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Abstract: Though conceptualization of nonlinear sliding mode control has gained great emphasis in 

mechatronics and nonlinear systems in general, little attention is given to real time implementation owing 

to its inadequacy in handling mismatched uncertainties. This work contemplates on a robust nonlinear 

control scheme with sliding mode control and extended Kalman filter in closed-loop to estimate and handle 

bounded uncertainties. Stability of this closed-loop framework is established through Lyapunov analysis. 

The proposed formulation is first validated on a simulation platform and then implemented on a 2-DOF 

experimental gyroscope setup. Efficacy of this approach is evident from its rigorous tracking performance 

attained with a smooth and bounded control profile, despite induced uncertainties in various forms. 
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1. INTRODUCTION 

Recent years have seen a significant upsurge of interest among 

control research fraternity on nonlinear control system design 

and development. This is primarily attributed to the increasing 

power of computing resources combined with an urge to 

understand the dynamical behaviour of real time systems 

completely, which is otherwise not captured in linearized 

models (Sastry, 1999). Although nonlinear controllers are 

excessively abstracted, implementation on real time systems 

are rarely dealt with, thereby questioning the feasibility of 

nonlinear controllers when applied to real time systems. This 

work therefore focuses on analyzing the performance of a real 

time experimental gyroscope setup to a nonlinear control 

framework designed using sliding mode control (SMC). 

Gyroscopes have great importance in aerial vehicle guidance, 

navigation and control. These devices act as an attitude sensor 

when mounted on a rotating frame by sensing its angular 

velocity. Thus, they are an integral part of gyrocompasses, 

inertial measurement and navigation units. Control moment 

gyroscopes (CMGs) owing to its rapid rotational 

maneuverability could also be used as primary actuating 

devices in aerial vehicles, space vehicles, satellites and 

international space station to maintain their attitude in space.  

Most works on nonlinear control strategies discussed in 

literature predominantly uses either nonlinear sliding mode 

control or nonlinear model predictive control, with few 

focusing on nonlinear dynamic inversion techniques, 

backstepping and other Lyapunov based control formulations. 

Literature pertaining to nonlinear control of CMGs is briefed 

in this section. Attitude control of spacecraft installed with a 

single gimbal CMG using nonlinear backstepping control is 

formulated in Jin and Hwang (2012) and Elkhayat et al. 

(2016). Extension of this framework using nonlinear robust 

backstepping algorithm for agile satellites fitted with a double 

gimbal, variable speed CMG is evaluated in Zhang and Fang 

(2013). Lyapunov based nonlinear control formulation for 

limited three dimensional attitude control is proposed in 

Stevenson and Schaub (2012) for a spacecraft mounted with a 

double gimbal, variable speed CMG. An adaptive neural 

quaternion based feedback control law is adapted for attitude 

control of spacecraft (Leeghim and Kim, 2015). Naderolasli 

and Tabatabaei (2017) consider stabilization of a two degrees 

of freedom (DOF) gyroscope platform based on adaptive 

fractional order sliding mode controller. Attitude stabilization 

of satellites based on dynamic sliding mode control for faster 

convergence rate with consideration on angular velocity and 

control constraints is proposed in Yu and Xie (2019). Even 

though all these nonlinear control techniques are assessed 

using numerical simulations, real time implementation has not 

been considered.  

With the availability of the experimental 3-DOF gyroscope 

setup by Quanser, real time implementation and validation of 

the proposed control techniques become quite convenient. An 

adaptive model based algorithm for the control of 2-DOF 

CMG is proposed in Montoya-Cháirez et al. (2019). Though 

nonlinear adaptive control scheme has been proposed, 

performance evaluation in real time with the experimental 

Quanser setup in closed-loop uses only linear control law 

(Montoya-Cháirez et al., 2019). A relay periodic switching 

function based control of 2-DOF CMG is carried out in 

Oliveira et al. (2015). Besides using a linear model, this 

method also suffers from chattering due to relay periodic 

switching function (Oliveira et al., 2015).   

Though nonlinear controls are theoretically more convincing 

and elegant than its linear counterparts, they are vaguely 

beneficial if they cannot be implemented on uncertain real time 

systems. Real time systems suffer from model mismatch along 
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with process and measurement noise; thus, robustness of the 

controller should be of utmost concern. Though sliding mode 

based controllers are known for its robustness in handling 

matched uncertainties (Slotine and Li, 1991), it is ineffective 

in handling mismatched uncertainties i.e. when uncertainties 

act through different channels from that of input channel (Hou 

et al., 2017; Yang et al., 2013). Adaptive and LMI based 

approaches are widely employed to handle mismatched 

uncertainties. But these techniques do not handle uncertainties 

with nonzero steady state values. Integral SMC provides a 

simpler approach to mismatched uncertainties, but integral 

action might affect the control performance. In Yang et al., 

(2013), disturbance estimate from disturbance observer is used 

in sliding surface to handle mismatched uncertainties and 

simulation results show nominal performance recovery. In that 

context, extended Kalman filter (EKF) which has proven to be 

an effective real time estimator for industrial applications is 

used. Utilization of dynamic model in EKF formulation 

improves the overall robustness of the control system. Thus, 

this work integrates nonlinear SMC and EKF framework to 

estimate and handle system uncertainties effectively. This 

approach retains the nominal performance of SMC while 

accounting for uncertainties. Stability of the proposed closed-

loop framework is established using Lyapunov analysis. Real 

time performance is evaluated by implementing on a 

gyroscope test bed. Besides process and measurement noise, 

mass addition to vary gimbal’s moment of inertia and vibratory 

disturbance are induced to assess its performance in 

detrimental conditions.  

This paper is organized as follows. Section 2 briefs the 

dynamic modeling of the considered experimental 2-DOF 

gyroscope platform. Proposed closed-loop architecture with 

emphasis on nonlinear SMC formulation and stability analysis 

is described in Section 3. Section 4 discusses the simulated and 

experimental results while Section 5 concludes the paper. 

2. DYNAMIC MODEL OF 2-DOF GYROSCOPE 

A 3-DOF gyroscope of Quanser pictured in Fig. 1 has been 

used as an experimental test bed. This system consists of a 

rotating disc mounted in an inner blue gimbal, supported by an 

outer red gimbal and a rectangular frame. Each of these 

gimbals and the frame are free to rotate about their rotational 

axes while the speed of the rotating disc is maintained 

constant. This makes it a 3-DOF system. Based on the 

applicability of the system, either the gimbals or the frame is 

fixed in place, thereby reducing its degree of freedom. In this 

work, rectangular frame is fixed resulting in a 2-DOF system. 

 

Fig. 1 Gyroscope test bed 

The dynamic equations of 2-DOF gyroscope (Cannon Jr., 

2003) with torque, 𝜏2 applied along blue gimbal are given by, 

𝐽3�̈� + ℎ�̇� cos 𝜃 − 𝐽𝑎�̇�2 sin 𝜃 cos 𝜃 = 𝜏2 

(𝐽2 + 𝐽𝑎 sin2 𝜃)�̈� − ℎ�̇� cos 𝜃 + 𝐽𝑎�̇��̇� sin 2𝜃 = 0 
(1) 

where 𝜃 is the angular position of the blue gimbal with respect 

to the red gimbal, 𝜓 is the angular position of the red gimbal 

with respect to the surface on which the gyroscope is mounted. 

�̇� and �̇� are their corresponding angular rates. Angular 

positions of the gimbal are measured by optical encoders. As 

velocity sensor is not equipped, angular rates are obtained by 

processing it with a filter. ℎ is the angular momentum of rotor 

with respect to blue gimbal. 𝐽𝑥, 𝐽2 and 𝐽3 are the moment of 

inertia of the rotor, outer and inner gimbal about their 

respective spin axis, 𝐽𝑎 is defined as 𝐽1 − 𝐽𝑥, with 𝐽1 being the 

moment of inertia of outer gimbal excluding the moment of 

inertia contribution from rectangular frame. The equations of 

motion for the 2-DOF gyroscope with state vector, 𝒙 =

[𝜃, �̇�, 𝜓, �̇�]′ and control variable, 𝑢 = 𝜏2 are given in Eq. (2). 

�̇�1 = �̇� 

(2) 

�̇�2 =
1

𝐽3
[𝑢 + 𝐽𝑎�̇�

2 sin 𝜃 cos 𝜃 − ℎ�̇� cos 𝜃] 

�̇�3 = �̇� 

�̇�4 =
1

𝐽2 + 𝐽𝑎 sin2 𝜃
[ℎ�̇� cos 𝜃 − 2𝐽𝑎�̇��̇� sin 𝜃 cos 𝜃] 

Moment of inertia values of the considered gyroscope are 

detailed in Montoya-Cháirez et al. (2019). It is evident that the 

equations of motion represented by four first order nonlinear 

differential equations in Eq. (2) are in control affine form. 

�̇� = 𝒇(𝒙) + ∆𝒇(𝒙) + 𝒈𝑢;   𝑦 = ℎ(𝒙) = 𝜓 (3) 

where 𝒇(𝒙) is a vector of nonlinear functions characterizing 

the system and 𝒈 is the input vector represented in Eq. (4). 

∆𝒇(𝒙) represents bounded uncertainties. 

𝒈 =

[
 
 
 
 
0
1

𝐽3
0
0]
 
 
 
 

 

(4) 

𝒇(𝒙) =

[
 
 
 
 
 

𝑥2

1

𝐽3
[𝐽𝑎𝑥4

2 sin 𝑥1 cos 𝑥1 − ℎ𝑥4 cos 𝑥1]

𝑥4

1

𝐽2 + 𝐽𝑎 sin2 𝑥1

[ℎ𝑥2 cos 𝑥1 − 𝐽𝑎𝑥4𝑥2 sin 2𝑥1]]
 
 
 
 
 

  

 

3. NONLINEAR CONTROLLER DESIGN 

Sliding mode control has gained predominant interest among 

nonlinear research fraternity primarily because of its 

robustness in handling modeled and unmodeled uncertainties. 

Sliding mode control is basically a variable structure control 

with switching logic encompassed in sliding surface. Thus, 

sliding surface should be promptly chosen such that the 

trajectories from any arbitrary state tend towards the sliding 
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surface and remain in it henceforth. This condenses solving a 

higher order nonlinear system to algebraic equations of 

reduced order. But, because of discontinuity in variable 

structure, chattering phenomena could hinder the applicability 

of SMC. Thus, chattering alleviation is mandatory for 

successful implementation of sliding mode controller in real 

time experimental setup. In this work, chattering is alleviated 

using power rate reaching law (Gao and Hung, 1993). 

The primary objective of this work is to generate a control 

signal, 𝑢(𝑡) such that angular position of the red gimbal, 𝜓(𝑡) 

converges to the specified reference trajectory, 𝜓𝑑(𝑡) while all 

other states remain bounded, ensuring system stability. 

3.1  Sliding mode control formulation 

From Lie derivative perspective, 𝛾 is the relative degree of the 

system if, 

𝐿𝒈𝐿𝒇
𝑖−1ℎ(𝒙) = 0, for 𝑖 = 1, 2, … (𝛾 − 1) 

𝐿𝒈𝐿𝒇
𝛾−1

ℎ(𝒙) ≠ 0 
(5) 

where the Lie derivative, 𝐿𝒇ℎ and 𝐿𝒈ℎ are the scalar functions 

defined as the derivative of ℎ with respect to 𝒇 and 𝒈 

respectively. In other words, 𝜓 should be differentiated thrice 

to arrive at an explicit relationship between control, 𝑢 and 

output, 𝜓. Thus, the relative degree of the system is three for 

the considered 2-DOF gyroscope. As relative degree is less 

than the order of the system, Eq. (3) could be transformed into 

a normal form (Khatri et al., 2012; Singh, 1989) using the state 

vector, 𝒛 defined as, 

𝒛 = [𝜓, �̇�, �̈�]
′
  (6) 

Thus, transformed equations of motion in normal form with 

mismatched and matched uncertainties are given by, 

�̇�1 = 𝐿𝒇ℎ(𝒙) + 𝐿∆𝒇ℎ(𝒙) 

�̇�2 = 𝐿𝒇
2ℎ(𝒙) + 𝐿∆𝒇𝐿𝒇ℎ(𝒙) 

�̇�3 = 𝐿𝒇
3ℎ(𝒙) + 𝐿∆𝒇𝐿𝒇

2ℎ(𝒙) + 𝐿𝒈𝐿𝒇
2ℎ(𝒙)𝑢 

(7) 

Concisely, Eq. (7) could be conveniently expressed as, 

�̇� = 𝑀𝒛 + 𝑁(𝑓 + �̃�𝑢) + ∆�̃� (8) 

with transformed vectors 𝑓, ∆�̃� and �̃� defined as,  

𝑓 = 𝐿𝒇
3ℎ(𝒙); �̃� = 𝐿𝒈𝐿𝒇

2ℎ(𝒙); ∆�̃� = [

𝐿∆𝒇ℎ(𝒙)

𝐿∆𝒇𝐿𝒇ℎ(𝒙)

𝐿∆𝒇𝐿𝒇
2ℎ(𝒙)

] (9) 

𝑀 and 𝑁 could be easily shown to be the matrices of 

dimensions (𝛾 ∗ 𝛾) and (𝛾 ∗ 1), 

𝑀 = [
0 1 0
0 0 1
0 0 0

] ;  𝑁 =  [
0
0
1
] (10) 

Let the desired reference trajectory be represented as, 

𝒓 = [𝜓𝑑 , �̇�𝑑 , �̈�𝑑]
′
 (11) 

Thus, the error vector could be specified as, 

𝒆 = [
𝑒
�̇�
�̈�
] = [

𝜓 − 𝜓𝑑

�̇� − �̇�𝑑

�̈� − �̈�𝑑

] (12) 

The chosen sliding surface, 𝑠 is shown in Eq. (13). It should 

be noted that the sliding surface converges to zero as error 

approaches zero. 

𝑠 = 𝑘1𝑒 + 𝑘2�̇� + �̈� (13) 

In Eq. (13), 𝑘1, 𝑘2 and 𝑘3 are positive constants. On 

differentiating Eq. (14) with respect to time, 

�̇� = 𝑘1�̇� + 𝑘2�̈� + 𝑒 (14) 

which could be condensed as, 

�̇� = 𝑆1𝒆 + 𝑆2�̇� (15) 

with 𝑆1 and 𝑆2 given by, 

𝑆1 = [0 𝑘1 𝑘2] 

𝑆2 = [0 0 1] 
(16) 

On substituting Eq. (8) in Eq. (15), 

�̇� = 𝑆1𝒆 + 𝑆2[𝑀𝒛 + 𝑁(𝑓 + �̃�𝑢) + ∆�̃� − �̇�] (17) 

It could be easily seen that, 𝑆2𝑀 = 0 and 𝑆2𝑁 = 1. Thus, Eq. 

(17) becomes, 

�̇� = 𝑆1𝒆 + 𝑓 + �̃�𝑢 + 𝑆2∆�̃� − 𝑆2�̇� (18) 

As �̇� should be a decreasing function and uncertainty is 

unknown, control input, 𝑢 derived from Eq. (18) is, 

𝑢 = (�̃�)−1[−𝑓 + 𝑆2�̇� − 𝑆1𝒆 − 𝑘(𝑠)𝑠𝑖𝑔𝑛(𝑠)] (19) 

From Eq. (9), on evaluating �̃�, it could be inferred that it is 

invertible except at 𝜃 = ±𝜋/2. This refrains from singularity 

of control signal as 𝜃 is comparatively small in 𝜓 ∈ [−𝜋, 𝜋). 

As evident from Eq. (19), continuous change of sign in control 

signal leads to undesired chattering phenomena. Effect of 

chattering is mitigated by designing 𝑘(𝑠) using power rate 

reaching law (Gao and Hung, 1993), thereby improving the 

performance of controller, while ensuring the safety of system 

actuator. Power rate reaching law is described below, 

𝑘(𝑠) = 𝜖|𝑠|𝛽 where 𝜖 > 0 and 𝛽 ∈ (0,1) (20) 

Thus, Eq. (19) becomes, 

𝑢 = (�̃�)−1[−𝑓 + 𝑆2�̇� − 𝑆1𝒆 − 𝜖|𝑠|𝛽 𝑠𝑖𝑔𝑛(𝑠)] (21) 

3.2  Closed-loop architecture 

Formulation of controller in closed-loop is visualized as a 

block diagram in Fig. 2. Simulation platform is embedded in 

parallel with real time experimentation framework for the ease 

of comparison. Reference trajectory, 𝒓 = [𝜓𝑑 , �̇�𝑑, �̈�𝑑]′ is fed 

to controller blocks. Controller blocks use nonlinear SMC 

formulation to compute the control signal required to achieve 

the desired reference trajectory, represented by 𝑢𝑠 and 𝑢 for 

simulated and real time experimental setup respectively. 
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Control signals are passed through actuator dynamics block 

where signals are limited to its saturation value of ±1.5 Nm to 

ensure system safety. Trimmed control signals, �̂�𝑠 and 𝑢 are 

fed to nonlinear gyroscope model presented in Eq. (2) and 

experimental gyroscope setup respectively. In case of 

simulation scenario, states from simulated gyroscope model 

are fed back to the controller. However, states from real time 

gyroscope platform are affected by factors like measurement 

and process noise and other uncertainties. Sometimes, a 

sudden high frequency noise may disorient the entire control 

framework, thereby collapsing the system. Besides, as evident 

from Eqs. (18) and (19), SMC could handle only matched 

uncertainties by proper tuning of 𝑘(𝑠). Thus, estimation of 

states becomes mandatory and the estimated states, 𝒙 is fed 

back to the controller. In this work, EKF is utilized and its 

mathematical framework is presented in a nutshell. 

Extended Kalman filtering is a recursive approach with two 

phases, namely prediction and correction. EKF algorithm (Lee 

and Ricker, 1994) for a system of form specified in Eq. (3) is 

illustrated in Eqs. (22) and (23), representing prediction and 

correction stages respectively. Prediction step also called as 

data fusion, predicts the current state of the system (𝒙𝑘|𝑘−1) 

by using its computed mathematical model and state estimates 

from the previous instance (𝒙𝑘−1|𝑘−1), while also estimating 

the error covariance matrix, (𝑃𝑘|𝑘−1). 

𝒙𝑘|𝑘−1 = 𝒇(𝒙𝑘−1|𝑘−1) + 𝒈𝑢𝑘 
(22) 

𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘′ + 𝑄 

In the above equations, 𝑄 is the process noise covariance and 

𝐹𝑘 =
𝜕𝒇

𝜕𝒙
|
(�̂�𝑘−1|𝑘−1,𝑢𝑘)

  is the state transition matrix. 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶′(𝐶𝑃𝑘|𝑘−1𝐶′ + 𝑅)−1 

(23) 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝐾𝑘(𝒚𝑘 − 𝐶𝒙𝑘|𝑘−1) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘|𝑘−1 

Correction step or sensor fusion, refines the predicted states 

based on sensor measurements (𝒚𝑘), by computing Kalman 

gain (𝐾𝑘) based on estimated error covariance and 

measurement noise covariance (𝑅). This step further updates 

the error covariance matrix (𝑃𝑘|𝑘). As first order filter is used 

to obtain angular rates from the measured angular position, 

measurement matrix (𝐶) is taken as an identity matrix. Besides 

providing estimated states in the presence of system 

disturbances, EKF also provides a better estimates of angular 

rates which are not directly measurable.  

3.3  Closed-loop Lyapunov stability analysis 

By imparting the estimated states computed from EKF 

algorithm onto SMC formulation, Eq. (21) could be written as, 

𝑢 = (�̃�)−1[−𝑓(𝒙) + 𝑆2�̇� − 𝑆1𝒆 − 𝜖|𝑠|𝛽 𝑠𝑖𝑔𝑛(𝑠)] (24) 

It should be noted that error computation is based on measured 

states rather than estimated states to ensure offset free tracking. 

To assure stability of the proposed controller, chosen sliding 

surface in Eq. (13) should guarantee attractiveness and finite 

time reachability. This is established using the following 

Lyapunov function candidate, 

                                       𝑉 =
1

2
𝑠2 > 0,             ∀𝑠 ≠ 0 (25) 

Differentiating Eq. (25) with respect to time and on 

substituting Eq. (18), �̇� becomes, 

�̇� = 𝑠[𝑆1𝒆 + 𝑓 + �̃�𝑢 + 𝑆2∆�̃� − 𝑆2�̇�] (26) 

Incorporating the derived control signal in Eq. (22) and 

simplifying Eq. (26),  

�̇� = 𝑠[𝑓 + 𝑆2∆�̃� − 𝑓(𝒙) − 𝜖|𝑠|𝛽 𝑠𝑖𝑔𝑛(𝑠)] (27) 

As estimated states helps in capturing the dynamics of system 

in the presence of uncertainties, a recursively computed 

Kalman gain as in Eq. (23) could effectively handle bounded 

∆�̃�, provided convergence of EKF is ensured. Thus, an 

appropriate Kalman gain guarantees, 

�̇� < −𝜖|𝑠|𝛽+1 (28) 

Equation (28) clearly infers that �̇� < 0, for ∀𝑠 ≠ 0. This 

assures asymptotic stability of the proposed closed-loop 

control framework with the chosen sliding surface.

Fig. 2 Block diagram of the proposed control scheme in closed-loop 
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4. RESULTS AND DISCUSSIONS 

Experimental and simulation results are presented in this 

section to evaluate the efficacy of the proposed closed-loop 

framework in the presence of uncertainties. Firstly, response 

of the experimental gyroscope setup to nonlinear SMC is 

considered. Then the performance of the proposed EKF based 

SMC framework on the gyroscope setup is evaluated. 

4.1  Formulated SMC in closed-loop 

Reference trajectory, 𝜓𝑑 is retained at zero for 𝑡 = 20 s to 

account for any discrepancies during the initial release of 

gimbals as flywheel motor and counter weights should be 

pointed upwards with 𝜓 and 𝜃 maintained at zero during the 

start of the experiment. After 𝑡 = 20 s, a sinusoidal signal of 

amplitude 20 degrees and frequency 0.05 Hz is used as a 

reference trajectory. In order to ensure the robustness of the 

proposed scheme, extra mass of 50 g is added to the red 

gimbal. This would affect its moment of inertia thereby 

influencing the performance of the system. Furthermore, the 

outer rectangular frame of the gyroscope setup is not tightly 

fastened allowing nominal oscillations about its rotating axis 

which could be perceived a vibratory disturbance in the 

laboratory setup. 

The tracking performance of the system for the above 

mentioned scenarios using nonlinear SMC formulation in 

closed-loop is plotted in Fig. 3. Tuning parameters in Eqs. (13) 

and (20) used for numerical simulation and experimentation is 

chosen by trial and error and is listed in Eq. (29), 

   𝜖 = 15, 𝛽 = 0.8, 𝑘1 = 35, 𝑘2 = 1 (29) 

From Fig. 3, it could be deduced that there is a marginal delay 

in tracking, when implemented on a real time gyroscope setup. 

Figure 4 shows that though the control torque, 𝑢 required to 

execute the proposed time varying reference trajectory is 

bounded, it is substantial with high frequency variations 

throughout the course of tracking. This is primarily attributed 

to the induced vibratory disturbances which could not be 

handled by nonlinear SMC formulation as indicated in Fig. 5.  

4.2  Formulated SMC in closed-loop with EKF 

From the inferences established on implementing nonlinear 

SMC on the real time gyroscope setup, it could be judged that 

the controller is sensitive to mismatched uncertainties induced 

by vibratory disturbances. Thus in this section, performance of 

the proposed EKF based SMC formulation to estimate and 

handle mismatched uncertainties is demonstrated. 

Tuning of parameters while implementing nonlinear SMC on 

real time systems is challenging and time consuming. Besides, 

tuning parameters deduced using simulation platform based on 

gyroscope model might not work for uncertain real time 

system. But with the incorporation of EKF, tuning becomes 

simpler as the effect of uncertainties are attenuated to great 

extent. This is a noteworthy benefit mainly for implementing 

nonlinear SMC on a physical systems which lacks the comfort 

of trial and error based tuning. Thus using this formulation, 

range of tuning parameters could be gauged from simulation 

platform and could then be applied on experimental setup. 

Tracking performance of the experimental gyroscope setup 

with EKF and nonlinear SMC in closed-loop is presented in 

Fig. 6. It could be seen that the reference trajectory is tracked 

efficiently by both simulation platform and experimental 

setup. It is also evident that the proposed scheme is robust to 

disturbances which are forced into experimental setup in the 

form of mass addition to the red gimbal and nominal 

oscillations of the outer rectangular frame. It could also be seen 

that the controller is agile to the change of reference trajectory 

which accelerates the convergence of error signal to zero. 

 

Fig. 3 Tracking performance with nonlinear SMC  

 

Fig. 4 Control input with nonlinear SMC 

 

Fig. 5 State response with nonlinear SMC 

Figure 7 represents the control torque, 𝑢 required to achieve 

the tracking of the proposed reference trajectory. It is evident 

that the control signal is smooth and bounded. Besides, control 

torque generated in the case of real time gyroscope setup 

follows the trend of the control signal generated by the 

simulation platform. Though saturation limitation on actuator 

is imposed in the simulation platform, uncertain variables like 

rate limitation and delay are not enforced. This causes a small 

deviation of control torque generated by experimental setup in 

comparison with the simulated results, especially when rate of 

change of control signal is significant as inferred from Fig. 7. 
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Fig. 6 Tracking performance with nonlinear SMC and EKF 

 

Fig. 7 Control input with nonlinear SMC and EKF 

 

Fig. 8 State response with nonlinear SMC and EKF 

Figure 8 depicts the response of states of gyroscope setup. 

Though all states are bounded, it is apparent that the measured 

states are highly influenced by induced uncertainties. Thus, 

EKF is employed to effectively handle both matched and 

mismatched uncertainties as inferred from Fig. 8. Thus, the 

proposed formulation with EKF and nonlinear SMC in closed-

loop provides an enhanced asymptotically stable platform for 

robust, agile and precise control of real time gyroscope setup. 

5. CONCLUSIONS 

This work presents a methodical approach to the design and 

implementation of nonlinear control framework to real time 

systems with nonlinear SMC and EKF in closed-loop to handle 

both matched and mismatched uncertainties. Experimental 

evaluation successfully establishes the feasibility of 

implementation of proposed nonlinear formulation to real time 

systems affected by uncertainties. This facilitates upfront 

control of physical systems which are predominantly 

nonlinear, as piecewise linearization and control could be quite 

challenging and time consuming in most real world systems 

and might not capture some intriguing phenomena like chaos, 

limit cycles etc. 
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