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Abstract: In this paper, we investigate the problem of the optimal circumnavigation around
a ground moving target for a fixed-wing unmanned aerial vehicle equipped with a radar. We
propose an optimal circumnavigation control law which not only achieves the circumnavigation
of a UAV around a moving target, but also maximizes the utilization of the sensor information.
Firstly, an optimization criterion reflecting the extent of the sensor information utilization is
established based on the Fisher information. Then, based on a neural network, an optimal
circumnavigation control law with input saturation is designed. The result is a nearly optimal
state feedback controller that has been tuned a priori off-line. Finally, a simulation is presented
to demonstrate the validity and correctness of the proposed method.
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1. INTRODUCTION

With the development of the unmanned aerial vehicles
(UAVs), the application of UAVs can be found in both mil-
itary and civilian fields. Among a variety of applications,
the surveillance and tracking of moving targets is one of
the primary application domains of UAVs. To provide a
better aerial monitoring for the ground target, the UAV is
practically required to loiter over the target with a desired
distance and circumnavigate around the target.

In the past years, a variation of circumnavigation methods
have been proposed. Using the distance measurements
(Shames et al. (2011)) or bearing measurements (Deghat
et al. (2014)), time-varying algorithms were proposed for
a robot with single-integrator dynamics. The proposed
controllers consisted of an estimator to localize the target
and a control law that forces the robot to circumnavigate
the target. For a non-holonomic agent, Deghat et al. (2012)
designed a circumnavigation algorithm assuming that the
position of the target is unknown. Following their works,
Cao (2015) developed a range-only control strategy for
an unmanned aerial vehicle using range measurements
and a sliding-mode estimator of the range rate was also
designed. When the relative position of the target can
be accessed, guidance laws based on Vector Fields (VF)
method were also exploited (Dong et al. (2019)). The
convergence and the stability of the proposed algorithms
have been proved in these works. However, the optimality
of the circumnavigation control algorithm was considered
by none of these works.

The state of the target, which is usually obtained by the
on-board sensor, is essential in the target tracking prob-
lem. As the measurement sensor data generally contains
noises, a filter like Extended Kalman Filter (EKF) is usu-

ally needed in order to estimate the true state of the target.
Different sensor data may contribute differently during the
process of filtering. For example, for the sensors which
detect the bearing information, the target state filtered
with the data by circling is more accurate (see Ponda
et al. (2009)). Hence, in order to quantize the contribution
of the sensor data, the Fisher Information Matrix (FIM)
was applied to express the amount of information, which
equals to the inverse of the lower bound of the error
covariance (Wang et al. (2010)) . Based on that, Chen et al.
(2016) proposed a UAV guidance law by using one-step
determinant of FIM. However, this work only considered
one-step optimization, which may incur a local extremum.

The solution of the optimal control problem is connected
with the solution of the underlying Hamilton-Jacobi-
Bellman (HJB) equation. Considerable efforts have been
made for developing algorithms which approximately solve
this equation (e.g. Abu-Khalaf and Lewis (2005)). The
neural networks were used in order to solve the value
function of this HJB equation in many works, such as Li
et al. (2017). Then to confront the optimal control with
input saturation, Lyshevski (1998) proposed the use of
nonquadratic functionals to confront constraints on inputs.

In this paper, we propose an optimal circumnavigation
control law which not only achieves the circumnavigation
of a UAV around a moving target, but also maximizes the
utilization of the sensor information. Firstly, we formu-
late the optimal circumnavigation problem in which the
sensor information utilization is considered based on the
Fisher information. Then, a design method for the optimal
circumnavigation control law with input saturation is pro-
posed. A simulation result by comparing with the method
in Dong et al. (2019) also proves the effectiveness of our
method. To the best of our knowledge, it is the first time

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2505



that the UAV circumnavigation problem is optimized by
infinite horizon optimal control method.

2. PROBLEM FORMULATION

In this paper, we focus on the design of a flight controller
for a fixed wing UAV to circumnavigate around a moving
target. Specifically, relative to the target, the UAV is
expected to track a desired circle over the target with a
desired radius rd and a constant relative speed vr (see
Fig. 1). The altitude of the fixed wing UAV is assumed to
be held constant and its kinematic model is described by

ẋ = v cos θ,
ẏ = v sin θ,

θ̇ = uθ,
v = uv,

(1)

where (x, y) is the position of the UAV in the planar
plane and θ is its heading. The UAV’s linear velocity v
and angular velocity ω is determined by control inputs
u = (uv, uθ). Due to the roll angle limitation of the
fixed wing UAV, the following input constraints should
be satisfied:

|uθ| ≤ ωmax. (2)

The state of the moving target is denoted by st =
(xt, yt)

T ∈ R2. The target is assumed to move with a
constant linear velocity and its kinematics satisfies:{

ẋt = vt cos (θt) ,
ẏt = vt sin (θt) ,

(3)

where vt and θt are two known constants.

Let θr denote the relative angle of the UAV with respect
to the target, as the relative speed vr is a constant in this
paper, we have the following equations:{

vr cos θr = vt cos θt − v cos θ,
vr sin θr = vt sin θt − v sin θ.

(4)

where vr > vt.

The UAV is only equipped with one radar as the measuring
sensor towards the target. The on-board radar can measure
the range and bearing information determined by relative
state sr = (xr, yr)

T = (xt − x, yt − y)T . The observation
model of the radar sensor is illustrated as follows:

ζ(t) = κ(sr) + χ(t),

where ζ(t) is the obtained sensor measurement at time t,
κ(.) is the observation function and χ(t) is the measure-
ment noise. Specifically, the observation function κ(.) is
defined as in Zhao et al. (2018):

κ(sr) =

[
r
φ

]
=

[√
x2
r + y2r + h2

arctan (yr/xr)

]
, (5)

where r and h are the distance in the three-dimensional
space and the altitude of the UAV respectively. φ is the
bearing between the UAV and the target.

It is usually assumed that the measurement noise follows
a zero-mean Gaussian distribution (Zhao et al. (2018)),
which is

ζ(t)|sr. ∼ N(κ(sr), C(sr)).
The measurement noise depends on the signal-to-noise
ratio and the covariance matrix of the measurement is

C(sok) =

[
r4σ2

r 0
0 σ2

φ

]
,

Fig. 1. The illustration of circumnavigation around a
ground target

where σx and σy are the standard deviations of the
measurements in the x and y direction respectively.

In order to quantify the utilization of the sensor data, the
accumulated information is exploited as the optimization
criterion. Given the trajectory of the target st(t) in a
given time period [t1, t2], we expect to enforce the UAV
to fly along an optimal trajectory that maximizes the
accumulative information D with respect to the relative
position sr(t), which is given by (Wang et al. (2010))

D ≜
∫ t2

t1

√[
dsr(t)

dt

]T
F (sr(t))

[
dsr(t)

dt

]
dt

=

∫ ∞

t0

√
[ṡt − ṡ]

T
F (sr(t)) [ṡt − ṡ]dt, (6)

where F (sr(t)) denotes the Fisher information matrix for
the radar sensor whose observation model is described by
(5) and its specific form is as following:

F11 =
x2
r

r6σ2
r

+
y2r

r4hσ
2
φ

+
8x2

r

r4
,

F12 = F21 =
xryr
r6σ2

r

− xryr
r4hσ

2
φ

+
8xryr
r4

F22 =
y2r

r6σ2
r

+
x2
r

r4hσ
2
φ

+
8y2r
r4

,

, (7)

where rh =
√
x2
r + y2r denotes the loiter radius of the UAV,

which is the projected relative distance between the UAV
and the target onto the X-Y plane. The detail of derivation
process for the formula (7) can refer to Zhao et al. (2018).

Based on the defined accumulative information, a defini-
tion of the information optimal circumnavigation control
is given as follows:

Definition 1. For a system whose dynamic is given by (1),
target model is given by (3) and sensor model is given by
(5), if a control policy u∗ satisfies the following condition:

(a) Driven by u∗, the loitering radius of the UAV will
converge to a desired radius rd, that is lim

t→∞
rh = rd.

(b) The accumulative information (6) with the control
policy u∗ is larger than any other control policy that
satisfies condition (a),

then the control policy u∗ is called to be the information
optimal circumnavigation control.
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Fig. 2. The illustration of function Q̂(rh, η) with a given η

The aim of this paper is to design an information optimal
circumnavigation control law defined by Definition 1.

3. MAIN RESULTS

In this section, we firstly present the process of designing
an information optimal circumnavigation control law. A
neural network is then used to approximate the optimal
control law and the method of tunning the weights of the
network is also introduced.

3.1 Optimal Circumnavigation Control Law Design

Define the error er between the current loiter radius and
the desired one as

er = rh − rd, (8)

and a variable η as

η =
π

2
− (θr − φ). (9)

Obviously, the UAV will circumnavigate around the target
with the desired loiter radius as long as er → 0 and
η → 0. To achieve this goal, we start our analysis with
the dynamics of the loiter radius error er.

Firstly, the dynamics of er is obtained as:

ėr = ṙh =
xrẋr + yrẏr

rh
= vr cosφcosθr + vrsinφ sin θr

= vr cos(φ− θr) = vr sin η. (10)

Then according to (4), we have

v2 + v2t − 2vvtcos(θ − θt) = v2r . (11)

Deriving both sides of the equations (4) and (11) by time
t, it yields

−vr sin θr θ̇r + v̇ cos θ − v sin θθ̇ = 0, (12)

vv̇ − cos(θ − θt)vtv̇+sin(θ − θt)vvtθ̇ = 0. (13)

By eliminating v̇, we get

θ̇r =
vtv sin(θ − θt) cos θ − v sin θ

(
vt cos(θ − θt)− v

)
vr sin θr

(
vt cos(θ − θt)− v

) θ̇

=
v

v − vtcos(θ − θt)
θ̇.

Then, the dynamics of φ is obtained as

φ̇ =
xrẏr − yrẋr

r2h
=

cosφ(vr sin θr)− sinφ(vr cos θr)

rh

=
vr sin(θr − φ)

rh
=

vr cos η

rh
.

Define a state variable ξ = (er, η) and an augmented state
variable ξ = (er, η, θ), we have

η̇ =φ̇− θ̇r = b1(ξ)− b2(ξ)uθ,

where

b1(ξ) =
vr cos η

rh
, b2(ξ) =

v

v − vtcos(θ − θt)
.

Further, the ξ-dynamics is described by:
ėr = vr sin η,
η̇ = b1(ξ)− b2(ξ)uθ,

θ̇ = uθ,
(14)

The state ξ should be stabilized by the optimal control
law u∗

θ. Before we present the method to design the optimal
control law u∗

θ, a definition of the admissible control policy
(see Li et al. (2017)) is firstly introduced as follows:

Definition 2. (Admissible Controls). For a given system
(14), a control policy uθ = µ(ξ) is defined to be admissible
with respect to a given cost J on a set Ω ⊆ R3, written as
µ(ξ) ∈ A(Ω), if uθ is continuous, uθ = 0 when ξ = 0, uθ

stabilizes the state ξ and J is finite.

Observe that when the ξ-system is stable (i.e.,ξ = 0 and

ξ̇ = 0), the desired control input uθ = vr/rd ̸= 0, which
implies that uθ is not an admissible control with respect
to system (14). To deal with this issue, a virtual input ûθ

is defined as

ûθ(t) = −b2(ξ)uθ(t) + vr/rd. (15)

Correspondingly, the dynamics for the state ξ becomes{
ėr = vr sin η
η̇ = b1 − vr/rd + ûθ.

(16)

Obviously, ûθ is an admissible control with respect to
the system (16). If the optimal virtual input û∗

θ that
achieves the optimal circumnavigation control defined in
Definition 1 is obtained, the optimal control law u∗

θ can be
obtained by

u∗
θ = −(û∗

θ − vr/rd)/b2. (17)

Hence the question that remains is how to obtain the
optimal virtual input û∗

θ, which will be illustrated in the
following part.

Firstly, an optimization criterion based on the accumula-
tive Fisher information will be constructed in the following
part. Substitute (9) into (6), then the accumulative infor-
mation D in (6) becomes:

D =

∫ ∞

0

√
L(rh, η)dt, (18)

where L(rh, η) is:

L(rh, η) =
v2rr

2
h

r6σ2
r

sin2 η +
8r2hv

2
r

r4
sin2 η +

v2r
r2hσ

2
φ

cos2 η.

Intuitively, according to (18), more accumulative informa-
tion D will be obtained in the unit time along with the de-
crease of the loiter radius rh. Hence, the loiter radius of the
UAV will approach to zero if the accumulative information
D is taken as a to-be-maximized optimization criterion. In
order to enforce the UAV to loiter around the target with
a desired radius, a to-be-minimized performance index is
designed based on a small variation of D as
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J (ξ(0), ûθ) =

∫ ∞

0

[
FQ(rh(s), η(s)) +W (ûθ, ξ)

]
ds, (19)

FQ(rh, η) = 1− Q̂(rh, η)

Qmax
,

Q̂(rh, η) =
√
L(rh, η) tanh(rh − τ), Qmax = Q̂(rd, 0),

where W (ûθ, ξ) is a positive definite function which to be

designed, Q̂(rh, η) is a function varied slightly from the

function
√

L(rh, η), Qmax is the value of Q̂(rh, η) when
rh = rd and η = 0, τ is a bias variable which satisfies

dQ̂(rh, η)

drh
(rh = rd, η = 0) = 0. (20)

Further, the exact form of (20) is obtained as

fm(τ) = − tanh(rd − τ) + rd(1− tanh2(rd − τ)) = 0.

It is easy to verify that the function fm(τ) is a monoton-
ically decreasing function. Thus the deviation variable τ
can be approximated by numerical stepwise method.

When rh > rd + ϵ, Q̂(rh, η) ≈
√
L(rh, η) as ρ(rh) ≈ 1.

The accumulative information performance index in the
performance index (19) is nearly unchanged. The eval-
uated accumulative information in (19) is only changed
when the loiter radius is between the interval (0, rd+ ϵ) in
order to enforce the UAV to loiter with a desired radius.
Fig 2 illustrates the relationship between the Q̂ and rh
with a given η. It can be seen that the value of Q̂ reach
the maximum Qmax at rh = rd.

Next to confront the bounded controls, a generalized non-
quadratic function is defined as

W (ûθ, ξ) = 2λ(ξ)R

∫ ûθ

0

(
tanh−1(s/λ(ξ))

)
ds, (21)

where λ(ξ) is defined as

λ(ξ) =

{
|b2(ξ)|ωmax + vr/rd, if ûθ ≥ 0,
|b2(ξ)|ωmax − vr/rd, if ûθ < 0.

(22)

To guarantee that λ(ξ) > 0, it is assumed that the
maximum angular velocity ωmax satisfies the condition
|b2(ξ)|ωmax − vr/rd > 0 for ∀ξ ∈ Ω.

Given an admissible control policy ûθ(t) for the sys-
tem (16), assume that there exists a continuous function
V ∗(ξ(t)) that satisfies

V ∗(ξ(t)) = min
ûθ∈A(Ω)

∫ ∞

t

[
FQ(rh, η) +W (ûθ(s))

]
ds. (23)

Based on (23), a Hamiltonian function as:

H(ξ, V ∗,ûθ) = 2λ(ξ)R

∫ ûθ

0

(
tanh−1(s/λ(ξ))

)
ds

+ FQ(rh, η) + (V ∗
ξ
)T

[
F (ξ) +G(ξ)ûθ]

T , (24)

where V ∗
ξ

= ∂V ∗/∂ξ ∈ R3, F (ξ) = [vr sin η, b1(ξ) −
vr/rd, vr/(b2(ξ)rd)]

T , G(ξ) = [0, 1,−1/b2(ξ)]
T .

Based on the above analysis, a main result of this paper is
given as follows:

Theorem 1. Consider a UAV system with kinematics (1),
sensor model (5) and target kinematics (3). If the following
condition is satisfied:

r2h
r6σ2

r

+
8r2h
r4

− 1

r2hσ
2
φ

< 0, (25)

and the control law u∗ = (u∗
v, u

∗
θ) is given by{

u∗
v = vtcos(θ − θt) +

√
v2t cos

2(θ − θt) + v2r − v2t
u∗
θ = (λ tanh

(
1/(2λR)G(ξ)TV ∗

ξ

)
+ vr/rd)/b2,

(26)

where V ∗
ξ is the solution of (24), u∗ is the optimal

control law that maximizes the performance index (19)
while the constraint (2) is satisfied, and the UAV will
circumnavigate around the target with a desired loiter
radius rd, that is, lim

t→∞
rh → rd.

Proof. When the condition (25) holds, it can be checked

that Q̂ reaches its maximum only when rh = rd and η =
0, where a stable circumnavigation around the target is
formed. Further, observe the structure of the performance
index (19) and it can be found that J (ξ(0), ûθ) is finite
only when the state ξ can be stabilized by the optimal
control policy u∗

θ. When ξ is stabilized, we have lim
t→∞

er →
0, which implies lim

t→∞
rh → rd.

Then we will prove concisely that the optimal control
law can be obtained through the method proposed in
this paper. The desired velocity u∗

v of the UAV can be
easily obtained according to (11). Then employing the
stationary condition (see Lewis et al. (2012)) on the
equation H(ξ, V ∗, ûθ) = 0, i.e., ∂H/ûθ = 0, the optimal
virtual input û∗

θ can be obtained as

û∗
θ = −λ tanh

(
1/(2λR)G(ξ)TV ∗

ξ

)
. (27)

Finally, the optimal control law u∗
θ can be acquired by

(17). Obviously, |û∗
θ| < λ. Combined with (17) and the

definition of λ in (22), it can be induced that |û∗
θ| < ωmax.

Due to the limitations of the length of the paper, this proof
is not rigorous enough and a complete proof will be given
in our another paper.

Substituting (26) into (24) yields the following Hamilton-
Jacobi-Bellman (HJB) equation:

λ
2
(ξ)R ln

(
1− tanh(GTV ∗

ξ
/(2λ(ξ)R))

)
+ FQ(rh, η) + (V ∗

ξ
)TF (ξ) = 0. (28)

Eq. (28) is a nonlinear differential equation that cannot
generally be solved directly. There is currently no method
for rigorously solving for the value function of this con-
strained optimal control problem. In the following part,
a neural network is employed along with the theory of
successive approximation, to solve for the value function
of (28).

3.2 Neural-network-based policy iteration algorithm for
solving the HJB equation

In order to solve the function V ∗
ξ
in (28), a neural-network-

type structure is used to approximate the value function.
To successively solve (24) and (27), V is approximated by

VM (ξ) =
M∑
j=1

wjσj(ξ) = (wM )TσM (ξ), (29)
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Fig. 3. The flowchart of the algorithm for nearly optimal
saturated neurocontrol.

which is a neural network with the activation functions
σj(ξ) ∈ C1 and σM (ξ) is the vector of activation functions.
wj denotes the weights of the output layer and wM is the
weight vector. Note that when rh = 0 and η = 0, there
exists V (ξ) = 0. To approximate V (ξ) by (29), it should
hold that σj = 0 when rh = 0 and η = 0.

For H(ξ, V, ûθ) = 0, the solution V is replaced with VM

having a residual error

H

VM (ξ) =
M∑
j=1

wjσj(ξ), ûθ

 = eM (ξ).

Obviously, the residual error should be minimized. There-
fore, the parameters wM is tuned in order to minimize the
objective

S =

∫
Ω

|eM (ξ)|2dξ,

The weights, wM , are determined by projecting the resid-
ual error onto deM (ξ)/dwM and setting the result to zero
for ∀ξ ∈ Ω using the inner product, i.e.⟨

deM (ξ)

dwM
, eM (ξ)

⟩
= 0,

where ⟨f, g⟩ =
∫
Ω
fgdξ is a Lebesgue integral. One has

⟨∇σMΨ,∇σMΨ⟩wM+ ⟨FQ +W,∇σMΨ⟩ = 0 ,

where Ψ = F (ξ) +G(ξ)ûθ. Thus, wM is updated as

wM = −⟨∇σMΨ,∇σMΨ⟩−1 ⟨FQ +W, ∇σMΨ⟩ .

Afterwards, an iterative algorithm proposed by Abu-
Khalaf and Lewis (2005) is used to solve (28) and a
flowchart of the computational algorithm is shown in
Fig. 3. More details of the iterative algorithm can refer
to Abu-Khalaf and Lewis (2005).

4. SIMULATION RESULTS

In the simulation, the UAV is controlled to circumnavigate
around a moving target, whose linear velocity is set as 10

m/s, with a desired loiter radius of 50 m. The relative
velocity of the UAV with respect to the target is 20
m/s and the height of the UAV is 80 m. The sensor
measurement standard deviation parameters are σr =
10−3/m and σφ = 1 × 10−4π rad. The maximum angle
speed wmax is set as 0.8 rad/s. The following neural
network is used:

VM

(
ξ
)
=

15∑
i=1

5∑
j=1

w5(i−1)+jαiβj ,

where αi and βj are, respectively, the i-th and j-th
elements of the vectors α and β which are defined as
follows:

α =[e2r, erη, η
2, e4r, e

3
rη, e

2
rη

2, erη
3, η4, e6r,

e5rη
2, e4rη

2, e3rη
3, e2rη

4, e5rη, η
6]T ,

β =[1, θ, θ2, θ3, θ4].

This is a power series neural network with 75 activation
functions containing powers of the state variable of the
system up to the 10th power.

The trajectories of the UAV and the target are illustrated
in Fig. 4. Fig. 6 illustrates the convergence of the loiter
radius rh (red solid line). It can be observed that controlled
by the designed algorithm, the loiter radius rh converges
to the desired radius 50 m. The control input uθ(t) is
limited in [-0.8,0.8] during the circumnavigation, which is
illustrated in Fig 5.

To prove the validity of our algorithm, the designed
method is compared with the vector field (VF) method
proposed in Dong et al. (2019), which is given as:

uθ =

{−k(θ − θd), if |k(θ − θd)| < ωmax,
ωmax, if |k(θ − θd)| > ωmax & θ < θd
−ωmax, if |k(θ − θd)| > ωmax & θ > θd

where θd is determined by the vector field:[
cos θd
sin θd

]
=

−vr
rh (r2h + r2d)

[
xr

(
r2h − r2d

)
+ yr (2rdrh)

yr
(
r2h − r2d

)
− xr (2rdrh)

]
.

Fig. 6 shows the comparison of the distance variation
between two methods during the process of circumnavi-
gation. It can be observed that the loiter radius controlled
by our algorithm converges faster than that of the VF
method. The comparison of the accumulated Fisher in-
formation during the process of approaching the target is
illustrated in Fig. 7. Obviously, the accumulated Fisher
information obtained by our algorithm is higher than that
of the VF method. To illustrate this better, the gained
Fisher information Q̂ in per simulation step of the two
methods is illustrated in Fig 8. It can be observed that
Q̂ gained by our method is higher than the VF method
when the UAV is approaching the target. When the UAV
achieves the circumnavigation, Q̂ gained by two methods
are equal.

5. CONCLUSION

In this paper, we propose an optimal circumnavigation
control law which not only achieves the circumnavigation
of a UAV around a moving target, but also maximizes the
utilization of the sensor information. By comparison with
the work of Dong et al. (2019), the effectiveness of our
algorithm is proved. Our algorithm can help improve the
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Fig. 4. The trajectories of the UAV and the target. Fig. 5. The control input during the circumnavigation.

Fig. 6. The illustration of the relative distances rh
controlled by two methods.

Fig. 7. The illustration of the accumulated Fisher
information controlled by two methods.

Fig. 8. The illustration of Q̂ gained in per simulation step.

estimation accuracy of the target during the process of cir-
cumnavigation and further improve the control accuracy.
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