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Abstract: Classical optimal experimental design (OED) methods have not been fully exploited
in modeling of complex systems, due to the brittle design results generated based on prior
models and computational burden in the optimization scheme. In this work, a novel method
for robust experimental design (RED) of combined measurement set selection and sampling
time scheduling has been proposed for systems with large parameter uncertainties. A Bayesian
design framework is employed, involving Gaussian quadrature formula (GQF) approximation of
the expected performance of the posterior distribution over uncertain parameter domain. The
robust Bayesian experimental design (BED) has been relaxed to a semi-definite programming
(SDP) problem which can be solved as a convex optimization problem. The proposed method
has been examined by simulation studies on a lab-scale enzymatic biodiesel production system,
with results compared to OED and uniform sampling under two design scenarios.

Keywords: Robust experimental design (RED), Bayesian experimental design (BED),
semi-definite programming (SDP), Gaussian quadrature formula (GQF), observation strategy.

1. INTRODUCTION

The selection of optimal experimental conditions is crucial
to maximize the information content in the collected
data, especially for experiments that are costly and/or
time consuming to conduct. Optimal experimental design
(OED) techniques have been developed to systematically
choose necessary experimental strategies that generate the
most informative data, from which the parameters can
be estimated with a higher accuracy. As a powerful tool
assisting data-based modeling process, OED methods have
been used in a wide range of applications (Vanlier et al.,
2012; Murphy et al., 2004; Dette et al., 2005; He et al.,
2008; Chen et al., 2011).

Typical OED tasks include stimulation signal design, sam-
pling (time) profile optimization, measurement set selec-
tion, among others. Experimental design has been well
studied in both theory and practice (Gil et al., 2014; Yue
et al., 2013; Paquet-Durand et al., 2015). In a standard
model-based framework, OEDs are usually derived using
optimality criteria formulated from the expected Fisher
information matrix (FIM). Many useful methods have
been developed for classical experimental design to linear
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models. There is a lack of OED theory and methods for
modeling of nonlinear systems using experimental data.

In engineering practice, nonlinear models are normally
linearized around selected operating points with nominal
parameters provided for each linearized model. Such a
linearized model works well mainly in a nearby region of
the operating point, inevitably having parametric uncer-
tainties when the operation is in a wider range. In addition,
real experiments contain measurement noise and may sub-
ject to unexpected process variations. These uncertainties
affect the reliability of standard OED and, hence, require
robust experimental design (RED) solutions.

Several information theoretic criteria have been proposed
for Bayesian experimental design (BED) of systems with
prior distribution of model parameters. Lindley suggests
using expected gain in Shannon information, from prior
to posterior, as a measure of the information provided by
an experiment; the same objective can be justified from
a decision theoretic perspective Lindley (1956). Another
experimental design criterion is proposed to maximize
Shannon entropy of the marginal distribution of the data,
which can be treated as a special case of Lindley’s cri-
terion (Sebastiani and Wynn, 2000). A few other utility
functions have been developed for experimental design of
specific issues. Interested readers can refer to (Chaloner
and Verdinelli, 1995) for a review of utility functions ap-
plied in decision theoretic approaches.
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The development of BED depends on the prior model,
the criterion used in design, and the numerical procedures
required to solve the optimization problem. The design
task is not trivial especially for models that contain a
large number of design variables and model parameters
(Lin and Runolfsson, 2012; Long et al., 2013; Huan and
Marzouk, 2014). Most Bayesian optimal design methods
in the literature have been restricted to low dimensional
designs, i.e., simple models and a small number of design
variables. For complex dynamic systems, the computa-
tional load involved in the optimization design becomes
a main cause that hinders the practical application of
Bayesian design methods. Development of efficient opti-
mization approaches for BED is expected. In this work,
robust observation design is addressed for models with
large parametric uncertainties through a Bayesian design
approach. A Bayesian D-optimal design is proposed to
determine the observation strategy, including sampling
time scheduling and measurement set selection. The multi-
dimensional Gaussian quadrature formula (GQF) is ap-
plied to approximate the Bayesian integration over the
parameter uncertainty space.

The remaining of the paper is organized as follows. Section
2 presents preliminaries on classic FIM-based OED and
a global sensitivity analysis method. In Section 3, the
BED framework is introduced, in which GQF is adopted
to approximate the performance function integration re-
quired in a Bayesian design problem, and the combined
observation design problem is relaxed to a semi-definite
programming (SDP) problem. In Section 4, the proposed
method is simulated using a lab-scale biodiesel production
system, and the results are discussed for various sampling
options. Conclusions are given in Section 5.

2. PRELIMINARIES ON OED AND GLOBAL
SENSITIVITY ANALYSIS

Consider a general nonlinear dynamic model with n state
variables, p parameters and m output variables, the state
and output description can be written in the form of ordi-
nary differential equations (ODEs) and algebraic equations
as follows

Ẋ(t) = fff (X(t),θ) ,X(t0) = X0 (1)

Y(t) = hhh (X(t),θ) + ξ(t) (2)

where fff(·) consists of a set of state transition functions of
the system dynamics which are assumed to be continuous
and first-order derivative; X = [x1, x2, · · · , xn]T ∈ Rn de-
notes the vector of n state variables with initial condition
X0; θ = [θ1, θ2, · · · , θp]T ∈ Rp is the vector of p model
parameters with uncertainties within the closed domain of
Θ; Y = [y1, y2, · · · , ym] ∈ Rm is the measurement output
vector withm(m ≤ n) measurable variables, and hhh(·) is the
measurement function, normally used for selecting which
variables to be measured. ξ is the vector of measurement
errors which can be classified into systematic errors and
random errors. An experiment should be designed to elim-
inate the systematic errors, however, the random errors
that contaminate the observations always exist. In this
work, the measurement errors are assumed to be zero
mean, Gaussian noises.

2.1 Classic Optimal Experimental Design

Fisher information matrix (FIM) is widely used in model-
based OED as the basis to quantify information content
in data for parameter estimation. When the design factors
that characterize the experiment are denoted as φ, the
FIM can be expressed as (Ljung, 1998)

FIM (θ,φ) = S (θ,φ)
T

WS (θ,φ) (3)

where the weighting matrix, W, quantifies the reliability of
measurement data, which is normally taken as the inverse
of the measurement error covariance matrix. S = ∂X/∂θ
is the local parametric sensitivity matrix representing the
local effects of parameters on model outputs. Following
the Cramer-Rao inequality, the FIM is approximately
equal to the inverse of the parameter estimation error
covariance matrix, thus providing the local lower bound
of the variance for parameter estimates. An OED can
be expressed as the optimization of a proper measure of
parameter error covariance matrix, i.e.,

φ∗ = arg min
φ∈Φ

υ
((

FIM−1 (θ,φ)
))

(4)

where Φ is the admissible space of the design factors, υ (·)
represents a scalar function of the inverse of FIM. Common
design criteria in OED include A-, D- and E-optimality
that scalarize different features of FIM. For example,
when errors are independent and normally distributed,
the D-optimality criterion minimizes the volume of the
confidence ellipsoid of the model parameters. With A-
optimality, the (squared) diagonal of the bounding box
of the confidence ellipsoid is minimized. For E-optimality,
the squared in-ball radius is minimized geometrically by
maximizing the minimum eigenvalue of FIM.

2.2 Global Sensitivity Analysis

Global (parametric) sensitivity analysis (GSA) are used to
analyze impacts of parameters on outputs of interest, when
model parameters have large uncertainties or interactions
among them. From the experimental design point of view,
the main advantage of GSA over a local sensitivity analysis
(LSA) method is that multiple parameters can be varied
simultaneously, rather than individually, over their entire
uncertainty ranges instead of the close region around the
nominal values. GSA aims at apportioning the output
uncertainty to the uncertainty in model parameters over a
possible wide range.

In this work, Sobol’s method (Sobol, 2001), a well accepted
GSA method, is employed to identify key parameters
that have large impacts on model outputs. For θ =
[θ1, θ2, · · · , θp]T ∈ Rp, the integrable output function,
written as g(θ), can be decomposed into a summation of
2p terms with increasing dimensionality:

g(θ) =g0 +

p∑
i=1

gi(θi) +

p∑
i=1

p∑
j=i+1

gi,j(θi, θj) + · · ·

+ g1,2,··· ,p(θ1, · · · , θp)
(5)

where g0 =
∫

Ωp g(θ)dθ, Ωp is the p-dimensional hypercube
space of model parameters. The total variance can then be
determined as
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V =

∫
Ωp

g2(θ)dθ − g2
0 (6)

The partial variances, which are the components of the
total variance decomposition, are computed from each of
the terms in (5) as

Vi1,··· ,ik =

∫
i1

· · ·
∫
ik

gi1,··· ,ik(θi1 , · · · , θik)dθi1 · · · dθik (7)

where 1 ≤ i1 ≤ · · · ≤ ik ≤ p. With the assumption
that parameters are mutually orthogonal, the variance of
outputs to parameters can be decomposed as

V =

p∑
i=1

Vi +

p−1∑
i=1

p∑
j=i+1

Vi,j + · · ·+ V1,2,··· ,p (8)

In this way, the variance contributions to the total output
variance from individual parameters and the interaction
among parameters can be determined. The variance con-
tributions are characterized by the ratio of the partial vari-
ance to the total variance, also called the Sobol sensitivity
indices (SI), written as follows:

First order SI: Si = Vi

V

Second order SI: Si,j =
Vi,j

V

Total order SI: STi
= Si +

∑
j 6=i Si,j + · · ·

The first order index is a measure of the variance con-
tribution from a individual parameter, θi, to the total
output variance, which is taken as the main effect. The
total order index, STi

, includes the result of the main effect
from θi and from all its interactions with other parameters.
Normally only interaction terms between two parameters
are considered, higher-order interaction terms are ignored.

3. BAYESIAN OBSERVATION DESIGN

3.1 Bayesian Experimental Design

Bayesian experimental design methods have been devel-
oped for systems with parameters that can be charac-
terized by probability distribution functions (Telen et al.,
2013; Dette et al., 2007; Flaherty et al., 2006; Huan and
Marzouk, 2013). The designs are developed based around
prior distribution of parameter estimates other than on
the chosen single-point values (nominal values), thus more
information on parametric uncertainties are taken into
account. In a Bayesian optimal design, a utility function,
U(φ,θ,Y), needs to be defined that describes the value
of choosing the experimental design factors in φ, from the
admissible design space Φ, yielding data Y for parameter
estimation of θ. The utility function can be chosen as a
function of the posterior distribution of model parameters,
p(θ). In this case, the BED is developed to maximize the
expected utility function U(φ,θ,Y) over the uncertain
parameter range, Θ, i.e.,

φ∗ = arg max
φ∈Φ

Eθ∈Θ (U(φ,θ,Y)) (9)

= arg max
φ∈Φ

∫
Y

∫
Θ

U(φ,θ,Y)p(θ,Y|φ)dθdY

The optimization with utility function in (10) can be
reduced to maximizing a D-optimal function under the
Bayesian design (Chaloner and Verdinelli, 1995). The D-
optimal BED can be formulated as

φ∗D = arg max
φ∈Φ

∫
Θ

(det (FIM(θ,φ))) p(θ)dθ (10)

The optimization problem in (10) does not normally have
a closed form solution, thus numerical approximations are
required to solve the maximization problem that includes
a multi-dimensional integration.

3.2 Integration Approximation with Gaussian Quadrature
Formula

Gaussian quadrature formulas are a class of methods
that take appropriate weights and nodes to numerically
approximate the integration of a function f(x) to a high
degree of accuracy (Duarte and Wong, 2015). The basic
formula for a one-dimensional integral over a compact
interval [a, b] can be expressed as follows:

∫ b

a

ω(x)f(x)dx =

µ∑
i=1

ωi,µf(xi,µ) (11)

where ω(x) is a weighting function, and µ is the number
of designated nodes. The accuracy of the approximation
depends on the number of nodes, their locations, and
the selected weights at the designated nodes. The main
advantage of GQF is that it requires much less function
evaluations to calculate the integration in the Bayesian
design problem, compared to those traditional approxima-
tion methods such as Markov chain Monte Carlo (MCMC)
and importance sampling. Multi-dimensional regular do-
main based integrals can be determined by implementing
one GQF in each dimension.

3.3 Semi-definite Programming for Bayesian Observation
Design

RED of a combined observation strategy, including se-
lected measurement set and sampling time profiles, is
investigated in a Bayesian framework. Consider a general
nonlinear model in (1), where there are m measurable
state variables in output and the sampling profile of each
measurable state can be independent from each other.
Denoting the total sampling size required in RED as Nsp,
these Nsp sampling points will be allocated among the m
measurable state variables through the design. For each
state variable, assume K measurement points are made
available for selection; they are also called supporting
points for design φ. If all states have the same number
of supporting points which is common in practice, then
the total number of points for overall sampling selection is
m ∗K, out of which Nsp points will need to be selected by
observation design.

GQF is employed to approximate the expectation of the
performance index over the discretized parameter space Θ.
Suppose every Legendre polynomial used to approximate
the integral, in each dimension of Θ, has a degree of
L− 1, the total number of discretization points is then Lp
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for p parameters, and they are obtained from combining
roots of the (L−1)-th order Legendre polynomial across p
dimensions in Θ. Each discretization point is a Cartesian
product of the set containing GQF points taken from each
dimension of Θ. To this end, the weight at the l-th point,
βl, is given by

βl =

p∏
j=1

ωl,j
θUj − θLj

2
, l = 1, · · · , Lp (12)

where ωl,j is the weights vector of the Legendre polyno-
mials for the j-th parameter on the interval [−1, 1]; θUj
and θLj are the upper and lower bounds of the j-th model
parameter.

Now we can extend the SDP formulation to construct
the BED. For a typical D-optimal design, the Bayesian
formulation can be written as (Boyd and Vandenberghe,
2004)

arg max
Φ

m∑
i

K∑
k=1

Lp∑
l=1

det(FIM(φi,k, θl))p(θl)βl (13)

s.t. φi,k ≥ 0, k = 1, ...,K; i = 1, . . . ,m

m∑
i

K∑
k=1

φi,k = Nsp

Here φi,k are the weighting coefficients for generated
supporting points, for which binary values of 0 and 1 are
taken to start with (1 means the point is selected and 0
not selected). This integer optimization problem is then
recast to a continuous optimization problem by relaxing
the weightings to a continuous value between [0, 1], which
can be solved by convex optimization tools such as SeDuMi
(Sturm, 1999).

4. CASE STUDY: BED FOR ENZYMATIC
BIODIESEL PRODUCTION SYSTEM MODEL

4.1 System Settings and Global Sensitivity Analysis

A lab-scale enzymatic biodiesel production system model
is used to examine the effectiveness of the proposed BED
method. The kinetic reaction mechanism and the full
model equations can be found in a previous work (Yu et al.,
2015). The nominal values of the kinetic parameters and
the initial condition of input variables are given in the
Appendix. The lower and upper bounds for uncertainty
ranges of model parameters are set to be 50% and 150% of
their nominal values, respectively, and the parameters are
assumed to follow uniform distribution within the bounded
ranges.

For this system, five state variables, T , D, M , BD, and
FFA, are measurable (m = 5). The Sobol’s sensitivity
analysis method is applied to identify key parameters
that are most influential on these five states. The Latin
hypercube sampling strategy is employed where 2,000
samples for model parameters are selected for the anal-
ysis. The first order sensitivity measures and the total
sensitivity measures by considering five model outputs,
{T,D,M,BD,FFA}, are shown in Fig. 1. It can be ob-
served that, for state variable BD, k2, k8, k−8, k9, k−9 are

found to be more important than other parameters (note
that in the total effect some parameters have negative
effects on the output BD). Similar results can be observed
for state FFA, where the most important parameters
identified are k8, k−8, k9 and k−9, but k2 has shown little
effect on FFA. Not surprisingly, k2 is the only parameter
that has significant effect on state variables T , D and M
(only the effect on state T is shown in Fig.1, similar results
are obtained for the other two states D and M). This is
because k2 dominates the decomposition of state variables
T , D to generate acyl enzyme complex, and it implies that
the transesterification process is mainly decided by the
starting reaction rate k2. Therefore, from the Sobol’s sen-
sitivity analysis, we can find that the following five model
parameters, {k2, k8, k−8, k9, k−9}, are the most important
parameters for the output of interests.
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Fig. 1. Parameter effects to selected model outputs based
on the analysis of variances, including the main effect
and the total effect

All the simulation work are conducted in MATLAB with
additional SeDuMi optimization package.

4.2 Bayesian Observation Design of Combined Sampling
Time Scheduling and Measurement Set Selection

The five most important parameters identified from GSA
in Section 4.1 are included for experimental design. The
proposed Bayesain observation design is applied to find
the best experimental strategy. The experimental length
is set to be 25 hours (1,500 minutes). A sampling rate
of 5 minutes is used to generate the data set, therefore
the number of supporting points for experimental design
in K = 301 for each state. In previous experimentation
studies of this lab system, all five states take 28 measure-
ments at the same time points equally spaced during the
experimental process, which gives a total number of 140
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sampling points. We refer this as non-designed strategy in
the later comparison.

In this experimental design simulation, the target is to find
a total number of 140 optimal samples (Nsp = 140) from
the five measurable states along the experimental time
horizon. We will consider two separate design scenarios.

(i) Same sampling time profiles for all states

In the first one, all five measurable state variables take
the same sampling time profile, each state has 28 sam-
pling points during the experimental length. The results
from three methods are compared in Fig. 2, i.e., the non-
designed strategy, the standard D-optimal design (OED)
without considering parameter uncertainties, and the pro-
posed Bayesian D-optimal design for uncertain system
(BED). It can be observed from Fig. 2 that the sampling
time schedule generated from BED is between the non-
designed and local D-optimal design results. In both OED
and BED, most sampling time points are taken in three
regions where local parametric sensitivities are relatively
high (the local sensitive analysis results are not included
in this paper due to page limit). For BED, a few sampling
points are also selected loosely among the parametric non-
sensitive regions. This is the result from incorporating
parameter uncertainties in the design. According to real
lab experiences, equally spaced sampling strategy can in-
tuitively provide useful data information. When the model
contains large parameter uncertainties, the BED result is
more close to the equally spaced sampling strategy rather
than the OED result.

Fig. 2. Comparison of three different sampling strate-
gies which include non-designed, local D-optimal and
Bayesian D-optimal designs

(ii) Different sampling time profiles for measurable states

In the second scenario, the sampling of each state measure-
ments is independent from sampling of other states. The
total number of sampling points is still fixed to N = 140.

The Bayesian observation design result is shown in Fig. 3.
It can bee seen that, among the five available state vari-
ables, only T , BD and FFA are selected to be included in
the measurement set. The sampling time points for T are
mostly selected between 0-600 minutes. This is consistent
with the real process operation since the catalysed process

Fig. 3. Observation design results from Bayesian D-
optimal design under the condition that measurement
of each state is independent from each other

to generate acyl enzyme complex is more dominant in an
early stage of reaction. The sampling time points for BD
and FFA are selected covering a wide range of reaction
process, again favouring regions of higher parametric sen-
sitivities.

5. CONCLUSION

In this work, a BED strategy is proposed to find the
optimal observation strategy when the initial model is
subject to large parametric uncertainties. By taking the
multidimensional GQF to approximate the expected per-
formance of the posterior distribution over the bounded
parameter domain, the Bayesian D-optimal design has
been transformed into a SDP problem which can be solved
as a convex optimization problem.

Using a lab-scale enzymatic biodiesel production system
model, the Sobol’s sensitivity analysis is implemented to
determine crucial model parameters. The Sobol’s method
calculates the variance of the model outputs attributed to
parameter variations. Considering uncertainty ranges of
±50% around the nominal values, the GSA result shows
that five parameters, k2, k8, k−8, k9 and k−9, have most
overall influence on the measurable states. Taking these
five crucial parameters into the design scheme, the pro-
posed Bayesian observation design is implemented in order
to find the optimal measurement set and sampling time
schedule(s) at the same time. The Bayesian D-optimal
design provides samplings that are taken mostly in para-
metric sensitive regions without completely ignoring other
regions due to existence of large parameter uncertainties.
This is a more balanced view in comparison to uniform
sampling (non-designed) and standard D-optimal design
(OED) without considering modeling uncertainties at all.

The computational cost of Bayesian RED is much higher
than OED due to the integration of performance index over
the uncertain parameter space. Further investigations on
BED are still required to explore efficient numerical pro-
cedures. REDs that include multiple experimental factors
will impose more complexity in design. One challenging
task is to combine observation design and stimulation
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design into a united optimization scheme. Most current ex-
perimental design studies are focused to improve modeling
qualities; expanding this to include financial cost factors
should make the results more appealing in applications.
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Appendix A. NOMINAL PARAMETER VALUES AND
INITIAL CONDITION FOR THE ENZYMATIC

BIODIESEL PRODUCTION SYSTEM

Table A.1. Nominal parameter values for en-
zyme biodiesel production system

k1 4.95e4 k6 9.13e4
k−1 6.60 k−6 5.43e5
k2 1.69e6 k7 7.06e6
k−2 1.11e4 k−7 4.93
k3 2.07e4 k8 2.36e4
k−3 2.20e7 k−8 3.51e6
k4 3.41e6 k9 2.54e4
k−4 1.33e7 k−9 2.05e5
k5 1.55e7 k10 3.23e-2
k−5 1.81e5 k−10 4.39e-4

Table A.2. Initial input values and feeding rate
of methanol

Species Ini. cond.
(mol · L−1)

Species Ini. cond.
(mol · L−1)

T (x1) 0.95 EX(x10) 0
D(x2) 0.02 ET (x11) 0
M(x3) 1.4e-3 ED(x12) 0
B(x4) 1e-4 EM(x13) 0

FFA(x5) 2.24e-2 ECH(x14) 0
G(x6) 1e-6 Ef(x15) 9.72e-6
W (x7) 2.39 V p(x16) 6.61e-2
CH(x8) 0.59 V (x17) 1.54
E(x9) 0

Methanol
feed rate [eq

·h−1]

Initial dose
methanol

[eq]

water [wt.%
oil]

Enzyme
[wt.% oil]

0.185 first
2hrs; 0.06
thereafter

0.2 5 0.5
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