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Abstract: The estimation of valve stiction model is studied. In industrial applications, valve outputs are 

often not available, the stiction nonlinear block appears before a linear dynamic block which is operation 

in a closed-loop system. By parameterizing the valve stiction model as a form of cubic splines, an 

identification method is proposed using a relaxation iteration scheme. Parameter estimation for the linear 

part is accomplished through a two-stage procedure. Firstly, an unbiased estimation is obtained by the 

high-order ARX (AutoRegressive eXogenous) model. Then the ARX model is reduced to a Box-Jenkins 

model. The consistency of the method is established. Simulation data sets and real operation data sets are 

used to illustrate the method.  
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1. INTRODUCTION 

In the process industry, the poor control performance is 

caused not only by bad control tuning but also by nonlinear 

characteristics of control valves. Among many types of 

undesired nonlinear characteristics of industrial control 

valves, stiction is the most common problem (Riccardo, Scali 

and Pannocchia, 2016). Therefore, developing a method to 

estimate valve stiction is necessary for later compensation 

measures. 

Based on the input-output behavior of a sticky valve, many 

studies have been conducted to define and model stiction. 

Muller (1994) has proposed a detailed physical model. 

Stenman (2009) has reported a one-parameter data-driven 

stiction model. Besides, a data-driven model with two 

parameters has been proposed to describe the relationship 

between a controller output and a valve position by 

Choudhury (2005). Also, some other complicated date-driven 

models are established. More recently, Jelali and Huang 

(2010) have published a book to present a comprehensive 

review of the state of the art on stiction detection and 

quantification methodologies.  

Several authors have proposed model-based approaches for 

stiction detection and quantification. Considering that the 

position of the industrial control valves is seldom available in 

practice, the identification method for valve stiction using a 

Hammerstein model is desirable. A Hammerstein model is in 

the form of an N-L model where a nonlinear block is 

embedded before a linear block. Jelali (2008) provides a pro-

cedure for quantifying valve stiction in Hammerstein systems  
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based on global optimization technology. Pattern search 

methods or generic algorithms are used to fix the global 

minimum of the parameters of the stiction model, and the 

linear model parameters are identified by a least-squares 

estimator. Vörös (2010) presents an analytic form of 

nonlinear characteristic description to solve the estimation 

problem of cascaded systems consisting of an input backlash 

followed by a linear dynamic system. Furthermore, Wang 

and Zhang (2012) adopts a point-slope-based hysteresis 

model and an iterative algorithm to solve the identification 

problem. 

In this work, we will study parametric model identification of 

SISO (Single-Input/Single-Output) Hammerstein model with 

valve stiction. The input-output data can be generated from 

closed-loop tests. The nonlinear part of model is parame-

trized in cubic splines. A relaxation iteration scheme is 

proposed by using the model structure in which the error is 

bilinear-in-parameters. The linear model estimation follows 

the asymptotic method (Zhu, 1998). 

The rest of the paper is organized as follows: in Section 2 we 

will establish appropriate model structure for valve 

nonlinearity and formulate the identification problem of 

Hammerstein system. Model parameter estimation and 

consistency analysis is discussed in Section 3. Case studies 

are performed in Section 4. Section 5 contains the 

conclusion. 

2. MODEL PARAMETRIZATION 

The phenomena of valve stiction can be understood through 

the phase plot of the input-output behaviour as shown in Fig. 

1 (Choundhury, 2005). It consists of four components: dead-

band, stick-band, slip-jump and the moving phase. When the 

valve comes to a rest or changes the direction at point A (or 

E) in Fig. 1, the valve sticks as it cannot overcome the force 
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due to static friction. After the controller output overcomes 

the deadband (AB) plus the stick-band (BC) of the valve, the 

valve jumps to a new position (point D) and continues to 

move. According to the figure, the valve with stiction 

nonlinearity has a hysteresis behavior. 

 

Fig. 1. Input-output behavior of viscous valve. 

Several physical and data-driven models have been proposed 

based on the valve stiction. However, it happens that a model 

based on physical insight contains a number of unknown 

parameters. In such cases, the model structure is not suitable 

for identification. Here we will introduce a form of cubic 

spline function to represent the hysteresis nonlinearity, see, 

e.g., Lancaster, Šalkauskas and Kȩstutis (1986). 

Consider the closed loop block diagram as shown in Fig.2 

where a sticky valve is included between the process and the 

controller block. Typically, the controller will be a linear PID 

controller.  

 

Fig. 2. Process control loop with valve stiction. 

Denote ( )u t as the input signal and ( )y t as the output signal. 

We introduce ( )f  to represent the sticky control valve. ( )x t  is 

the valve output signal which is not measured. And ( )r t is the 

external excitation signal. The real process ( )G q is described 

as a Box-Jenkins model (1971).  

 ( ) ( ( ))x t f u t  (1) 

 ( ) ( )
( ) ( ) ( )

( ) ( )

B q C q
y t x t e t

A q D q
   (2) 

 ( )
( ) ( )

( )

C q
v t e t

D q
  (3) 

Where 

1

1( ) 1 a

a

n

nA q a q a q     

1

1( ) b

b

n

nB q b q b q    

1

1( ) 1 c

c

n

nC q c q c q     

1

1( ) 1 d

d

n

nD q d q d q     

1q  is the unit delay operator,
an ,

bn ,
cn and 

dn  are the orders 

of corresponding polynomials. The disturbance signal ( )e t is 

assumed to be a white noise signal with zero mean and 

variance R . In most real industrial systems, the valve 

output ( )x t is not available. Denote 

  (1), (1), (2), (2), ( ), ( )NZ u y u y u N y N  (4) 

Valve stiction belongs to a class of nonlinearity with 

memory. Here two different cubic splines are respectively 

used for the ascent and the descent paths of the hysteresis 

nonlinearity which indicate that signal ( )u t is increasing or 

decreasing. The direction signal is given as 

 1 ( ) ( 1)
( )

0 ( ) ( 1)

u t u t
h t

u t u t

 
 

 
 (5) 

Denote a set of knots  
11 2, ,A A A

mg g g for increasing ( )u t which are 

real numbers and satisfy  

 
11 2

A A A

min m maxg u g g u      (6) 

A cubic spline function for valve output is given as 

 1

1 1 1 1

1
3

2 3

1 1 2 3

2

( )
m

A A A A A A

k k m m m m

k

f u u g u u u    


  



       (7) 

Similarly, the descent path of the input nonlinearity can be 

defined as 

 
21 2

D D D

min m maxg u g g u    
 

(8) 

 2

2 2 2 2

1
3

2 3

2 1 2 3

2

( )
m

D D D D D D

k k m m m m

k

f u u g u u u    


  



       (9) 

Where  
12 3 3, ,A A A

m    and  
22 3 3, ,D D D

m    are parameters to be 

estimated. Here
1m and

2m are called the number of knots 

which can be seen as the order of the cubic splines. For 

simplicity, one can set A D

i ig g ( 1,2, )i m so that
1 2m m m  .  

It is easy to find that the function
1( )f u and 

2( )f u are smooth, 

moreover, the first and the second derivatives of the functions 

are continuous. The description of cubic splines for hysteresis 

nonlinearity is based on the following two assumptions. 

A1: The signal ( )u t and ( )y t are approximately cyclo-wise- 

sense stationary with a certain period. 

A2: The ascent and the descent paths of input hysteresis 

nonlinearity share either the higher or the lower extreme 

point. 

The assumptions hold under very general conditions due to 

the reason that the hysteresis nonlinearity usually leads to 

self-sustaining oscillations with certain amplitude and period 

in control systems. If not, one can design and carry out 

identification tests to realize conditions A1 and A2. Here, the 

cubic spline function was chosen over other models due to 

two reasons: (1) it is flexible in curve-fitting yet simple in 
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parameter estimation; (2) it has better numerical conditions in 

parameter estimation than other models such as polynomials.  

The system (1) – (9) can be identified using the prediction 

error method (Ljung, 1999). Then we can write the predictor 

for the model structure in the following form. 

 ( ) ( ) ( )
ˆ( ) [ ( )] 1 ( )

( ) ( ) ( )

D q B q D q
y t f u t y t

C q A q C q

 
   

 
 (10) 

The prediction error is given by: 

 ( ) ( )
ˆ( ) ( ) ( ) ( ) [ ( )]

( ) ( )

D q B q
t y t y t y t f u t

C q A q


 
    

 
 (11) 

Then parameters of the model can be determined using the 

test data by minimizing 

 2

2

1 1

( ) ( )
( ) ( ) [ ( )]

( ) ( )

N N

BJ

t t

D q B q
V t y t f u t

C q A q


 

   
    

   
   (12) 

Once parameters of the Hammerstein model are obtained, we 

can visualize and check the valve input-output plot for the 

cyclic pattern. The width of the cyclic pattern can be 

considered to be directly related to the amount of stiction 

presented in the valve.  

However, direct minimization of the loss function (12) is 

very difficult as the prediction error in (11) has very complex 

nonlinear relations to model parameters, which will lead to 

numerical issues such as local minima and non-convergence.  

3. IDENTIFICATION ALGORITHM 

High model accuracy and reliable numerical solutions are 

desired in parameter estimation. Here the asymptotic method 

proposed by Zhu (2000) is followed in the identification of 

the Hammerstein model with valve nonlinearity. The method 

is based on the so-called asymptotic theory (Ljung, 1985) and 

it starts with a high order model estimation and then followed 

by a model reduction. 

3.1  High Order Model Estimation 

It is well known that any linear prediction error model 

structure can be approximated arbitrarily well by an ARX or 

equation error model with sufficiently high order. Let us 

approximate the linear part of the Hammerstein model with 

Box-Jenkins structure by a high order ARX model: 

 ( ) 1
( ) ( ( )) ( )

( ) ( )

n

n n

B q
y t f u t e t

A q A q
   (13) 

Where n is the order of ARX model. In the section 2, we use 

cubic splines to approximate the stiction nonlinearity, and the 

basic form of cubic spline functions can be determined by 

different choice of knots. According to the equation (7) and 

(9), we could just obtain the virtual valve output 

signal ˆ( ( ))f u t . Now the linear part of the Hammerstein model 

with Box-Jenkins structure can be approximated by the high 

order ARX model (13). The loss function for parameter 

estimation becomes 

 2

2

1 1

( ) ( ) ( ) ( ) ( ( ))
N N

n n

ARX ARX

t t

V t A q y t B q f u t
 

       (14) 

It is easy to find that the error ( )ARX t is bilinear in the 

parameters of ( )nA q , ( )nB q and ( )f u . We can use following 

relaxation algorithm for parameter estimation (Narendra and 

Gallman, 1966). 

Initialization. Set ( ) 1nB q  , estimate ( )nA q and ( ( ))f u t using the 

least-squares. 

Iteration. Denote ( )
ˆ ( )n

iA q , ( )
ˆ ( )n

iB q , 1,( )
ˆ ( ( ))if u t and 2,( )

ˆ ( ( ))if u t as the 

estimate from iteration i , then 

1) Compute ( 1,1)
ˆ ( )n

iA q and ( 1)
ˆ ( ( ))if u t for fixed ( )

ˆ ( )n

iB q by mini- 

mizing 

 
 

2

( 1,1) ( ) 1,( 1) 2,( 1)

1

ˆ( ) ( ) ( )[ ( ) ( ( )) (1 ( )) ( ( ))]
N

n n

i i i i

t

A q y t B q h t f u t h t f u t  



   (15)  

2) Compute ( 1,2)
ˆ ( )n

iA q and ( 1)
ˆ ( )n

iB q for fixed ( 1)
ˆ ( ( ))if u t by mini- 

mizing 

 
 

2

( 1,2) ( 1) 1,( 1) 2,( 1)

1

ˆ ˆ( ) ( ) ( )[ ( ) ( ( )) (1 ( )) ( ( ))]
N

n n

i i i i

t

A q y t B q h t f u t h t f u t   



     (16)  

Go back to 1). Stop when convergence occurs. 

Both steps are linear least-squares problems for which the 

solutions are numerically simple and reliable. Note that 

( )nA q is updated twice at each iteration. Considering that two 

arbitrary gains may be distributed between the linear and the 

nonlinear part, a normalization procedure must be conducted 

after each iteration. For example, we could set the gain of the 

linear model as a fixed constant. 

According to Golub and Pereyra (1973), assume that the 

input ( )u t is persistent exciting with order greater than (2 , )n m  

and the number of its amplitude levels is greater than the 

number of knots. Then the relaxation algorithm (15) and (16) 

minimizes the criterion in (14) locally if it converges.  

The proof can also be found in the literature. Now, the 

estimation for the valve output signal can be referred as 
ˆˆ( ) [ ( )]x t f u t . Denote the process model and the disturbance 

model as 

 ˆ ( ) 1ˆ ˆ( ) , ( )
ˆ ˆ( ) ( )

n
n n

n n

B q
G q H q

A q A q
   

 
(17) 

Model reduction for the obtained high order ARX model will 

be discussed below. 

3.2  Model Reduction For ARX Model 

Employing the high order ARX model structure in equation 

(13), the process model ˆ ( )nG q  is often over parameterized, 

thus leads to high variance owing to the high order n . The 

order of ARX model need to be reduced for the purpose of 

reducing variance error of the model.  
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If we know the exactly nonlinear output ( )x t , the order of 

ARX model is high enough and the nonlinear output ( )x t is 

persist exciting, it can be proved that the high order estimates 

are consistent, and the errors of the transfer functions at each 

frequency will follow a Gauss distribution (Ljung, 1985) . 

Equation (18) is an expression for the asymptotic variance of 

the process model.  

 
2

( )ˆ[ ( )]
( ) ( )

n i v

x xe

n R
var G e

N R

 

 




  
 (18) 

Where ( )v  is the spectra of ( )v t and ( )x   is the spectra 

of ( )x t , ( )xe  is the cross-spectrum between 

signal ( )x t and ( )e t . The following log-likelihood function 

proposed is used for model reduction (Zhu, 1998). The 

reduced model is presented by ˆ ( )l iG e . 

 2
2 ( ) ( )1 ˆ ˆ( )- ( )

2 ( )

x xen i l i

v

R
V G e G e d

R


 



 


 

  


  (19) 

The function must be minimized using a numerical search 

routine. Here we could adopt the Gauss-Newton method. 

To obtain the best order of the reduced model, a frequency 

domain criterion ASYC shall be applied (Zhu, 2001). The 

basic idea of the criterion is to choose the best order, which 

makes the frequency domain difference between the high 

order model and the reduced model approximately equal to 

the variance of the high order model. 

 2

2

( )ˆ ˆ( )- ( )
( ) ( )

n i l i v

x xe

n R
G e G e

N R

  

 




  
 (20) 

Then the best order can be obtained through minimizing the 

following ASYC. 

 
2

2

( )ˆ ˆ( )- ( )
( ) ( )

n i l i v

x xe

n R
ASYC G e G e d

N R


 






 


 

  
   

  (21) 

The selection of m and l should be discussed. Denote
oeV as the 

output-error criterion evaluated on the estimation data, the 

following final output-error criterion can be used to 

determine the degree m  of cubic splines. And order selection 

for the reduced linear model can be similarly derived. 

 (2 )
( )

(2 )
oe

N n m
FOE m V

N n m

 


 
 (22) 

The final model we obtained is a Box-Jenkins model. 

 ˆˆ ( ) ( )ˆ ˆ( ) ( )
ˆ ˆ ( )( )

l l
l l

ll

B q C q
G q H q

D qA q
   (23) 

3.3  Consistency Analysis 

In the following some theoretical analysis will be carried out 

on the consistent estimation for parameters of Hammerstein 

model. First, two key assumptions are given below. 

A3 For the given system, valve stiction does exist. The true 

process has the same parameters as the model (1)-(9). 

 
 1 2

( ) ( )
( ) ( ) ( ( )) [1 ( )] ( ( )) ( )

( ) ( )

B q C q
y t h t f u t h t f u t e t

A q D q
     (24) 

A4 The input ( )u t is strongly persistently exciting with order   

(2 , )n m . For any non-zero filters ( )L q and ( )K q , we have 

 
2

1

1
[ ( ) ( ) ( ) ( )] 0

N

N t

inf E L q u t K q y t
N

lim
 

   (25) 

Theorem 1. Assume that conditions A3-A4 are true, then 

when the amount of data N goes infinity, there exists 

 
1

ˆ 2,3, 3A A

j j j m     (26) 

 
2

ˆ 2,3, 3D D

k k k m     (27) 

Where, ˆ A

j and ˆ D

k represent optimal estimation for model 

parameters of cubic splines, A

j  and D

j represent the true 

parameters. 

Proof.  

If the optimal estimated sticky parameters ˆ A

j and ˆ D

k are equal 

to corresponding true parameters A

j and D

j , there is no doubt 

that the estimated valve output ˆ ( )optx t is equal to the true valve 

output ( )x t . 

 ˆ ( ) ( )optx t x t  (28) 

Therefore, prediction error model will remain consistency 

using closed-loop data ˆ ( )optx t  and ( )y t , provided that orders of 

the model are correct. So we have 

 0ˆ ( ) ( )G q G q  (29) 

In this case, we now get 

  
20 2ˆ( ) ( ) ( )N NV EV E y t y t Ev t     (30) 

Where, ˆ( )y t is the prediction output. 

On the contrary, if the optimal estimated sticky parameters 
ˆ A

j and ˆ D

k are not equal to true parameters A

j and D

j , then the 

estimated valve output ˆ ( )optx t will be biased. The following 

relation holds 

 

  

 

2
0 0

2
0 0

2
0

2
2 0

2

ˆ ˆ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

N NV EV E G q x t v t G q x t

E G q x t G q G q x t x t v t

E v t G q x t G q x t G q x t

Ev t E G q x t G q x t G q x t

Ev t

    
 

         

         

         



 (31) 

Therefore when N tends to infinity, the loss function gets to 

its minimum if and only if the following equations are true. 

 ( ) 0G q   (32) 

 ( ) 0x t   (33) 
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This is contrary to the conclusion that the valve output is 

biased, namely the equation (26-27) is established. The 

optimal parameter estimation for Hammerstein model is 

consistent. 

4. DEMONSTRATION 

4.1  Simulation Study 

A second order Box-Jenkins process is investigated. The 

process is given as 

1 2

1 2 1

0.5
( ) ( ) ( )

1 1.5 0.7 1 0.9

q q
y t x t e t

q q q

 

  


 

  
 

The transfer function with a PI controller in a feedback 

closed-loop configuration is used here for simulation. 

1

1

0.31 0.3
( )

1

q
C q

q









 

The nonlinear part of the process is simulated by adopting the 

two-parameter model in (Choudhury, 2005) with 20S  2J  . 

The white noise signal ( )e t has a zero mean and a variance of 

1. The excitation signal is a GBN signal. Adjust the variance 

of ( )v t so that the noise-to-signal ratio at output is 5% in 

power. Generate one data set of 1500 samples for model 

estimation and the other data set of 1500 samples for model 

validation. Part data is presented in Fig. 3. 

 

Fig. 3. Measured controller output and process output. 

Estimation results are shown as follows. The model is 

simulated using the validation data set. The measured output 

and the process output of the first 100 data are shown in Fig. 

6. 

 

Fig. 4. Estimated stiction nonlinearity. 

 

Fig. 5. Step response of the linear model and the process. 

 

Fig. 6. Model fit of the process output. 

The fitness can be calculated by: 

 

 
2

2

ˆ( ) ( )
100 1

( ) ( )

y t y t
Fitness

y t E y t

 
  
 
 

 (34) 

Fitness compares the simulated output errors with those 

obtained using the empirical mean as the model output. Here, 

the model fitness for validation data is 94.37%. The 

simulation shows the effectiveness of the method. 

4.2  Industrial Example 

An international database is available online for academic 

research on the detection and diagnosis of oscillations and 

control valve stiction (Jelali and Huang, 2010). Here the 

proposed method will be applied to cdata.chemicals.loop23 

in the database. The valve position is not available. The 

controller output and the process output are presented in Fig. 

7.  The sampling period is 10 sec. 

 

Fig. 7. Measured controller output and process output. 
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Fig. 8. Estimated stiction nonlinearity. 

 

Fig. 9. Step response of the linear model. 

 

Fig. 10. Model fit of process output. 

Here the estimated length of stiction is nearly equal to the 

reference value proposed in the book (Jelali and Huang, 

2010). The model fitness is 75.67%, which is higher than the 

previous work (Wang and Zhang, 2012).  

An important remark is that the model fitness should be 

calculated on a data set which has not been used for model 

estimation. In this case we did not distinguish like this due to 

the reason that the length of the given data set is limited. 

However, it is not a recommended practice. 

5.  CONCLUSION 

The estimation of valve stiction based on a Hammerstein 

model in closed-loop system is studied. A form of cubic 

spline function is used to derive the identification algorithm 

based on a relaxation scheme. Model order is determined 

based on a frequency domain criterion ASYC. The 

consistency of the method is established. Effectiveness of the 

proposed method has been shown in demonstration. It is easy 

to generalize the method to other processes with hysteresis 

nonlinearity. 
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