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Abstract: Interactive driving simulation has become a key technology to support the devel-
opment and optimization process of modern vehicle components and driver assistance systems
both in academic research and in the automotive industry. However, the validity of the results
obtained within the virtual environment depends essentially on the adequate reproduction of the
simulated vehicle movements and the corresponding immersion of the driver. For that reason,
specific motion platform control strategies, so-called Motion Cueing Algorithms (MCA), are used
to replicate the simulated accelerations and angular velocities within the physical limitations of
the driving simulator best possible. In this paper, we present a novel model-based approach to
predict oncoming vehicle motion at runtime. For that purpose, a virtual driver model as well as
a simplified vehicle dynamics model are introduced to estimate the future driver inputs and the
resulting vehicle trajectories according to the current driving situation. This additional system
knowledge enables control algorithms designed on the idea of Model Predictive Control (MPC)
to exploit their potential more efficiently. The performance of the proposed prediction strategy
is evaluated on the basis of measurement data from a real test run in comparison to an ideal
prediction and a constant reference, using a hybrid kinematics motion system as an application
example.

Keywords: Online Reference Prediction; Motion Cueing; Model Predictive Control; Driver
Model; Interactive Driving Simulation; Dynamic Motion Platform Control.

1. INTRODUCTION

As a consequence of the constantly increasing multifunc-
tionality and interconnectivity of modern vehicle compo-
nents and Advanced Driver Assistance Systems (ADAS),
automobile manufacturers and developers are facing new
technological challenges in recent years. Furthermore, top-
ics such as e-mobility and autonomous driving bring new
competitors from the information technology sector onto
the market, so that shorter development cycles with si-
multaneously enhanced product complexities are necessary
in order to maintain competitiveness. To overcome those
challenges, interactive driving simulators represent an es-
sential tool to complement the conventional development
process, based on physical prototypes and on-road tests,
by virtual test procedures. In that context, model-based
prototyping methods using driving simulations offer the
benefit of time and cost savings, as well as safe and
reproducible test environments with high flexibility. For
example, varying weather and lighting conditions can be
directly adapted to the test requirements in the simulated
environment, which supports i.a. the development of mod-
ern headlamp systems significantly (Rüddenklau et al.,
2019). Moreover, interactive driving simulation provides
access to human-centered studies such as marketing, driver
training and acceptance research (Hartwich et al., 2018).

Disregarding from the particular analysis purpose, the
validity of the results obtained in a simulator study is
closely linked to the driver’s degree of immersion. Hence, it
is necessary to provide the human perception system with
all required motion information, so-called Motion Cues.
In addition to the acoustic, visual, and haptic stimuli, also
the vestibular Motion Cues, more precisely inertial motion
in terms of the translational accelerations and angular
velocities of the simulated vehicle, have to be reproduced
via the dynamic motion system of the driving simulator.
Therefore, as shown in Fig. 1, specific Motion Cueing
Algorithms are applied to transform the inertial motion
of the vehicle dynamics simulation into admissible con-
trol signals within the physical limitations of the motion
system and thus create a driving impression that is as
realistic as possible.
Commonly, filter-based MCA, known as Washout Algo-
rithms, are applied for this task. These consist of a se-
quence of frequency divisions using appropriate filters to
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Fig. 1. Topology of Interactive Driving Simulation.
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extract the high-frequency components of the translational
accelerations and angular velocities, while sustained low-
frequency signal parts are reproduced by the gravitational
force, which is referred to as tilt coordination technique
(Nahon and Reid, 1990).
In recent years, research has focused on optimization-based
Motion Cueing strategies according to the principle of
Model Predictive Control (Garrett and Best, 2013; El-
lensohn et al., 2018). Compared to Washout Algorithms,
MPC-based MCA offer the advantages of a better correla-
tion with the reference signals, since there is no additional
phase shift due to implemented filters and thus generate a
higher degree of immersion. Moreover, hard constraints,
such as physical limitations of the motion system and
human perception thresholds, can be explicitly taken into
account by the control algorithm, enabling an optimal
planning of the motion trajectory. According to Beghi
et al. (2012) with knowledge of future reference signals, it is
possible to exploit the available workspace more efficiently.
However, in contrast to conventional control tasks, an ex-
act knowledge of the reference trajectory is in the context
of interactive driving simulation equivalent to the assump-
tion that the driver behavior and the resulting vehicle
reaction are known in advance. Since this clearly depends
on the current driving situation, as well as on the driver
himself, model predictive MCA usually assume a constant
reference trajectory based on the current accelerations and
angular velocities (Grottoli et al., 2018). Although this
intuitive prediction strategy enables active driving simu-
lations with a human Driver-in-the-Loop, the potential of
the predictive controller is obviously not fully exploited.
In previous studies of Bruschetta et al. (2017), a reference
prediction based on recorded data from test drives on a
racetrack is introduced. Here, the current translational ac-
celerations and angular velocities of the vehicle dynamics
simulation are kept constant over a short time horizon.
For all further time steps within the prediction horizon,
the recorded reference from the test drive is selected. If
an unexpected driver behavior is detected, the recorded
reference is smoothly scaled down to zero. In addition, an
artificial neural network that was trained to predict the
future vehicle motion at runtime is presented by Moham-
madi et al. (2016). Although this approach leads to a less
conservative planning of the motion trajectory compared
to a constant reference definition, the potential of the
motion system is not fully utilized. Thus, there is still no
generally admitted approach to estimate reliable reference
trajectories for generic driving situations yet.
For that reason, we propose in the present work a novel
model-based prediction strategy to exploit the potential
of optimization-based MCA more efficiently and therefore
provide a better reproduction of the vestibular Motion
Cues. A key feature of this approach represents the imple-
mentation of a virtual driver model based on established
control algorithms. While the prediction of the pedal actu-
ation by the driver is estimated via a linear extrapolation
of the current inputs, the future steering inputs are ap-
proximated using the Exact Linearization technique. This
nonlinear control approach includes both available route
information and the actual driving state and thus enables a
lateral control up to the stability limit of driving dynamics.
In combination with a simplified vehicle dynamics model,
the driver model is implemented in an iterative prediction

algorithm in order to determine the future driver inputs
as well as the resulting vehicle reactions depending on the
current driving situation within a defined time horizon.
By means of measurement data from a real test drive, the
resulting control quality of the proposed prediction strat-
egy is compared against a constant reference signal and an
ideally known trajectory, which serves as a benchmark in
this study.

2. MODEL PREDICTIVE MOTION CUEING
ALGORITHM

In addition to the implemented future reference predic-
tion, the quality of the vestibular stimuli reproduction is
primarily influenced by the MPC-based control strategy
itself. This results from previous research and is described
in detail by Biemelt et al. (2018). For that reason, only
the basic idea of the algorithm illustrated in Fig. 2 is
subsequently discussed.
According to the well-known MPC paradigm, an optimal
control problem is numerically solved over a receding time
horizon at each calculation cycle. Subsequently, only the
first element of the optimal control variable is applied
to the process and the procedure is reiterated. For this,
the dynamic behavior of the simulator motion system is
described as

ẋ (t) = A · x (t) +B · u (t)

y (t) = f (x (t)) .
(1)

In this Wiener model, the linear state differential equation
describes the dynamics of all five controlled actuators with
the state vector x ∈ R15, which contains the angles, the
angular velocities and the angular accelerations of each
actuator. The associated reference angles are combined
in the input vector u ∈ R5, while the output equation
includes the nonlinear direct kinematics of the driving
simulator in order to describe the acting accelerations
and angular velocities at the driver’s head position. Since
the considered motion system of the ATMOS driving
simulator, which is described in detail by Al Qaisi and
Trächtler (2012), does not support any yaw motion, the

output vector is defined as y =
[
aT ωT

]T ∈ R5. However,
especially the integration of the direct kinematics increases
the complexity of the optimization problem to be solved by
the MPC and thus also the required computational effort.
To overcome this and meet the real-time requirements,
the output equation of (1) is approximated by a first
order Taylor series in each time step. This leads to the
constrained optimal control problem

minimize
∆u(0),...,∆u(N−1)

N∑
k=1

‖y (k)− r (k) ‖2Q +

N∑
k=1

ρ (k)

+

N−1∑
k=0

‖∆u (k) ‖2R + ‖u (N − 1) ‖2S

subject to

xlo ≤ x (k) ≤ xup, k ∈ [1, N ]

ulo ≤ u (k) ≤ uup, k ∈ [0, N − 1] ,

(2)

where the first and third summand of the cost function
consider the control error and the change rate of the
actuating variables with the weighting matrices Q ∈ R5×5

and R ∈ R5×5 within the prediction horizon. As the limits
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Fig. 2. Scheme of the MPC-Based Control Algorithm.

of the actuators are included as constraints in the op-
timization problem, it is guaranteed that the planned
motion trajectory can be realized by the driving simulator.
In addition, the penalty term ρ (k) limits the overall rota-
tion rate of the motion system to the human perception
threshold. This enables the MCA to simulate sustained
accelerations via the gravity without being distinguishable
for the driver. Furthermore, the last summand in (2) rep-
resents a terminal cost to return the system to its initial
position after performing the movement. Since the control
algorithm is executed with a cycle time of TMPC = 25ms,
the prediction horizon is chosen to N = 40 discrete time
steps in order to realize a receding time horizon of one
second. Assuming an a priori known reference trajectory
r ∈ R5N , the described algorithm offers significant im-
provements over conventional Washout Algorithms regard-
ing the control quality, as it was shown by Biemelt et al.
(2019) using various driving maneuvers.

3. MODEL-BASED ONLINE REFERENCE
PREDICTION

In order to exploit the potential of the MPC-based MCA
described in Section 2 best possible, we subsequently
present a novel approach to estimate the future reference
trajectory at runtime. Therefore, a concept prementioned
by Biemelt et al. (2018) is adopted, which extends the
structure shown in Fig. 2 by a model-based prediction
strategy, resulting in the scheme illustrated in Fig. 3. The
online prediction is composed of a virtual driver model
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Fig. 3. Model-Based Future Reference Prediction.

and a simplified vehicle model that are initialized with the
corresponding state variables from the vehicle dynamics
simulation in the beginning of each prediction sequence.
Thus it is ensured that the future reference signals are
estimated in accordance with the current driving situation.
Consecutively, available information on the route and the
internal states of the simplified vehicle model are utilized
to determine the expected driver inputs, more precisely
the pedal actuation as well as the steering input. From
these predicted inputs, the resulting motion of the vehicle
model is obtained. By repeating this closed loop procedure
iteratively, the reference signals for all time steps within
the prediction horizon are determined. In the following, the
basic components of the proposed approach are discussed
in detail.

3.1 Simplified Vehicle Dynamics Model

It is obvious that even an ideal Motion Cueing Algorithm
will not create a realistic driving impression if the applied
vehicle dynamics model does not ensure a plausible driving
behavior. Hence, besides the MCA, the vehicle dynamics
simulation itself crucially influences the resulting degree of
immersion during an interactive driving simulation. That
is why the Automotive Simulation Models (ASM) tool
suite developed by dSPACE is used for this task in the
present work. This commercial multibody model features
all relevant subsystems of a real vehicle such as engine,
powertrain, axle kinematics, and electronic control units
and is therefore well-established in automotive applica-
tions (Patil et al., 2012). However, it is easy to see that,
because of its complexity, this model is not suitable for an
iterative prediction of future reference trajectories since
the resulting computational effort is not compatible with
the real-time requirements of the MPC.
For this reason, the prediction is performed using a sim-
plified vehicle model of reduced order, which on the one
hand can be calculated efficiently, and on the other hand
describes the relevant system dynamics of the ASM refer-
ence vehicle model with adequate accuracy. More specifi-
cally, a nonlinear single-track model is applied, which was
extended by models of the powertrain, the brake system
and tire models in order to determine the longitudinal
and lateral dynamics within the prediction horizon. Here,
the extended subsystems are modeled and parameterized
analogously to the ASM, while the system dynamics are
simplified as much as possible without affecting the pre-
diction accuracy significantly. The corresponding system
equations are determined according to the kinematic re-
lations in Fig. 4. These are not further specified at this
point, as it represents a standard approach from vehicle
modeling. Since the plane single-track model does not offer
a description of the vertical dynamics nor the roll and pitch
velocities, these quantities are derived from the acting
longitudinal and lateral accelerations as well as the road
excitations with an appropriate spatial model, which is
evaluated subsequently to the single-track model.
The overall simplified vehicle model according to Fig. 3
therefore contains 21 internal state variables, which are
initialized in each prediction cycle with the state variables
of the ASM vehicle dynamics simulation. Based on the
property that the internal states of the reduced order
vehicle model are clearly determined for any times t > t0,
if the initial states at time t0 and the input variables for
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t > t0 are known, the reference vector r (k) of the optimal
control problem (2) can be determined with the required
accuracy as a function of the predicted inputs from the
driver model for each time step k ∈ Z with 1 ≤ k ≤ N .

3.2 Prediction of Longitudinal Driver Inputs

Driving a vehicle can be interpreted as a control task in
which the human driver acts as the controller. It therefore
seems reasonable to estimate the future driver inputs
based on the current driving situation for a future time
horizon using a control algorithm that is considered as
a driver model. While this concept achieves good results
in estimating lateral driver inputs, as described in the
following section, practical application has shown that the
pedal actuation by a human driver is hard to generalize.
Imagine a situation where the simulated vehicle is driving
towards a speed-limitation. Although it can be assumed
that the driver will reduce the vehicle’s speed, the exact
timing and intensity of the brake process depends on
the particular driver type and a multiplicity of external
influences, such as the visual range.
Hence, we propose a linear extrapolation of the driver
inputs for predicting the future positions of the accelerator
pedal pA (k) and the brake pedal pB (k). For this, the
corresponding difference quotients

∆pA
∆t

=
pA (0)− pA (−1)

TMPC

∆pB
∆t

=
pB (0)− pB (−1)

TMPC

(3)

based on the known current and last driver inputs p (0)
and p (−1) are kept constant for each prediction cycle
of the MCA. With respect to the application, the driver
model thus assumes that the driver continues his current
inputs with a constant rate of change within the considered
time horizon of one second. This method provides a good
approximation of the real driver inputs for short prediction
intervals, while the quality of prediction clearly decreases
for long time periods. However, it should be noted that any
estimation of future driver inputs is affected by errors, as
human driving behavior can never be predicted exactly. It
was observed that with this method, a satisfying prediction
of the pedal actuation can be achieved, which results in an
adequate tracking of the longitudinal accelerations by the
MPC-based MCA (see Section 4).

3.3 Prediction of Lateral Driver Inputs

In contrast to the previously described estimation of the
pedal actuation, available information about the future
route enables a precise prediction of the oncoming steering
inputs using a control algorithm in the driver model.
This is based on the assumption that the human driver
in the simulator attempts to follow the given route best
possible. That can generally be expected, since the route is
usually specified prior to the interactive driving simulation
depending on the research question.
Therefore, a method for lateral control of vehicles is
applied in the context of this work that enables a stable
control up to the limits of driving dynamics. It is based on
a nonlinear control algorithm according to the principle
of Exact Linearization, which was initially described by
König et al. (2007). Here, the lateral dynamics of the
simplified vehicle model as shown in Fig. 4 are defined
by the differential equations of the slip angle βv and the
yaw angle ψv as

β̇v = −ψ̇v +
1

m · |vv|
· (Ff,y + Fr,y)

ψ̈v =
1

J
· (Ff,y · lf − Fr,y · lr)

(4)

with the mass m and the moment of interia J being
vehicle parameters. These equations can be derived from
the conservation of momentum of the single-track model
using a small angle approximation. Since this represents a
standard modeling approach, which is explained in detail
by Schramm et al. (2014), the derivation is not further
discussed at this point.
To ensure a sufficiently accurate description of the lateral
dynamics up to the traction limit, the degressive behavior
of the lateral forces is approximated by nonlinear arc tan-
gent functions:

Ff,y = cf,1 · arctan (cf,2 · αf )

Fr,y = cr,1 · arctan (cr,2 · αr)
(5)

By parameterizing ci,1 and ci,2 adequately, the relevant
tyre characteristics of (5) are consistent with the complex
tyre models of the vehicle model from Section 3.1. The
variables αi denote in this context the sideslip angles,
which can be expressed by the steering angle δ, the slip
angle βv, and the yaw velocity ψ̇v.
Moreover, it is necessary to consider the limited bandwidth
of the vehicle’s steering system that is approximated by the
first order differential equation

δ̇ + ωs · δ = ωs · u (6)

with the cutoff frequency ωs and the driver’s steering
input u.
Since the basic idea of the proposed prediction strategy
assumes an ideal driver behavior, an expression of the
lateral deviation ε from the specified route is required.
For this purpose, the time related change of the lateral
deviation ε̇ is described as follows from geometric aspects
according to Fig. 4:

ε̇ = |vv| · sin (ψv + βv − ψs) + lp · ψ̇v · cos (ψv − ψs) (7)

Here, the parameter lp describes the distance of a vehicle
fixed reference point P from the center of gravity, which
provides a damping influence on the resulting control
behavior (Alloum et al., 1995). Under the assumption that
the driving direction ψv + βv and the route direction ψs
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do not differ significantly at any time, which is the task of
the lateral controller, (7) can be simplified to

ε̇ = |vv| · (ψv + βv − ψs) + lp · ψ̇v . (8)

By combining (4)-(6) and (8), the nonlinear state space de-
scription of the simplified vehicle model’s lateral dynamics
results as

ẋ (t) = f (x (t)) + gu · u (t) + gz · ψs (t)

y (t) = h (x (t))
(9)

with the corresponding state vector

x (t) =
[
ψv(t) ψ̇v(t) βv(t) ε(t) δ(t)

]T
∈ R5. (10)

The scalar output variable y represents the lateral de-
viation ε, while the route direction ψs is included as a
disturbance in the system (9). Thus, this control-affine
system is of order n= 5 and has a relative degree of ϑ = 3,
enabling the Input-Output Linearization technique to be
applied in order to minimize the lateral deviation (Henson
and Seborg, 1990). For this purpose, the time derivatives
of the output variable are determined up to the relative
degree ϑ, using Lie Operators for reasons of clarity:

d3ε(t)

dt3
= L3

f h(x(t))+LguL
2
f h(x(t))·u(t)−|vv|·ψ̈s(t) (11)

Based on this expression, the following compensation term
is derived to ensure that the transfer behavior of a new
system input ũ to the control variable ε yields the linear
system dynamics of a triple integrator:

u(t) =
1

LguL
2
f h(x(t))

(
−L3

f h(x(t)) + |vv|ψ̈s(t) + ũ(t)
)

(12)
Since the lateral dynamics system (9) thus provides a
linear input-output behavior, a control law of the form

ũ(t) = −k · [ ε ε̇ ε̈ ]
T

= −k ·

 h(x(t))
Lf h(x(t))− |vv| · ψs(t)

L2
f h(x(t))− |vv| · ψ̇s(t)

 (13)

is applied to ensure a desired pole configuration of the
closed loop system. This specifies the performance of the
lateral dynamics controller and consequently the steering
characteristics of the virtual driver model.
The proposed approach is characterized by an intuitive
tuning, a reliable control up to the traction limit, as well
as a low computational effort and is therefore well suited
for the implementation in an iterative prediction strategy.
In this context, the algorithm can be interpreted as distur-
bance control that attempts to compensate initial lateral
offsets induced by the human driver at the beginning of
each prediction sequence.

3.4 Resulting Iterative Prediction Algorithm

In order to estimate the future reference trajectory r
according to Fig. 3 at runtime, an iterative prediction
algorithm was developed in the context of this contribu-
tion. For this, the overall closed loop system, consisting
of the simplified vehicle dynamics model and the virtual
driver model, is initialized every 25ms with the current
state variables from the vehicle dynamics simulation. The
resulting initial value problem is subsequently solved, us-
ing the Euler method to evaluate the future internal state
and reference variables within the prediction horizon N .

Here, an internal step size of 1ms is used to ensure the
stability of the numerical integration, causing a consid-
erable computational effort. However, the required com-
pliance with the real-time requirements was achieved by
an efficient implementation in this work, using an AMD
Opteron CPU @ 2.8GHz.
Subsequently, the predicted reference signals are scaled
with constant factors in the postprocessing, since an exact
reproduction is usually not feasible due to the motion
system’s limited workspace. But in contrast to a con-
stant reference trajectory, the proposed prediction strategy
exploits the workspace more efficiently, which enables a
lower signal scaling and thus a more immersive driving
impression. As the model-based determined references are
nevertheless affected by prediction errors, a reduction in
the weighting of the control deviations through the predic-
tion horizon is applied. Therefore, the weighting matrix Q
in the optimization problem (2) is exponentially decreased
in each future time step k as

Q (k) = Q0 · ζk−1 (14)

with ζ = 0.99 for all k ∈ [1, N ]. This modified weighting
is used for both online prediction and constant reference
to ensure a consistent basis for evaluation described in the
next section.

4. RESULTS AND DISCUSSION

In the following, the resulting control quality of the MPC-
based MCA in combination with the proposed prediction
strategy is evaluated. The online prediction is for this pur-
pose compared to the conventional approach of constant
reference signals, as well as an ideally known reference
trajectory. The latter is obviously not realizable during
active driving simulations with a human Driver-in-the-
Loop and serves only as a benchmark in this context.
As a basis for evaluation, test drives were carried out by
an experienced simulator driver, who was instructed to
follow a defined route while respecting the given speed
limits. Measurement data of the translational accelerations
and angular velocities taken with an inertial measurement
unit at the driver’s head position are used to analyze the
respective control performances.
Fig. 5 shows the resulting longitudinal acceleration and
pitch velocity tracking. It becomes evident that the control
algorithm yields an adequate reproduction of the longitu-
dinal acceleration from the vehicle dynamics simulation
with all prediction strategies, which proves the robustness
of this approach. However, in contrast to the constant
reference approach, the use of the online prediction shows
a significantly higher agreement with an ideally known
reference, especially when there are rapid changes in the
acceleration, for example at the times t = 6 seconds and
t = 58 seconds. Moreover, the use of a constant refer-
ence trajectory causes larger time delays over the entire
measuring period, which have already been observed by
Grottoli et al. (2018). The corresponding pitch velocities
contain in all cases low-frequency disturbances that can
be explained by a necessary rotation of the motion system
to reproduce sustained accelerations using the tilt coor-
dination technique. By introducing the penalty term in
the cost function of (2), these can be successfully limited
to the acceptance threshold of 0.1 rad/s relative to the
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Fig. 5. Longitudinal Acceleration and Pitch Velocity
Tracking.

reference value, regardless of the selected reference trajec-
tory approach. It is worth mentioning in this context that
the MPC thus accepts control errors in the tracking of
longitudinal accelerations in order to avoid the rotation
of the motion system being detectable for the human
perception system. Equivalent results can be derived from
Fig. 6, which illustrates the measured lateral accelerations
and the associated roll velocities. Also in this case is the
acceleration reference from the simulated vehicle tracked
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Fig. 6. Lateral Acceleration and Roll Velocity Tracking.

very well by all three algorithms. Furthermore, the differ-
ence between online prediction and a constant reference is
less significant, since moderate lateral accelerations were
examined during the test drive. Due to the results of the
longitudinal acceleration reproduction, it is to be expected
that in more aggressive driving maneuvers, such as a
double lane change at high speed, the online prediction
strategy will enable a better tracking. Nevertheless, even
in this moderate maneuver there is a noticeable time delay
when using a constant reference trajectory, indicating that
the potential of the MPC approach is not optimally ex-
ploited. The roll velocity error is again successfully limited
to the defined threshold value when using all algorithms,
for which reason it is assumed that these deviations are not
perceived by the driver. Concluding, the vertical accelera-
tions measured in the test drives are shown in Fig. 7. Here
it can be seen that the particular method for specifying
the reference trajectory only has a minor influence on
the reproduction of vertical accelerations, since the signals
only differ insignificantly. All three approaches exhibit
low-frequency deviations from the reference acceleration,
which are caused by the motion system’s coupled de-
grees of freedom and cannot be completely compensated.
However, these unpreventable errors are mostly below the
human perception threshold, so that they do not affect the
quality of the motion rendering in a negative way.
In order to objectify those results, a suitable valuation
metric is applied that was described in detail by Biemelt
et al. (2019). It is based on defined quality criteria using
the performance indicators λ1 and λ2. While λ1 provides a
measure of the average normalized control error, the indi-
cator λ2 describes the perceived control quality, including
well-established models of the human vestibular organs,
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as well as perception thresholds. Consequently, the closer
those performance indicators are to the origin, the better
is the reproduction of the simulated vehicle movements
by the driving simulator. The graphical analysis of the
performance indicators according to Fig. 8 illustrates the
benefits of the proposed online prediction strategy over
a constant reference trajectory, since smaller performance
indicators are achieved. Furthermore, it should be noted
that both quality indicators are only slightly larger when
the online prediction is used than with an ideally known
reference signals. This proves the high prediction quality
of the described approach and thus allows a more realistic
driving impression, which is a major benefit for interactive
driving simulation.

5. CONCLUSION AND FUTURE WORK

In this paper, the development of a model-based pre-
diction approach to estimate future reference trajecto-
ries for model predictive Motion Cueing Algorithms was
presented. In contrast to existing methods, the presented
algorithm is based on a simplified vehicle model, as well
as a virtual driver model, to approximate future driver
inputs and the resulting vehicle reactions depending on
the current driving situation. By including algorithms
from nonlinear control theory, a stable lateral control up
to the limits of driving dynamics is ensured. The added
value for the interactive driving simulation was proven
on the basis of measurement data from real test drives,
which demonstrated a satisfying control quality. Thus, it
could be verified that the potential of optimization-based
control algorithms can be exploited almost optimally by
integrating additional model knowledge in the reference
prediction algorithm.
The future work will deal with the subjective validation
of these observations. In this context, appropriate subject
studies will be conducted in order to rate the resulting
degree of immersion by human drivers. Besides, the virtual
driver model will be improved so that the driver behavior
can be reproduced even more accurately. This includes,
in addition to interaction with other traffic participants,
adequate prediction strategies for driving situations in
which the future route cannot be clearly determined, e.g.
at intersections, or if the driver obviously acts contrary to
the predicted behavior.
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