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Abstract: This short paper presents a method to compute and optimize the robust strong
H-infinity norm of linear time-invariant systems with discrete delays and uncertainties on the
system matrices. Special attention will be paid to a fragility problem of the H-infinity norm
for systems with discrete delays in the direct feed-through terms. More specifically, for such
systems the H-infinity norm might be sensitive to arbitrary small delay changes. This fragility
problem can be resolved by considering the strong H-infinity norm, which takes into account
infinitesimal delay perturbations. The robust strong H-infinity norm is subsequently defined as
the worst-case strong H-infinity norm over all instances of the uncertainties and is a measure for
robust performance. It can be shown that this robust strong H-infinity norm is related to the
robust distance to instability of an associated uncertain system described by delay differential-
algebraic equations. Using this relation, the robust strong H-infinity norm can be computed
efficiently. This efficient computation of the robust strong H-infinity norm will be used for
controller design by direct minimization of the robust strong H-infinity norm as function of the
controller parameters.
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1. INTRODUCTION

The H∞-norm is an important performance measure in
robust control theory, see Zhou and Doyle (1998). For
an exponentially stable dynamical system with input w
(∈ Rm), output z (∈ Rp), and transfer function C 3 s 7→
T (s) ∈ Cp×m, he H∞-norm is defined as

‖T‖∞ := sup
ω∈R+

σ1

(
T (ω)

)
with σ1(R) the largest singular value of the matrix R.
Using Parseval’s identity, the H∞-norm can equivalently
be characterised as the worst-case energy gain of the
system with respect to energy-bounded input noise:

‖T‖∞ = sup
w∈L2

‖z‖L2

‖w‖L2

,

with L2 the space of square-integratable functions equipped

with the following norm: ‖z‖L2
=
√∫ +∞

0
‖z(t)‖22 dt.

Here we will consider linear time-invariant (LTI) systems
with discrete delays of the following form:

ẋ(t) =
K∑
k=0

Akx(t− τk) +
K∑
k=0

Bkw(t− τk)

z(t) =
K∑
k=0

Ckx(t− τk) +
K∑
k=0

Dkw(t− τk),

(1)
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with x ∈ Rn the state, w ∈ Rm the performance in-
put, z ∈ Rp the performance output, Ak, Bk, Ck and
Dk real-valued matrices of appropriate dimensions, and
0 = τ0 < τ1 < · · · < τK discrete delays. The associated
transfer function equals

T (s; τ ) = (
∑K
k=0 Cke

−sτk)
(
sI −

∑K
k=0Ake

−sτk
)−1

×(
∑K
k=0Bke

−sτk) +
∑K
k=0Dke

−sτk ,

(2)

with τ = (τ1, . . . , τK). For the considered systems,
the H∞-norm can be sensitive to arbitrary small delay
changes. Gumussoy and Michiels (2011) therefore intro-
duced the strong H∞-norm, which is defined as the small-
est upper bound for the H∞-norm which is insensitive to
infinitesimal delay changes:

|||T |||∞ := lim sup
γ→0+

{
‖Tγ‖∞ : τ γ ∈ B(τ , γ) ∩ (R+)K

}
,

with Tγ the transfer function of (1) where the delays are
replaced by τ γ and B(τ , γ) a ball in RK centered at τ with
radius γ. Note that although infinitesimal delay changes
are considered, the strong H∞-norm is still a property of
the nominal system.

Furthermore, by Theorems 4.3 and 4.5 in Gumussoy and
Michiels (2011), the strong H∞-norm of (2) is equal to

|||T |||∞ = max{‖T‖∞, |||
∑K
k=0Dke

− sτk |||∞}, (3)

and we can express

|||
K∑
k=0

Dke
− sτk |||∞ = max

θ∈[0,2π)K
σ1

(
D0 +

K∑
k=1

Dke
θk
)

. (4)
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The strong H∞-norm of (2) thus equals the maximum
of ‖T‖∞, the nominal H∞-norm of the system, and

|||
∑K
k=0Dke

− sτk |||∞, the strong H∞-norm of the asymp-
totic part of the transfer function, i.e. the part of the
transfer function that does not vanishes as |s| → ∞.

Until now we considered one deterministic model. In
most applications, however, there is a discrepancy between
the considered model and the reality, due to modeling
mismatches and/or parameter measurements with finite
precision. To account for these discrepancies, uncertainties
are added to the model. For such “uncertain” time-delay
systems, the robust strong H∞-norm is defined as the
worst-case value of the strong H∞-norm over all instances
of the uncertainties. The robust H∞-norm of uncertain
time-delay systems is already examined in Kokame et al.
(1998) and Ji et al. (2006). The scope of these papers is
however limited to systems with one state delay, for which
the robust strong H∞-norm and the robust H∞-norm, the
worst-case value of the nominal H∞-norm, coincide. This
work, in contrast, considers more general systems with
multiple delays in the state, input, output and direct feed-
through terms. The considered uncertain system and its
robust strong H∞-norm will be defined in more detail in
Section 2 .

It is long established - a well known reference is the work
of Hinrichsen and Pritchard (2005) - that there exists
a relation between the H∞-norm of an LTI system and
the distance to instability of an associated autonomous
system with a complex-valued uncertainty. In Appeltans
and Michiels (2019) it is shown that a similar relation
exists between the robust strong H∞-norm of an uncertain
LTI system with discrete delays and the robust distance
to instability of an associated uncertain system described
by delay differential-algebraic equations (DDAEs). This
result will be revisited in Section 3. Based on this relation,
Section 4 presents a numerical algorithm to compute the
robust strong H∞-norm.

Finally, Section 5 discusses and illustrates a controller
design approach for uncertain LTI systems with discrete
delays based on the direct optimization of the robust
strong H∞-norm as function of the controller parameters.

2. SYSTEM DESCRIPTION

As mentioned before, uncertainties are used to represent
the mismatch between the model and reality. Here we
consider L matrix uncertainties: δ = (δ1, . . . , δL) which are
assumed to be real-valued and each bounded in Frobenius
norm. We will denote the set of all feasible uncertainties
as D. These uncertainties affect the system matrices in (1)

in the following way: M̃(δ) = M +
∑L
l=1

∑SM
l
s=1G

M
l,sδlH

M
l,s ,

with GMl,s and HM
l,s real-valued shape matrices of appro-

priate dimensions. Note that each uncertainty can affect
affect multiple matrices, and can affect one matrix via
multiple perturbation terms.

This leads to the following “uncertain” model:
ẋ(t) =

K∑
k=0

Ãk(δ)x(t− τk) +
K∑
k=0

B̃k(δ)w(t− τk)

z(t) =
K∑
k=0

C̃k(δ)x(t− τk) +
K∑
k=0

D̃k(δ)w(t− τk),

(5)

with Ãk(δ), B̃k(δ), C̃k(δ), and D̃k(δ) uncertain matrices
as defined above and 0 = τ0 < · · · < τK discrete delays.
The associated “uncertain” transfer function equals

T̃ (s; τ , δ) = (
K∑
k=0

C̃k(δ)e−sτk)

(
sI −

K∑
k=0

Ãk(δ)e−sτk
)−1

×(
K∑
k=0

B̃k(δ)e−sτk) +
K∑
k=0

D̃k(δ)e−sτk ,

and its robust strong H∞-norm is defined as:

|||T̃ |||D∞ : = max
δ∈D
|||T̃ (·; ·, δ)|||∞

= max{ maxδ∈D ‖T̃ (·; ·, δ)‖∞,

maxδ∈D |||
K∑
k=0

D̃k(δ)e− sτk |||∞}.
(6)

3. ASSOCIATED UNCERTAIN SYSTEM OF
DELAY-DIFFERENTIAL ALGEBRAIC EQUATIONS

Consider the “uncertain” autonomous system described by
the following delay differential-algebraic equations:

Q ξ̇(t) = P0(δ,∆) ξ(t) +

K∑
k=1

Pk(δ) ξ(t− τk), (7)

in which

Q =

[
In 0 0
0 0 0
0 0 0

]
, P0(δ,∆) =

Ã0(δ) B̃0(δ) 0
0 −I ∆

C̃0(δ) D̃0(δ) −I

 and

Pk(δ) =

Ãk(δ) B̃k(δ) 0
0 0 0

C̃k(δ) D̃k(δ) 0

 ,

with Ãk(δ), B̃k(δ), C̃k(δ), D̃k(δ), and τk as previously
defined, δ ∈ D, In the n dimensional identity matrix, and
∆ ∈ Cm×p. Notice that (7) has two types of uncertainties:
the real-valued uncertainties on the system matrices, δ,
and an additional complex-valued uncertainty, ∆.

Using the results from Fridman (2002), one can show
that systems of form (7) may be of advanced type or

admit impulsive solutions if Ip− D̃0(δ)∆ is not invertible.
Therefore, we define the robust distance to non well-
posedness as:

dNWP := min{ε≥0:∃δ ∈ D and ∆ ∈ Cm×p with ‖∆‖2≤ ε
such that Ip − D̃0(δ)∆ is not invertible},

and for completeness we define min ∅ = +∞.

Next, we restrict our attention to instances of (7) for which
‖∆‖2 is bounded to the interval [0,dNWP) and examine the
exponential stability of their null solution for particular δ
and ∆. The notion of exponential stability is however not
trivial for such systems as stability can be sensitive to arbi-
trary small delay perturbations. Therefore we will consider
strong exponential stability, as defined in Michiels (2011),
which takes into account infinitesimal delay changes. Fur-
thermore, in the same work it was shown that a necessary
and sufficient condition for strong exponential stability of
the null solution of (7) for particular δ and ∆ is:

γ0(δ,∆) < 1 and α(δ,∆) < 0, (8)

with

γ0(δ,∆):= max
θ∈[0,2π)K

ρ

((
−I + ∆D̃0(δ)

)−1

∆
K∑
k=1

D̃k(δ)eθk
)
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where ρ(R) gives the spectral radius of the matrix R and

α(δ,∆) := sup
{
< (λ) :

det
(
Qλ−P0(δ,∆)−

K∑
k=1

Pk(δ)e−λτk
)

= 0
}
.

To define the robust distance to instability, we are inter-
ested in the smallest ε for which there exist δ ∈ D and
∆ ∈ Cm×p with ‖∆‖2 ≤ ε such that the null solution of
the corresponding instance of (7) is not strongly stable.
Condition (8) leads to the definition of the following two
distances

d∞ := min{ε ∈ [0,dNWP) : ∃δ ∈ D and ∆ ∈ Cm×p

with ‖∆‖2 ≤ ε such that γ0(δ,∆) ≥ 1}
and
df := min{ε∈ [0,min{dNWP,d∞}) :∃δ ∈D and ∆ ∈Cm×p

with ‖∆‖2 ≤ ε such that α(δ,∆) ≥ 0}.
The robust distance to instability is then defined as

d = min{dNWP,d∞,df}.
For more details on these distances, we refer to Appeltans
and Michiels (2019).

The following theorem formalizes the relation between
this robust distance to instability and the robust strong
H∞-norm of (5).

Theorem 1. If system (5) is internally exponentially stable
for all δ ∈ D, then its robust strong H∞-norm is equal to
the reciprocal of the robust distance to instability of (7).

For the proof, see Appeltans and Michiels (2019). The
most important ingredients of this proof are

min{dNWP,d∞} =

(
max
δ∈D
|||
∑K
k=0 D̃k(δ)e−sτk |||∞

)−1

and

|||T̃ |||D∞ = max{max
δ∈D
|||
∑K
k=0 D̃k(δ)e−sτk |||∞,df

−1} (9)

where we define (+∞)−1 = 0.

4. NUMERICAL ALGORITHM

Based on relation (9), Appeltans and Michiels (2019) pre-
sented a two step algorithm to compute the robust strong
H∞-norm of (5). In the first step, the algorithm com-

putes maxδ∈D |||
K∑
k=0

D̃k(δ)e− sτk |||∞. By (4), this quantity

is found by solving the following optimization problem

max
δ∈D

max
θ∈[0,2π)K

σ1

(
D̃0(δ) +

K∑
k=1

D̃k(δ)eθk
)

.

To solve this optimization problem, the projected gradient
flow method is used. This method looks for a flow through
the space of permissible θ and δ along which the objective
function monotonically increases and whose attractive
stationary points are (local) optimizers of the optimization
problem. These (local) optimizers are found by discretizing
the flow until it converges to a stationary point. To
improve the chance of converging to the global optimum,
the algorithm is restarted with different initial points.

In a second step, one has to compute df . This quantity
can be found by interpreting df as the zero-crossing of the
pseudo-spectral abscissa,

αps(D, ε) = max
δ∈D,‖∆‖2≤ε

α(δ,∆),

in function of ε for ε ∈
[
0,min{dNWP,d∞}

)
. This zero-

crossing can be found using the Newton-bisection method.
To compute αps(D, ε) for given ε and D one has to solve
the following optimization problem

maxδ,∆ supλ < (λ)
subjected to det

(
M(λ; δ,∆)

)
= 0

δ ∈ D,∆ ∈ Cm×p, ‖∆‖2 ≤ ε.
This optimization problem can also be solved using the
projected gradient flow method.

5. CONTROLLER DESIGN

In this section we present a controller design methodology
based on the direct optimization framework. The idea is to
find a suitable controller by directly minimizing the robust
strong H∞-norm as function of the controller parameters.
Solving this minimization problem is however not trivial
as the robust strong H∞-norm may be a non-smooth
and non-convex function of the controller parameters. We
will therefore use an optimization method for non-smooth
functions such as HANSO, see Overton (2009). This solver
requires the evaluation of the robust strong H∞-norm for
given values of the control parameters and its derivative
with respect to the controller parameters at values for
which this derivative exists. The former can be obtained
using the numerical algorithm described above, the latter
can be obtained as a by-product at almost no additional
cost.

We will illustrate this methodology by designing a decen-
tralized controller for a networked system that consists
of N identical carts that each balance an inverted pen-
dulum and that are connected using identical springs 1 .
A schematic representation of a single cart is given in
Figure 1. After linearization we obtain the following state-
space description for this system:{

ẋ(t) = (IN ⊗A)x(t) + (IN ⊗Bu)u(t− τu)
+(IN ⊗Bw)w(t) + (PN ⊗BnCn)x(t)

z(t) = (IN ⊗ Cz)x(t)
(10)

with x(t) = [x1(t)T · · · xN (t)T ]T , xi(t) the internal state
of cart i, u(t) = [u1(t)T · · · uN (t)T ]T the control inputs,
w(t) = [w1(t)T · · · wN (t)T ]T the performance inputs,
z(t) = [z1(t)T · · · zN (t)T ]T the performance outputs,

A =


0 1 0 0
− 2k
M 0 −mgM 0
0 0 0 1
2k
Ml 0 g

l + mg
Ml 0

, Bu =


0
1
M
0
−1
Ml

, Bn =


0
k
M
0
−k
Ml

,

Bw =


0 0
1
M

−m
M

0 0
−1
Ml

1
l + m

Ml

, Cz =

[
1 0 0 0
0 0 1 0

]
, Cn = [2 0 0 0] ,

M = 1 kg, m = 0.05 kg, k = 1 N/m, l = 1 m, g = 9.8 m/s2

and τu = 0.1 s, IN the N dimensional identity matrix, ⊗
the Kronecker product and

1 The first and last cart are at one side connected to a wall.
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PN =


0 0.5

0.5 0 0.5
. . .

. . .
. . .

0.5 0 0.5
0.5 0

 .
Each individual subsystem is controlled by a local state
feedback controller, that is identical for each subsystem:

ui(t) = Kxi(t) or equivalently u(t) = (IN⊗K)x(t). (11)

The goal is to find a matrix K such that the strong
H∞-norm of the closed loop is minimized. However, for
large N this is computationally costly. Therefore, we will
use the result from Section 4 in Dileep et al. (2018) which
showed that the strong H∞-norm of (10) is equal to the
maximal strong H∞-norm from ŵ to ẑ of{

˙̂x(t) = Ax̂(t) +BuKx̂(t− τu) +Bwŵ(t) + λBnCnx(t)
ẑ(t) = Czx̂(t)

(12)
with λ a parameter whose allowable values correspond to
the eigenvalues of PN . Furthermore, as the eigenvalues of
PN lie in the interval [−1, 1] for all N , the robust strong
H∞-norm of (12) with λ an uncertain parameter confined
to [−1, 1] gives an upper bound for the strong H∞-norm
of the overall network. By minimizing this upper bound
instead of the strong H∞-norm of the complete network,
the computational cost significantly decreases and this cost
now only depends on the dimension of a single subsystem.
Furthermore, by minimizing this upper bound one can
guarantee a level of disturbance rejection even if the exact
number of subsystems is not known or changes. Using
the approach outlined in the beginning of this section to
minimize the robust strong H∞-norm of (12), we find the
following controller

K = [17.6417 14.5064 69.1021 24.8179] (13)

The robust strongH∞-norm of the corresponding instance
of (12) equals 0.531752.

Now we consider again the original networked system (10).
By applying controller (11) with K given by (13), the
strong H∞-norm of the closed loop is equal to 0.517543 for
N = 3, to 0.528727 forN = 10 and to 0.530313 forN = 15.
The obtained controller thus guarantees good disturbance
suppression over a wide range of N . Finally, Figure 2 shows
the input w10(t) and the output z10(t) of the closed loop
networked system with N = 20 for t ∈ [0, 10] and each
disturbance input signal low pass filtered (ωcutoff = 3
Hz) white Gaussian noise scaled to have 0.1 root mean
square energy after filtering. We again observe that the
disturbances are well attenuated by the system.

. . .

k

M

m

l

θj

pj

uj(t− τu)

k

. . .

Fig. 1: Schematic representation of a single cart.

Fig. 2. Input w10(t) and the output z10(t) of the closed
loop for N = 20 and K given by (13).
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