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Abstract: The Minimum Phase (MP) properties of linear control systems can be reflected
by its zero stability. The stability of zeros affects the system control performance. When a
continuous-time system is discretized to a discrete-time system, the discretization process may
render continuous-time system models have nonminimum phase. This paper analyses the MP
properties of system and deduces a new stable condition of the zeros when continuous-time
system is discretized by Forward Triangle Sample and Hold (FTSH) for sufficiently small
sampling periods. Finally, two numerical examples have verified our results.
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1. INTRODUCTION

A linear continuous-time control system with a rational
function is non-minimum phase(NMP) if it has at least one
zero in the right-half plane. Analogously, a discrete-time
system is NMP if there exists zero outside the unit circle.
The control of NMP systems is more difficult than that of
MP systems. It is essential to check the minimum phase
(MP) properties of system before we attempt to design
control procedures (Hsu and Lu (2008)). Unfortunately the
MP properties of the system can not be always preserved
when a continuous-time model is transformed to a discrete-
time model by a sample and hold device (Åström et al.
(1984)). The MP characteristics of linear system can be
reflected by the corresponding zero stability. The location
of zeros in transfer function has a significant impact on the
behaviour of linear systems, and the MP property plays a
key role in systems analysis and control design of discrete-
time system (Hoagg and Bernstein (2007); Isidori (2013)).
The unstable zeros arising from the sampling process
make it difficult to construct some control strategies, such
as inverse systems, model matching systems, and model
reference adaptive controllers(Ishitobi (1992)). Therefore,
extensive researchers have poured efforts to avoid the
appearance of unstable zeros in the process of sampling,
see Åström et al. (1984); Ishitobi (1992); Weller et al.
(2001); Liang et al. (2003); Yucra et al. (2013); Carrasco
et al. (2017); Ou et al. (2019).

During the discretization process of continuous-time sys-
tem, it is well known that the connection between
continuous-time poles pi, i = 1, 2, · · · , n. are transformed
as : pi ↔ epiT , where T is the sampling period (i.e. the
system stability can be preserved). However, the relation
of zeros are much more complicated, and the simple tran-
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scendental relation cannot be preserved. The zeros of linear
discrete-time systems are classified into two categories:
intrinsic zeros and sampling (or limiting) zeros (Åström
et al. (1984); Yuz and Goodwin (2005)). The location of
sampling zeros mainly depends on the methods of signal
reconstruction, sampling period and relative degree of
system (Schrader and Sain (1989)). Åström et al. (1984)
were the first to study this problem for the case of system
with zero-order hold (ZOH), and they revealed the limiting
zeros are unstable if the relative degree of a continuous-
time transfer function is greater than or equal to two.
Hagiwara et al. (1992, 1993) studied another signal recon-
struction method–first order hold (FOH) which provides
no improvement over the ZOH.

Moreover, fractional-order hold (FROH), as an alternative
signal reconstruction method, has attracted considerable
attentions. Extensive studies have found that FROH can
provide a more general feasible stability condition than the
ZOH, see Passino and Antsaklis (1988); Ishitobi (1996);
Bárcena and Etxebarria (2010); Ishitobi and Zhu (1997).
This is because FROH can provide an adjustable pa-
rameter in the process of obtaining discrete-time model.
However, FROH schemes have some limitations, such as
it requires the continuous-time system has to be low pass
(Passino and Antsaklis (1988); Ishitobi (1996)). Another
side, the initiate research about generalized sample hold
function (GSHF) can be traced to the works of (Cham-
mas and Leondes (1979)). Extensive studies about the
control of linear-invariant systems and the MP proper-
ties of discrete-time systems in the case of GSHF, can
be seen in Kabamba (1987); Ortega and Kreisselmeier
(1988) and Zeng et al. (2018). The non-MP properties of
discretized models can be avoided by selecting appropriate
values of piecewise constant impulse response of GSHF
(Yuz et al. (2004)). However, GSHF leads to the inter-
sample ripples(Ugalde et al. (2012)). Recently, Wang et al.
(2016) investigated a new signal reconstruction method,
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namely forward triangle sample and hold (FTSH). As an
alternative to the ZOH and FROH, FTSH enables the
discrete-time system has MP characteristics by selecting
the proper sampling period and parameters of the FTSH,
while the ZOH fails to do so. The method of reconstruction
input signal of system for GSHF and FTSH is different.
However, Wang et al. (2016) only numerically studied the
properties of the FTSH. The theoretical research about
how FTSH affects the MP properties of linear system is
still under studied.

The purpose of this paper is therefore to consummate the
theoretical framework of the FTSH, and to investigate the
MP properties of discrete-time system with FTSH. In this
paper, we address both issues, as a result, deduce the corre-
sponding exact discrete-time models of linear continuous-
time system. Secondly, we provide the expression of the
sampling zeros and analyze the asymptotic behavior of
them. Furthermore, we derive the stability conditions of
the sampling zeros for sufficiently small T . Finally, two
examples are provided to verify the results of this paper.

Notations: Throughout this paper, N and R+ denote the
set of natural and non-negative real numbers, respectively.
Rn and Rn×n denote, respectively, n−dimensional real
valued vectors and n × n real valued matrices. A zero
or a pole of continuous-time systems G (s) is said to be
stable (respectively unstable) if it lies inside the open left
(right) half-plane. Similarly, a zero or pole of discrete-time
systems G (z) is said to be stable (respectively unstable) if
it lies inside the open unite disc (outside the closed unite
disc).

2. PRELIMINARIES

Consider a single input single output (SISO) n-th order
linear continuous-time system, which is time-invariant,
controllable, observable.

SC :

{
ẋ (t) = Ax (t) + bu (t)
y (t) = cx (t)

, (1)

where A ∈ Rn×n, b ∈ Rn×1 and c ∈ R1×n are n-th order
state matrix and column and row vectors, respectively.
Obviously, the system (1) with an input vector u (t) ∈ R,
an output vector y (t) ∈ R and a state vector x (t) ∈ Rn×1.
On the other hand, the relation between transfer function
G (s) and the state space of the linear system can be
expressed as follows.

G (s) = c(sIn −A)
−1
b. (2)

Under the Assumption of system SC is invertible, the def-
initions of system zeros, invariant zeros and transmission
zeros for continuous-time system are coincide. The zeros
of SC can be computed from the roots of the numerator
polynomial in (2).

Lemma 1. System SC relative degree is v, if and only if

cAl−1b =

{
0; l < v
bm 6= 0; l = v

. (3)

Remark 1. The proof details of Lemma 1 is omitted
(see Yuz and Goodwin (2014)). The parameter bm is the
coefficient of term sm in the numerator polynomial of (2).

We are here interested in the MP properties of systems
with the FTSH signal reconstruction method. In other

word, it is an interesting work to reveal the relations of
the zeros of discrete-time system to those of continuous-
time system in this situation.

The mentioned discrete-time system in this paper contains
hold circuit, the continuous-time system and sampling
device, where the signal reconstruction method forward
triangle sample and hold (FTSH) (Wang et al. (2016))
was considered to yield the system input signal as shown
in Fig. 1 and the corresponding expression is

uF (t) =

{
uZ(t)(kT−t)

fT + uZ (t) , t ∈ [kT, kT + fT ) ,

0, t ∈ [kT + fT, kT + T ) ,
(4)

where k ∈ N , f ∈ (0, 1] is the adjustable parameter of the
switched input, and uZ (t) represents the ZOH values over
interval [kT, kT + T ). Thus, for each sampling interval, the
following notation of uZ (t) is equivalent.

uZ (t) = uZ (kT ) = u (kT ) ; kT ≤ t < kT + T. (5)

Fig. 1. The signal reconstruction (i) ZOH (ii) FTSH

If we use the FTSH as signal reconstruction to generate the
input u (t), then, the corresponding discrete-time system
of original continuous-time system (1) or (2) is given by:

SD :

{
x ((k + 1)T ) = Φx (kT ) + Ψu (kT )

y (kT ) = cx (kT )
, (6)

where

Φ = eAT , Ψ =

∫ fT

0

eA(T−τ)
(

1− τ
fT

)
bdt. (7)

Thus, the corresponding transfer function GF (z) can be
obtained from the above state space form.

GF (z) = c(zI − Φ)
−1

Ψ

=
BF (z)

AF (z)
,

(8)

where AF (z) and BF (z) represent the denominator and
numerator polynomials, respectively, and each of them can
be computed using the following determinant.

AF (z) = det (zI − Φ) , (9)

BF (z) = det

[
zI − Φ −Ψ
c 0

]
. (10)
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Here, the roots of BF represent the zeros (including
intrinsic zeros and limiting zeros) of sampled-data system
GF (z), while the roots of AF denote the poles of sampled-
data system GF (z).

Before we show the properties of limiting zeros of system
(8) with the sampling period tends to zero. A new poly-
nomial will be first introduced here, i.e. the authors are
not find any description about the polynomial defined as
follows.

Definition 1. When the input signals of continuous-time
system are reconstructed by FTSH, a new polynomial is
defined by

BF,v (z, f) = v! · detZF,v, (11)

where f ∈ (0, 1], v ∈ N ≥ 0, p = 1− f and

ZF,v =



1 1
2! · · · 1

(v−1)!
−1+(v+1)f+pv+1

(v+1)!f

1− z 1 · · · 1
(v−2)!

−1+vf+pv

v!f

...
. . .

. . .
...

...

0 · · · 1− z 1 −1+3f+p3

3!f

0 · · · 0 1− z −1+2f+p2

2!f


.

Remark 2. The new polynomial will play an important role
in the asymptotic properties of limiting zeros. This poly-
nomial is very similar to other famous polynomials, such as
the standard and modified Euler-Fröbenius polynomials–
see Weller et al. (2001); Foata (2010); Carrasco et al.
(2017). Moreover, more details of the matrix in Definition
1 can refer to the proof process of Theorem 2.

3. MAIN RESULTS

In this section, firstly, the exact discrete-time model
and the asymptotic properties of limiting zeros of the
continuous-time system with FTSH for sufficiently small
sampling periods are researched. Secondly, according to
the results obtained, the stability condition of the limiting
zeros is derived. The corresponding results are described
in the following theorems.

Theorem 2. Let a FTSH as signal reconstruction to gen-
erate the input value to a linear continuous-time system.
Then, the discrete-time model is obtained as follows.

Case (a) Consider a r-th order integrator with continuous-
time transfer function G (s) = 1/sr. Then the exact
discrete-time system satisfies the following discrete time
state space equation:

xk+1 = Adxk +BFTSHuk, (12)

where

xk = [ x1,k x2,k · · · xr,k ]
T
,

Ad =


1 T · · · T r−1

(r−1)!

0 1 · · · T r−2

(r−2)!

...
. . .

...
0 0 · · · 1

 ,

BFTSH =


(−1+(r+1)f+pr+1)T r+1

(r+1)!fT

...
(−1+3f+p3)T 3

3!fT
(−1+2f+p2)T 2

2!fT

 ,
with the output yk = x1,k. The transfer function GF (z)
of the exact discrete-time system is given by

GF (z) =
T r ·BF,r(z, f)

r! · (z − 1)
r , (13)

where BF,r (z, f) is defined in (11).

Case (b) When the system is a strictly proper n-th order
general linear continuous-time system with transfer func-
tion G (s). Then, the corresponding discrete-time model
has the following limit expression

K · (z − 1)
m
BF,r(z, f)

(n−m)! · (z − 1)
n (14)

as T → 0, where r = n−m is the relative degree.

Proof. Case (a) of Theorem 2 will be proved in Appendix
A.

Remark 3. The Proof process case (b) of Theorem 2 is
omitted. If one has interest in the proof process, combining
the details in (Åström et al. (1984); Carrasco et al. (2017);
Ou et al. (2019)) can obtain the results in Theorem 2.

Remark 4. As the results shown in Theorem 2, the nu-
merator part of the limiting expression contains the new
polynomial (11). This implies the new polynomial can
reflect the properties of the limiting zeros of the discrete-
time system to some extent.

Remark 5. Notice that for rational linear system (2) with
FTSH as the input signal reconstruction method, the poles
of discrete-time system SD converge to 1 as epiT with
sampling period T converge to zero, m zeros close to 1
as the same transcendental relation and other remaining
zeros converge to the roots of BF,r(z, f) = 0, where the
sampling zeros are influenced by the relative degree of
original continuous-time system and the parameter f of
FTSH.

From Theorem 2, the following result is immediately
obtain. Thereafter, because of the relative degree of many
linear or nonlinear mechanical systems in practical field
is two (Ishitobi (2000); Zeng et al. (2014)), we mainly
analysis the stability condition, sufficiently small sampling
period, of limiting zeros for continuous-time system with
relative degree two.

Theorem 3. Suppose that the original continuous-time
system G (s) has no zeros on the imaginary axis. Its corre-
sponding discrete-time system is obtained by using FTSH
as the signal reconstruction. Therefore, when the relative
degree r = 2, if the original system G (s) is MP and the
adjustable variable parameter f satisfies 0 < f ≤ 1, then
the discrete-time system is MP.

Proof. From Theorem 2, when a FTSH was used to
generate the input signal of a general linear system,
the corresponding discrete-time model will be obtained
and its limiting zeros will go to the roots of polynomial
BF,r (z, f) = 0 as the sampling period T → 0. When
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the original continuous-time system relative degree r = 2,
from the limit expression of the sampled-data system,
let numerator polynomial BF,2 (z, f) = 0 can obtain the
limiting zeros. Through simple computing the equation
can obtain the stability fulfill the condition that variable
parameter of FTSH is 0 < f ≤ 1.

4. NUMERICAL SIMULATION

In this section, two numerical examples will be given to
verify the results of this paper. Firstly, a relative degree
two continuous-time system is considered and its’ transfer
function is shown as follows

G (s) =
s+ 7

(s+ 1) (s+ 2) (s+ 3)
. (15)

Obviously, system is stable and minimum phase. From the
results of Åström et al. (1984), the corresponding discrete-
time system is NMP. However, based on the results of
Theorem 2 and 3, one can select a proper duty cycle
value of FTSH to stabilize the limiting zeros. As shown in
the system transfer function (15), the original continuous-
time system has m = 1 zero and n = 3 poles. Thus, the
corresponding discrete-time system has one intrinsic zero
and one sampling zero, where the intrinsic zero converge
to 1 as e−7T and the sampling zero goes to the root of
BF,2 (z, f) = 0 with the sampling period goes to zero.
For example, if we select the parameter f = 0.5, the
sampling zero will equal to −0.2 , which is coincide with
the simulation result in Fig. 2.
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Fig. 2. The location of limiting zeros for system (15) with
respect to sampling period T and f = 0.5 of FTSH.

Through the numerical analyzes about discrete-time zeros
of system (15), the asymptotic behavior of the intrinsic
zero and limiting zero are stable, and they approach the
unite circle form inside of the circle as T converges to zero.
The MP properties of the system are preserved with the
FTSH as the signal reconstruction method.

Furthermore, we consider the inverted-pendulum system
in Fig. 3 as the second example. Assume that the mass is
concentrated at the top of the rod, the center of gravity
is the center of the pendulum ball. Note that angle θ
indicates the rotation of the pendulum rod about point
p, and x is the location of the cart. Then, the transfer

function between input force u and rotation angle θ
obtained as follows (more details–see Ogata (2009))

G (s) =
Θ (s)

−U (s)
=

1

Mls2 − (M +m) g
. (16)

We select the parameter value of system (16) follows the
value in Table 1 and obtain the transfer function as follow

G (s) =
1

3 (s− 4) (s+ 4)
. (17)

Table 1. Parameter value of the inverted-
pendulum

Variable Value Units SI

M 3 kg
m 1.8 kg
l 1 m
g 10 N/kg

 

 

 

Fig. 3. Inverted-Pendulum system

Note that the relative degree of the inverted-pendulum
system is two. Here we need to analyze the properties of
limiting zero for inverted-pendulum system with FTSH
as the discrete signal reconstruction method. From the
results in Theorem 2, the limiting zero should be stable
and it should be converge to a fixed value for each f as
the sampling period tends to zero. Based on the result in
(13), the limiting zero is equal −0.3953488 if select the
FTSH parameter f = 0.85. Another side, the asymptotic
behavior of the limiting zeros of discrete-time inverted-
pendulum system with respect to the sampling period in
the case of FTSH with f = 0.85 is showed in Fig. 4.

Remark 6. When the inverted-pendulum system is dis-
cretized by the FTSH, the discrete-time system is MP.
However, the inverted-pendulum system (16) always has

an unstable pole s =
(√

M +m
/√

Ml
)√

g, and Theo-

rem 2 does not state the original continuous-time system
whether has unstable part. The result in this paper reveals
the relationship of limiting zeros and the relative degree
of stable system. We shall investigate the properties of
limiting zeros for the system with unstable part in the
near future.
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Fig. 4. The location of limiting zeros for inverted-
pendulum system with respect to sampling period T
and f = 0.85 of FTSH.

5. CONCLUSION

This paper analyzes the MP properties of the system with
the FTSH. We have investigated the asymptotic behavior
of the limiting zeros for a discrete-time system with
FTSH and given the stability condition of the zeros for
the discrete-time system with sufficiently small sampling
periods. Results find that MP properties of the system
can be preserved when the continuous-time system is
discretized by the FTSH and fulfill the condition of this
paper. In simulation, our result is verified in a inverted-
pendulum system. Future work will focus on the problem
stated in Remark 6.
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Appendix A. PROOF OF CASE (A) IN THEOREM 2

Consider the mentioned system G (s) = 1/sr with output
variable y (t) = x1 (t). Then, the time domain state space
of this original system is

ẋ(t) = Ax(t) +Bu(t) (A.1)

where

x(t) = [ x1(t) x2(t) · · · xr(t) ]
T

A =


0 1 0 · · · 0
0 0 1 · · · 0

... · · ·
...

0 0 0 · · · 1
0 0 0 · · · 0


r×r

B = [ 0 0 · · · 0 1 ]
1×r

T

The state variables of (A.1) at time kT +T is given in the
following:

x(kT + fT ) = eAfTxk +

∫ fT

0

eA(fT−τ)BuF (kT + τ)dτ

x(kT + T ) = eA(T−fT )x(kT + fT )

= eATxk +

∫ fT

0

eA(T−τ)BuF (kT + τ)dτ

(A.2)

Based on the definition of FTSH, which is used to generate
the input value of the continuous-time system, we can
get the discrete time state space matrices of the exact
sampled-data model.

Ad =


1 T · · · T r−1

(r−1)!

0 1 · · · T r−2

(r−2)!

...
. . .

...
0 0 · · · 1



BFTSH =


(−1+(r+1)f+pr+1)T r+1

(r+1)!fT

...
(−1+3f+p3)T 3

3!fT
(−1+2f+p2)T 2

2!fT


Therefore, the discrete-time system with FTSH can be
rewritten using the forward shift operator (q-operator) as

[ (q − 1)x1,k 0 · · · 0 0 ]
T

=DF,r[ x2,k x3,k · · · xr,k uk ]
T

(A.3)

where

DF,r =



T T 2

2 · · ·
T r−1

(r−1)!

−(q − 1) T · · · T r−2

(r−2)!

...
...

. . .
... BFTSH

0 0
. . . T

0 0 · · · −(q − 1)


Then, using the Cramers rule to solve (A.3) and obtaining
the result of uk as

uk =
detN

detDF,r

where

N =


T T 2

2 · · ·
T r−1

(r−1)! (q − 1)x1,k

−(q − 1) T · · · T r−2

(r−2)! 0
...

...
. . .

...
...

0 0 · · · T 0
0 0 · · · −(q − 1) 0

 (A.4)

Now, let us compute the determinant of N along with the
last column, we finally obtain

detN = (−1)1+r(q − 1)x1,k · (−(q − 1))r−1

= (q − 1)rx1,k
(A.5)

Another side, based on the results in Definition 1,
detDF,r = T r detZF,r, further

detDF,r =
T r

r!
· r! detZF,r =

T r

r!
·BF,r(q, f)

From the relation between input and output of system.
Note the truth that GF,r(z) = yk/uk, thus, the result (13)
can be obtained.

As a result, the proof is complete.

Q.E.D
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