

dyt =

(
ωegxt −

M

2
yt

)
dt−

√
ηMytztdWt, (3b)

dzt = −ûtxtdt+
√
ηM(1− z2

t )dWt. (3c)

The stochastic differential equation (2) in the Bloch
sphere coordinates is given by,

dx̂t =

(
−ωeg ŷt −

M

2
x̂t + ûtẑt + ηMx̂tẑt(ẑt − zt)

)
dt

−
√
ηMx̂tẑtdWt, (4a)

dŷt =

(
ωegx̂t −

M

2
ŷt + ηMŷtẑt(ẑt − zt)

)
dt

−
√
ηMŷtẑtdWt, (4b)

dẑt =
(
−ûtx̂t − ηM(1− ẑ2

t )(ẑt − zt)
)
dt

+
√
ηM(1− ẑ2

t )dWt. (4c)

3. CONVERGENCE PROPERTY OF QUANTUM
SPIN- 1

2 SYSTEMS

We focus on the fidelity F(ρ, ρ̂) which defines a “distance”
between the state ρ and its estimation ρ̂. In the two-level
case, the fidelity can be written in the following form

F(ρ̂, ρ) = Tr(ρ̂ρ) + 2
√

det(ρ̂) det(ρ).

The fidelity in the Bloch sphere coordinates is given by

F(ρ̂, ρ)=F(v̂,v)=
1

2

(
1+v>v̂+

√
(1− ‖v‖2)(1− ‖v̂‖2)

)
,

where v :=(x, y, z) denotes the true state and v̂ := (x̂, ŷ, ẑ)
denotes the estimated state in Bloch sphere coordinates.
We have two following special cases,

(1) if F(ρ̂, ρ) = 1, then v = v̂;
(2) if F(ρ̂, ρ) = 0, then v + v̂ = 0 and ‖v‖2 =‖v̂‖2 = 1.

In order to apply the Itô formula on the fidelity F(ρ, ρ̂),
we need to show the unattainability of the boundary for ρ
and ρ̂. By straightforward calculations, we can show that

{ρ ∈ S2| det(ρ) = 0} = {ρ ∈ S2|Tr(ρ2) = 1}, (5)

which means that the boundary ∂S2 is equal to the set
of all pure states P. The following lemma states some
invariance properties for Equations (1)–(2).
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Lemma 3.1. If ρ0 > 0, then P(ρt > 0, ∀t ≥ 0) =
1. Moreover, if η = 1, ∂S2 × S2 is a.s. invariant for
Equations (1)–(2). The same results hold true for S2×∂S2.

Proof. The dynamics of the purification function S(ρt) :=
1− Tr(ρ2

t ) is given by

dS(ρt) =M
( (1− η)(1− z2

t )

2
− (1− ηz2

t )S(ρt)
)
dt

− 2
√
ηMztS(ρt)dWt.

Then, if η = 1, it is obvious that the set of all pure states
P for Equation (1) is a.s. invariant.

Next, let us prove the first part of the lemma. Given ε > 0,
consider any C2 function on S such that

V (ρ) =
1

S(ρ)
, if S(ρ) > ε.

We find

L V (ρ) = M

(
1 + 3ηz2 − (1− η)

1− z2

2S(ρ)

)
V (ρ),

≤ 4MV (ρ) if S(ρ) > ε,

where L V denotes the infinitesimal generator of V
(see e.g., Mao (2007)). To conclude the proof, one ap-
plies standard arguments (see e.g., (Liang et al., 2019a,
Lemma 4.1)). Roughly speaking, by setting f(ρ, t) =
e−4MtV (ρ), one has L f ≤ 0 whenever S(ρ) > ε. From
this fact one proves that the probability of S(ρ) becoming
zero in a finite fixed time T is proportional to ε and, being
the latter arbitrary, it must be 0. Due to the equality (5),
P(ρt > 0, ∀t ≥ 0) = 1 when ρ0 > 0. The last part of the
lemma can be proved in the same manner.

Next, we analyze the behavior of ρt (resp. ρ̂t) whenever
the corresponding initial datum ρ0 (resp. ρ̂0) lies at the
boundary of S2. Denote ρg:=diag(1, 0) and ρe:=diag(0, 1),
which are the eigenvectors of σz and pure states.

Lemma 3.2. Assume η ∈ (0, 1) and u ∈ C1(S2,R). Sup-
pose that ρ̂0 lies in ∂S2 \{ρg,ρe}, then ρ̂t > 0 for all t > 0
almost surely. Moreover, if ρ̂0 ∈ {ρg,ρe} and u(ρ̂0) 6= 0
then, ρ̂t > 0 for all t > 0 almost surely. In addition, under
the assumption ρ0 ∈ ∂S2 \ {ρg,ρe}, then ρt > 0 for all
t > 0 almost surely. Also, if u(ρg)u(ρe) 6= 0 then, for all
ρ0 ∈ ∂S2, ρt exits the boundary in finite time and stays in
the interior of S2 almost surely.

Proof. First, consider the purification function S(ρ̂) :=
1− Tr(ρ̂2) for Equation (2), whose dynamics is given by

dS(ρ̂t) =M
( (1− η)(1− ẑ2

t )

2
− (1− ηẑ2

t )S(ρ̂t)

− 4η(zt − ẑt)ẑtS(ρ̂t)
)
dt− 2

√
ηMẑtS(ρ̂t)dWt.

Now, assume ρ̂0 ∈ ∂S2 \ {Bε(ρg)∪Bε(ρe)}}. By compact-

ness, there exists a ζ > 0 such that 1
2M(1−η)(1− ẑ2) ≥ ζ.

Define τ := inf{t > 0| ρ̂t /∈ ∂S2 \ {Bε(ρg)∪Bε(ρe)}, for all
ρ̂0 ∈ ∂S2 \ {Bε(ρg) ∪ Bε(ρe)} and t > 0, by Itô formula,
we have

E(S(ρ̂t∧τ )) = E
(∫ t∧τ

0

1

2
M(1− η)(1− ẑ2

s)ds

)
≥ ζE(t∧τ).

By continuity and the definition of τ , S(ρ̂t∧τ ) = 0 almost
surely. This implies that E(t∧ τ) = 0. Since we have E(t∧

τ) ≥ tP(τ ≥ t) we deduce that P(τ ≥ t) = 0 for all t > 0.
Due to the arbitrariness of ε, if ρ̂0 ∈ ∂S2 \ {ρg,ρe} then
ρ̂t exits the boundary immediately. Combining with the
strong Markov property and Lemma 3.1, we have ρ̂t > 0
for all t > 0, almost surely. Moreover, if ρ̂0 ∈ {ρg,ρe} then
by the condition u(ρ̂0) 6= 0 we deduce the same result.

For the case ρ0 ∈ ∂S2 \ {ρg,ρe}, the above arguments
can be repeated so that ρt > 0 for all t > 0 almost
surely. Moreover, if u(ρg)u(ρe) 6= 0 and u ∈ C1(S2,R),
then there exists a neighborhood of ρe denoted by Bre(ρe)
and a neighborhood of ρg denoted by Brg (ρg) such that,
u(ρ̂) 6= 0 for all ρ ∈ Bre(ρe) ∪ Brg (ρg). By applying the
same arguments as in (Liang et al., 2019a, Lemma 6.1), we
can show that if ρ0 ∈ ∂S2, ρ̂t enters in Bre(ρe)∪Brg (ρg) in
finite time almost surely, which means that u(ρ̂t) becomes
non-zero in finite time almost surely. As a consequence, ρt
exits the boundary and stays in the interior of S almost
surely. The proof is then complete.

Proposition 3.3. Assume η ∈ (0, 1] and let u ∈ C1(S2,R).
Then for all (ρ0, ρ̂0) ∈ S2 × S2, either ρ̂t converges to
{ρg,ρe} or F(ρt, ρ̂t) converges to one, almost surely. In
particular, if u(ρe)u(ρg) 6= 0 then F(ρt, ρ̂t) converges to
one almost surely.

Proof. In order to study the asymptotic behavior of
F(ρ, ρ̂), in the following we will apply Itô formula. For
this purpose, we first need to show the C2 regularity of F
on appropriate invariant sets. If η = 1, then by Lemma 3.1,
∂S2×∂S2, ∂S2×int(S2), int(S2)×∂S2 and int(S2)×int(S2)
are invariant for the coupled system (1)-(2) almost surely.
Moreover, if either ρ or ρ̂ belongs to the boundary of
S2, then the fidelity takes the form F(ρ, ρ̂) = Tr(ρρ̂),
which is a C2 function. For the case η ∈ (0, 1), under the
assumptions that u ∈ C1(S2,R) and u(ρe)u(ρg) 6= 0, by
Lemma 3.2, (ρt, ρ̂t) exits the boundary in finite time and
stays in int(S2) × int(S2) afterwards almost surely. Note
that the fidelity function is C2 in int(S2)× int(S2).

Consider the Lyapunov function V(ρ, ρ̂) := 1−F(ρ, ρ̂). De-

note Ξ :=
√

(1− ‖v‖2)(1− ‖v̂‖2). For any u ∈ C1(S2,R),
the infinitesimal generator of F(ρ, ρ̂) is given by

LF(ρ, ρ̂) =
M(1− η)

4Ξ

(
(1− ẑ2)(1− ‖v‖2)

+ (1− z2)(1− ‖v̂‖2) + 2ẑ2(1− v>v̂ − Ξ)Ξ− 2(1− zẑ)Ξ
)

+
M

2
(1− ẑ2)(1− v>v̂ − Ξ).

(6)

In particular, for η = 0, we have

LF(ρ, ρ̂) =
M

2

(
(1− ẑ2)(1− ‖v‖2) + (1− z2)(1− ‖v̂‖2)

2Ξ

+ zẑ − v>v̂ − Ξ

)
≥
M

2

(
(1− ẑ2)(1− ‖v‖2) + (1− z2)(1− ‖v̂‖2)

2Ξ

−
√

(‖v‖2 − z2)(‖v̂‖2 − ẑ2)− Ξ

)
=
M

4Ξ

(√
(‖v̂‖2 − ẑ2)(1− ‖v‖2)

−
√

(‖v‖2 − z2)(1− ‖v̂‖2)

)2

.

For η = 1, we have
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LF(ρ, ρ̂)=
M

2
(1− ẑ2)(1− v>v̂ − Ξ)=M(1− ẑ2)

(
1−F(ρ, ρ̂)

)
.

Therefore, for all η ∈ [0, 1] and (ρ, ρ̂) ∈ int(S2)× int(S2),
we have LF(ρ, ρ̂) ≥ 0 which implies that L V(ρ, ρ̂) ≤ 0.
By the stochastic LaSalle-type theorem in Mao (1999), we
deduce that limt→∞LF(ρt, ρ̂t) = 0 almost surely. Since
LF(ρ, ρ̂) for any η ∈ (0, 1] can be written as a convex
combination of the expressions of LF(ρ, ρ̂) for η = 0 and
η = 1 given above, we have that either |ẑ| converges to one
or F(ρ, ρ̂) converges to one almost surely. This concludes
the proof of the first part of the proposition. The additional
assumption u(ρe)u(ρg) 6= 0 rules out the first possibility,
completing the proof of the proposition.

Remark 3.4. The fact that the fidelity is a sub-martingale
in int(S2)× int(S2), as shown in the above proof, suggests
that the convergence of F (ρt, ρ̂t) to one should not require
the technical condition u(ρe)u(ρg) 6= 0. This will be
discussed more in detail in Section 4.

3.1 Simulations

In this section, we illustrate Proposition 3.3 through
simulations of the system (1)–(2) in the case u(ρ̂) ≡ 1 and
with parameters ω = 0.3, η = 0.3 and M = 1. We set ρe as
the initial state of the quantum filter and ρg as the initial
state of the quantum filter estimate. In Fig. 1, we simulate
the fidelity F(ρt, ρ̂t). Fig. 2 represents the behavior of a
sample trajectory ρt and its corresponding estimation ρ̂t
in Bloch sphere coordinates.

Fig. 1. Convergence of the fidelity F(ρt, ρ̂t) towards one with the
feedback law u(ρ̂) = ẑ2 starting at (ρ0, ρ̂0) = (ρe,ρg), when
ω = 0.3, η = 0.3 and M = 1: the black curve represents the
mean value of 100 arbitrary samples.
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Fig. 2. Behavior of the trajectories ρt and ρ̂t with the feedback law
u(ρ̂) = ẑ2, starting at (ρe,ρg), when ω = 0.3, η = 0.3 and
M = 1. The black curve corresponds to a sample trajectory
ρt, the blue point represents its end point; the red curve
corresponds to the estimated trajectory ρ̂t, the magenta point
represents its end point.

4. ASYMPTOTICS AND FEEDBACK CONTROL OF
THE COUPLED SPIN-J SYSTEMS

In this section, we discuss the asymptotic behavior of the
true quantum filter and its estimate for spin-J systems
with unknown initial states. The stochastic master equa-
tions are given by

dρt=Fût
(ρt)dt+L(ρt)dt+G(ρt)

(
dYt−2

√
ηMTr(Jzρt)dt

)
,

dρ̂t=Fût
(ρ̂t)dt+L(ρ̂t)dt+G(ρ̂t)

(
dYt−2

√
ηMTr(Jz ρ̂t)dt

)
,

where

• the quantum state of the spin system is denoted as
ρ, and belongs to the space SN := {ρ ∈ CN×N | ρ =
ρ∗,Tr(ρ) = 1, ρ ≥ 0}. The estimated state is denoted
as ρ̂ ∈ SN ,

• Fu(ρ) := −i[ωJz+uJy, ρ], L(ρ) := M
2 (2JzρJz−J2

z ρ−
ρJ2

z ) and G(ρ) :=
√
ηM

(
Jzρ+ ρJz − 2Tr(Jzρ)ρ

)
,

• Yt denotes the observation process of the quantum
spin system, which is a continuous semi-martingale
whose quadratic variation is given by [Y, Y ]t = t.
Its dynamics satisfies dYt = dWt + 2

√
ηMTr(Jzρt)dt,

where Wt is a one-dimensional standard Wiener pro-
cess,

• ût := u(ρ̂t) denotes the feedback controller as a
function of the estimated state ρ̂t,

• Jz is the (self-adjoint) angular momentum along the
z axis, and it is defined by Jzen = (J − n)en, n ∈
{0, . . . , 2J}, where J = N−1

2 represents the fixed
angular momentum and {e0, . . . , e2J} corresponds to
an orthonormal basis of CN . With respect to this
basis, the matrix form of Jz is given by

Jz =


J
J − 1

. . .
−J + 1

−J

 ,
We define the pure states ρn := ene

∗
n for n ∈

{0, . . . , 2J} corresponding to the eigenvectors of Jz.
• Jy is the (self-adjoint) angular momentum along the
y axis, and it is defined by

Jyen = −icnen−1 + icn+1en+1, n ∈ {0, . . . , 2J},
where cm = 1

2

√
(2J + 1−m)m. The matrix form of

Jy is given by

Jy =


0 −ic1
ic1 0 −ic2

. . .
. . .

. . .
ic2J−1 0 −ic2J

ic2J 0

 ,
• η ∈ (0, 1] measures the efficiency of the detectors,
M > 0 is the strength of the interaction between
the system and the probe, and ω ≥ 0 is a parameter
characterizing the free Hamiltonian.

By replacing dYt = dWt + 2
√
ηMTr(Jzρt)dt in the above

equation, we obtain the following matrix-valued stochastic
differential equations describing the time evolution of the
pair (ρt, ρ̂t) ∈ SN × SN ,
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dρt=Fût(ρt)dt+ L(ρt)dt+G(ρt)dWt, (7)

dρ̂t=Fût
(ρ̂t)dt+ L(ρ̂t)dt+ 2

√
ηMG(ρ̂t)Tr

(
Jz(ρt − ρ̂t)

)
dt

+G(ρ̂t)dWt. (8)

If u ∈ C1(SN ,R), the existence and uniqueness of solutions
of (7)–(8) can be shown by similar arguments as in (Mir-
rahimi and van Handel, 2007, Proposition 3.5).

Note that, if we turn off the feedback controller, there are
N2 equilibria (ρn,ρm) with n,m ∈ {0, . . . , 2J} for the
coupled system. However, since the system (7) satisfies the
non-demolition condition and the measurement operator
Jz satisfies the non-degeneracy condition (Benoist and
Pellegrini, 2014, Definition 2 and Assumption (ND)), we
may state the following result.

Theorem 4.1. (Benoist and Pellegrini (2014)). If u ≡ 0
and η = 1, (ρt, ρ̂t) converges exponentially towards the
set {(ρ0,ρ0), . . . , (ρ2J ,ρ2J)}.

Furthermore, the following holds true.

Lemma 4.2. Consider the coupled system (7)–(8) with
η ∈ (0, 1] and u ∈ C1(SN ,R). Then the fidelity F(ρ, ρ̂)
is a sub-martingale.

Indeed, note that the value LF(ρ, ρ̂) only depends on the
instantaneous value of the Hamiltonian ωJz+u(ρ̂)Jy. Then
by (Amini et al., 2014, Theorem 5), one has LF(ρ, ρ̂) ≥ 0
for the constant Hamiltonian instantaneously equal to
ωJz + u(ρ̂)Jy, which proves the result.

Remark 4.3. In Proposition 3.3, by explicit computations,
we have shown that for spin- 1

2 systems LF(ρ, ρ̂) ≥ 0,
which is consistent with Lemma 4.2. This implied that
LF(ρ, ρ̂) should converge to zero almost surely. More-
over, we were able to analyze the zeros of LF(ρ, ρ̂) and
deduce some information about the asymptotic behavior
of F(ρ, ρ̂). Similar results for spin-J systems cannot be ob-
tained easily because of the complicated form of LF(ρ, ρ̂).

The above results give some intuitions about the asymp-
totic behaviors of ρ and ρ̂ at least for the case η = 1
or for spin- 1

2 systems. In these cases, without loss of
generality, one may assume that the fidelity F(ρ0, ρ̂0) is
close to one. If η = 1, this can be obtained for example
by turning off the feedback controller for a large enough
time in view of Theorem 4.1. For spin- 1

2 systems, one can
exploit Proposition 3.3 and apply a feedback controller
satisfying u(ρg)u(ρe) 6= 0 for a large enough time. Now,
by Lemma 4.2, we have E(F(ρt, ρ̂t)) ≥ F(ρ0, ρ̂0) which
leads to the conclusion that E(F(ρt, ρ̂t)) is close to one,
independently of the chosen feedback law.

In the following, we discuss the possibility of designing
a feedback controller u(ρ̂) which stabilizes exponentially
almost surely the coupled system (7)–(8) towards a given
target state (ρn̄,ρn̄) with n̄ ∈ {0, . . . , 2J}. We note
that the two subsystems (7)–(8) share the same feedback
controller u(ρ̂), only depending on the estimated state ρ̂.
Hence, if we suppose that the feedback u satisfies the
assumption u(ρn̄) = 0 and u(ρk) 6= 0 for all k 6= n̄, then
the coupled system (7)–(8) possesses exactly N equilibria,
given by (ρk,ρn̄) for k ∈ {0, . . . , 2J}.
Concerning feedback exponential stabilization of the cou-
pled spin-J systems (7)–(8) towards (ρn̄,ρn̄), we propose
a conjecture inspired by (Liang et al., 2019a, Theorem 6.4

and Theorem 6.5). These results were developed for the
case ρ0 = ρ̂0.

Conjecture 4.4. Consider the coupled system (7)–(8) with
(ρ0, ρ̂0) ∈ SN ×SN \ (ρn̄,ρn̄) and assume η ∈ (0, 1). Then,
the feedback controller

un̄(ρ̂) = α
(
1− Tr(ρ̂ρn̄)

)β
, α > 0, β ≥ 1, (9)

exponentially stabilizes (ρt, ρ̂t) to (ρn̄,ρn̄) almost surely
for the special case n̄ ∈ {0, 2J} with sample Lyapunov
exponent less or equal than −ηM . Moreover, the feedback
controller

un̄(ρ̂) = α
(
J − n̄− Tr(Jz ρ̂)

)β
, α > 0, β ≥ 1, (10)

exponentially stabilizes (ρt, ρ̂t) to (ρn̄,ρn̄) almost surely
for the general case n̄ ∈ {0, . . . , 2J} with sample Lyapunov
exponent less or equal than −ηM/2 for n̄ ∈ {1, . . . , 2J−1}
and −ηM for n̄ ∈ {0, 2J}.

Simulations

Here, we illustrate the above conjecture through simula-
tions for a three-level quantum spin system. In Fig. 3,
we consider the target state (ρ0,ρ0), and the Lya-

punov function V0(ρ, ρ̂) =
√

1− Tr(ρρ0)Tr(ρ̂ρ̂0). We de-
fine the distance for the coupled system via the Bu-
res distance dB(·, ·) in S3 (Bengtsson and Życzkowski
(2017)) as follows dB((ρ, ρ̂),ρ0) := dB(ρ,ρ0) + dB(ρ̂,ρ0).

We have
√

2
4 V0(ρ, ρ̂) ≤ dB((ρ, ρ̂),ρ0) ≤

√
2V0(ρ, ρ̂). In

Fig 4, we choose (ρ1,ρ1) as the target state and V1(ρ, ρ̂)=∑
k 6=1

(√
Tr(ρρk) +

√
Tr(ρ̂ρ̂k)

)
as the Lyapunov function.

We can show that
√

2
2 V1(ρ, ρ̂)≤dB((ρ, ρ̂),ρ1)≤

√
2V1(ρ, ρ̂).

Fig. 3. Exponential stabilization of a three-level quantum spin
system towards (ρ0,ρ0) with the feedback law (9) starting at
(ρ0, ρ̂0) = (ρ2,ρ1) with ω = 0.3, η = 0.3, M = 1, α = 5
and β = 2. The black curve represents the mean value of 100
arbitrary sample trajectories, the red and blue curves represent
the exponential references with exponents −ηM/2 and −ηM
respectively. The figures at the bottom are the semi-log versions
of the ones at the top.

5. CONCLUSION

In this paper, for spin- 1
2 systems, we have shown that un-

der appropriate assumption on the feedback controller, we
can guarantee the same asymptotics for the quantum filter
and its estimate. For the general case of spin-J systems, we
provided an heuristic approach regarding the asymptotic
behavior of ρ and ρ̂ and feedback exponential stabilization
of the coupled system (7)–(8). Future goals will be to
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Fig. 4. Exponential stabilization of a three-level quantum spin
system towards (ρ1,ρ1) with the feedback law (10) starting at

(ρ0, ρ̂0) =
(
diag(0.2, 0.2, 0.6), diag(0.8, 0.1, 0.1)

)
with ω = 0.3,

η = 0.3, M = 1, α = 2 and β = 2. The black curve repre-
sents the mean value of 100 arbitrary sample trajectories, the
red curve represents the exponential reference with exponent
−ηM/2. The figures at the bottom are the semi-log versions of
the ones at the top.

provide a rigorous proof of Conjecture 4.4 and present
systematic methods ensuring exponential stabilization of
the coupled spin systems. Other research lines include
generalization to more general forms of filter equations
which are driven by Wiener and/or Poisson processes.
Also, exponential stabilization of entangled states such as
GHZ states, with unknown initial states is included in our
research lines (see Liang et al. (2019b) for exponential sta-
bilization of two-qubit systems with perfect initialization).
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