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Abstract: Control of physiological systems, like tumor growth dynamics, can contribute to
modern medicine by designing optimized therapies or automating treatments. Typical challenges
in physiological control are the positivity of the input and the interpatient variability of model
parameters. We use positive dynamics extension to ensure the positivity of the input, and
design a robust controller for a nominal model acquired after exact linearization and stabilizing
feedback. During the controller design, we minimize the effect of the model perturbation in the
worst-case sense and minimize the energy of the performance criteria. The results show enhanced
performance compared to our similar robust control approach where only the performance was
minimized in the worst-case sense with similar characteristics in the input signals.
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1. INTRODUCTION

Control of physiological systems is becoming an inherent
part of modern medicine. Clinically proven applications
of physiological control are control of BIS in anesthesia
(Alamir et al. (2018); Queinnec et al. (2018); Ionescu
(2018)) and control of blood glucose level in artificial
pancreas (Gondhalekar et al. (2018); Shi et al. (2018);
Colmegna et al. (2018); Khan et al. (2018)). Control of
tumor growth is an intensively researched area of physio-
logical control as well, aiming to automatize therapies and
optimize treatment protocols (Ren et al. (2017); Cacace
et al. (2018); Klamka et al. (2017)).

In most physiological control problems the control signal
is the injection of a drug, which can not be negative,
which yields that the control input is constrained to be
nonnegative. We handle this input constraint by using
a dynamical extension of the model that ensures the
positivity of the input first proposed in Drexler et al.
(2017d) and used for tumor growth control in Drexler
et al. (2017c, 2018); Kovács and Eigner (2018). We use
a second-order model of tumor growth created for be-
vacizumab treatment in Drexler et al. (2017a) discussed
in Section 2 for the control problem and extend it with
positive input dynamics to get a third-order, nonlinear
model in Subsection 3.1. This model is linearized using
exact linearization (Isidori (1995)) in Subsection 3.2 and
stabilized using state-feedback to get a linearized system
with finite H∞ norm. The model used here for controller
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design is a simplified model capturing the core dynamics
of tumor growth which can be utilized to design model-
based controllers that require many symbolic calculations.
The more realistic, but more complex model validated
with experimental data can be found in Drexler et al.
(2017b) describing the effect bevacizumab and in Drexler
et al. (2019) describing the effect of Pegylated Liposomal
Doxorubicin.

Interpatient variability is also a critical problem in physi-
ological control problems, which can be modeled as para-
metric uncertainties in most of the cases. We designed an
H∞-norm based controller for the linearized model with
positive dynamics extension in Drexler et al. (2018), but
we have only minimized the H∞-norm of the closed-loop
system with performance outputs. In order to reach better
performance and handle uncertainty, we minimize the ef-
fect of model perturbation using H∞-norm minimization
and minimize the energy of the performance outputs using
H2-norm minimization in Section 3.3. Thus, interpatient
variability is considered as an H∞ minimization problem
used e.g. in Dal Col et al. (2018); Colmegna et al. (2014);
Kovács et al. (2014); Femat et al. (2009). Since exact
linearization is based on exact cancellation of nonlinear
terms, application of the exact linearization on the model
will not result in a linear model in the presence of paramet-
ric perturbations, but the linearized model can be used as a
nominal model for robust control design, and parametric
uncertainties can be considered during the design of the
robust controller as done in Subsection 3.3.

The designed controller is tested in silico with parametric
perturbations of ±20% and compared to the results of the
H∞ controller from Drexler et al. (2018) which also utilizes
positive control in Section 4. The simulations show that
the proposed H2/H∞ controller gives significantly better
performance with similar control inputs.
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2. MINIMAL TUMOR GROWTH MODEL

We use a minimal model of tumor growth proposed in
Drexler et al. (2017a) for bevacizumab therapy. The model
captures tumor proliferation, inhibiting effect of the drug
and linear pharmacokinetics of the drug. The dynamics is
described by the equations

ẋ1 = ax1 − bx1x2 (1)

ẋ2 =−cx2 + u (2)

y = x1, (3)

where x1 denotes the time function of tumor volume in
mm3, x2 denotes the time function of drug level in mg/kg,
y is the measured output in mm3 and u is the rate of drug
injection measured in mg/(kg·day). The model parameters
are the tumor growth rate a in 1/day, the inhibition rate
b in kg/(mg · day) and the clearance c of the inhibitor in
1/day.

The value of the clearance parameter of intravenous be-
vacizumab injection is set to c = ln 2/3.9 1/day from
Wu et al. (2012) and considered to be known in the
simulations. The parameters identified based on mice ex-
periments in Drexler et al. (2017a) are a = 0.27 1/day and
b = 0.0074 kg/(mg · day) and considered to be uncertain
in the simulations.

3. ROBUST POSITIVE CONTROL

3.1 Positive input dynamics

In order to ensure the positivity of the control input, we
extend the system with the dynamics

u̇ = −uv (4)

with u(0) > 0, which has the solution

u(t) = u(0) exp

 t∫
0

v(τ)dτ

 (5)

which is always positive if u(0) > 0 (Drexler et al. (2017c,d,
2018)). We design the controller for the extended system

ẋ1 = ax1 − bx1x2 (6)

ẋ2 = cx2 + u (7)

u̇=−uv (8)

with the fictive input v and implement the extra dynam-
ics (4) inside the controller to calculate the real input
of the system. The states of the extended system are
x = (x1, x2, u)>, and the state-space description of the
extended system is

ẋ = f(x) + g(x)v, (9)

with the drift vector field f and control vector field g
defined as

f =

(
ax1 − bx1x2

−cx2 + u
0

)
g =

(
0
0
−u

)
, (10)

while the output scalar field of the extended system is
h = x1.

3.2 Exact linearization and stabilization of the extended
system

Let Lfh denote the Lie derivative of the vector field f
along the scalar field h, expressed as

Lfh = h′f, (11)

and define the repeated application of the Lie derivative
as

Li
fh =

(
Li−1
f h

)′
f (12)

with L0
fh := h. Also, let

LgL
i
fh =

(
Li
fh
)′
g. (13)

The relative degree of the output of the system (Isidori
(1995)) in a point x is the integer r such that

LgL
i
fh(x) = 0, i = 0, 1, . . . , r − 2 (14)

LgL
r−1
f h(x) 6= 0. (15)

The system is said to have maximal relative degree in a
point if r = n, where n is the order of the system. If the
system has maximal relative degree, then the system can
be linearized in the point x using the state feedback

v =
w − Ln

fh(x)

LgL
n−1
f h(x)

(16)

and results in the linear system

ż1 = z2, ż2 = z3, . . . , żn = w (17)

where the new states can be acquired from the original
states using the coordinate transformation

z1

z2

...
zn

 = φ(x)


h(x)
Lfh(x)
L2
fh(x)

...
Ln−1
f h(x)

 . (18)

This system is a series of integrators, which can be sta-
bilized using the state feedback w = −Kz + bnũ, which
results in the linear system

ż =


0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0
−kn −kn−1 . . . −k2 −k1


︸ ︷︷ ︸

A

z +


0
...
0
bn


︸ ︷︷ ︸

B

ũ, (19)

with K = (kn, kn−1, . . . , k1). The characteristic polyno-
mial of the system matrix A is

sn + k1s
n−1 + k2s

n−2 + . . .+ kn (20)

and the static gain of the linearized system is bn/kn, thus
the transfer function of the linearized system is

Gn(s) =
bn

sn + k1sn−1 + k2sn−2 + . . .+ kn−1s+ kn
. (21)

For the extended minimal model described in Subsection
3.1, the Lie derivatives used for the coordinate transfor-
mation and feedback linearization are
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Lfh= x1(a− bx2) (22)

Lgh= 0 (23)

L2
fh= x1(a− bx2)2 − bx1(u− cx2) (24)

LgLfh= 0 (25)

LgL
2
fh= bux1 (26)

L3
fh= x1(a− bx2)(a2 − 2abx2 + b2x2

2 + cbx2 − ub)
+bx1(u− cx2)(c− 2a+ 2bx2). (27)

Since Lgh = 0 and LgLfh = 0, but LgL
2
fh(x) 6= 0 for

x1 6= 0, the extended system output has maximal relative
degree everywhere except x1 = 0 mm3, and the extended
system can be linearized. The coordinate transformation
is

z = φ(x) =

 h(x)
Lfh(x)
L2
fh(x)

 , (28)

while the feedback law with stabilization is

v =
−Kz + b3ũ− L3

fh

LgL2
fh

. (29)

The poles of the series of integrators acquired after feed-
back linearization are transformed to −0.5 rad/day with
multiplicity of three using the feedback gain

K = ( 0.125 0.75 1.5 ) (30)

and the gain b3 = k3. The resulting system is a linear
system with H∞ norm being 1 and transfer function

Gn(s) =
0.125

s3 + 1.5s2 + 0.75s+ 0.125
. (31)

3.3 H2/H∞-norm based controller design

We design a two degrees of freedom (2-DOF) controller
with the control law

ũ(s) = Kr(s)r(s)−Ky(s)y(s), (32)

where r is the Laplace transform of the reference signal for
the closed-loop system and y is the Laplace transform of
the measured output of the system. The Laplace transform
of the output of the controller is ũ, which is the input for
the linearized system (21).

The system interconnection structure contains the con-
troller with transfer function (32), the extended plant and
a model uncertainty block. The extended plant consists of
the nominal plant Gn and the sensitivity functions related
to model uncertainty, sensor noise and performance. The
inputs of the extended plant are the control input ũ, the
sensor noise n, the reference signal r, and the disturbance
input d that is used to represent model uncertainties
through the model uncertainty block. The model uncer-
tainty is represented as an output multiplicative uncer-
tainty, the frequency content of the uncertainty is defined
by the transfer function W∆. The output e of the extended
plant is the input of the model uncertainty block.

The extended plant has two performance outputs: zp and
zu, the tracking error and the control input performance,
respectively. The frequency content of the tracking error
performance is given by the transfer function Wp, while
the frequency content of the control input performance is
given by Wu. The tracking error is given as the difference

of the outputs of the ideal closed-loop transfer function Tid
and the nominal plant G.

The closed-loop system is considered to be the system
where the extended plant and the controller are treated as
one system M resulting after lower fractional transforma-
tion. The inputs of the closed-loop system are the signals
d, n and r, while the outputs are the signals e, zp and zu.
In the design phase, the H∞-norm of the transfer function
of the closed-loop system from the inputs to the output
e is minimized to increase the robustness of the closed-
loop system against model uncertainties in the worst-case
sense, while the H2-norm of the transfer function of the
closed-loop system from the inputs to the outputs ze and
zu is minimized to reduce the energy of the performance
signals.

The measured outputs of the extended plant are the
reference signal r and the sum of the nominal plant output
and the sensor noise n that is filtered with the transfer
function Wn in order to set the frequency content of the
sensor noise. The measured outputs are the inputs of the
controller K, while the output of the controller is the
control input ũ of the extended plant.

Denote the input of the closed-loop system M as w =
(e, r, n)> and partition the outputs of M as

z∞ = e, z2 =

(
zp
zu

)
, (33)

then the closed-loop system can be written as(
z∞
z2

)
=

(
M1

M2

)
w. (34)

During H2/H∞ synthesis, we are searching for the con-
troller K that minimizes the performance function

w1‖M1‖2∞ + w2‖M2‖22, (35)

while ensuring that

‖M1‖∞ < γ∞,max (36)

‖M2‖2 < γ2,max. (37)

The transfer functions used at the H2/H∞ controller
design are

Tid =
1

10s+ 1
(38)

Wp =
1

(s+ 1)
2 (39)

Wu = 0.5 (40)

Wn =
s+ 1

0.1s+ 1
(41)

W∆ =
0.05 (s+ 1)

2

(0.1s+ 1)
2 . (42)

The nominal plant Gn is acquired after feedback lineariza-
tion and internal loop-shaping as described in Subsection
3.2. The ideal transfer function Tid of the closed-loop
system, specified in (38), is chosen to have a gain of 1
and time constant of 10 days. Based on the experiments,
the time constant of tumor growth is 1/0.27 = 3.7 days,
which is a time constant of an unstable dynamics. This
dynamics is stabilized by the controller, and the speed of
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the closed-loop dynamics was chosen to be slower than the
untreated tumor growth in order to decrease the stress on
the biological system caused by the therapy.

The performance weighting function Wp, specified in (39),
is chosen such that the path tracking performance is
10 times faster than the reference model given by Tid.
The model uncertainty weighting function W∆, given in
(42), was chosen to describe that model uncertainties
are present at high frequencies where good tracking is
not required. The weighting functions Wp and W∆ are
chosen such that they do not result in contradiction in the
design phase; the good tracking performance is required in
low frequencies in which the model is known, and model
uncertainties are present in high frequencies where good
tracking is not demanded.

The weighting function Wn, given in (41), is chosen such
that the effect of sensor noise is considered on frequencies
higher than the frequencies where good performance is
required. The Wu performance weight function of the
control input, given in (40), is specified as a constant to
limit the energy of the control input on every frequency.

The design parameters during the synthesis were

γ∞,max = 1, γ2,max = 1, w1 = 1, w2 = 1. (43)

The maximal γ values were chosen to be 1 so that the
interpretation of the weighting functions is the same as
in the case of H∞-norm based controller design (Zhou
et al. (1996)). The weighting parameters w1 and w2 were
chosen to have the same value, so the H2 and H∞ norm
specifications are considered with the same weight in the
cost function (35) that is minimized during the controller
synthesis.

The controller design resulted in the γ values

γ∞ = 0.0532, γ2 = 0.1632, (44)

thus the required specifications are met by the closed-loop
system. Moreover, the resulted γ∞ value shows that the
closed-loop system can tolerate larger model uncertainties
than those modeled by the output multiplicative uncer-
tainty with weighting function given in (42).

4. RESULTS OF SIMULATION

The positive robust controller was tested in-silico using
simulations that run on a 300 days interval, with the
tumor growth rate (a) and inhibition rate (b) parameters
being varied by ±20%. The reference signal is given as an
exponential function

x1,ref (t) = x1(0) exp (−t/100) (45)

with x1(0) = 10000 mm3 being the initial tumor volume
used in the simulations. The initial drug level was x2(0) =
0 mg/kg, while the initial injection rate was u(0) = 0.1
mg/kg/day in the case of H∞ controller and u(0) = 8
mg/kg/day in the case of the H2/H∞ controller.

The tumor volumes, inhibitor levels and the injection
rates resulting after in-silico simulations for the H∞-norm
based controller described in Drexler et al. (2018) and
the H2/H∞ controller described here are shown in Figs.
1, 2 and 3, respectively. The in-silico simulations show
that the treatments based on the robust controllers are
composed of two phases. First, there is a transient phase

that lasts for about 50 days, and then the control input
reaches its steady-state and the tumor volume decreases
exponentially. The steady-states are similar for the two
controllers, but the initial transient phase is different,
especially if we consider the tumor volume evolution.

The most significant difference in the performance of the
two controllers is that there was a large increase in the
tumor volume in the initial transient in the case of the
H∞ controller, for the worst-case model perturbation (i.e.,
when the tumor growth rate increased and the effect of the
drug decreased, the corresponding results indicated by the
red curves in Fig. 1) the tumor volume increased by more
than 200 %, however, in the case of the H2/H∞ controller
this increase is less than 20 %. Moreover, while the H∞
controller could only decrease the tumor volume after an
initial transient where the tumor volume increased, in
the case of the H2/H∞ controller the tumor volume only
increased initially for the worst-case scenario. Figure 1
thus shows that the H2/H∞ controller gives much better
performance, since the tumor volumes are significantly
smaller, however, Figs 2 and 3 show that the required
control inputs are similar, i.e., there was no need to apply
larger doses to reach better performance. This result is
fundamental for therapy optimization in practice and is
the main motivation of the application of control theory
to physiological control problems.

The difference between the controller design phases is that
in the case of the H∞ controller, only the performance
was optimized using H∞-norm, but without the model
uncertainty, while in the case of the H2/H∞ controller,
the performance was minimized in the H2-norm and also
model uncertainties were considered and the effect of
uncertainty was minimized in the H∞-norm. The main
difference in the simulation scenario is the initial value
of the injection rate: for the H∞ controller, the initial
injection rate was close to zero, thus the integrator in (4)
needed time to increase the drug level in the patient that
could partially explain that the tumor volume increased in
the initial period.

5. CONCLUSIONS AND FUTURE WORKS

Most physiological control problems make the designer
face two problems: positivity of the input and interpatient
variability. Positivity of the input is guaranteed with the
positive dynamics extension discussed in Subsection 3.1,
which results in an extended system and introduces a
nonlinear dynamics in the plant model used for controller
design, while in the realization process the same nonlinear
dynamics has to be implemented in the controller.

The interpatient variability, treated as model uncertainty
is handled using methods from robust control, developed
for linear systems. In order to use these linear control
techniques on the nonlinear system, exact linearization is
carried out followed by internal stabilization. Although
exact linearization relies on exact cancellation of the
nonlinear terms, in silico results show that the resulting
control architecture can cope with model uncertainties and
can generate positive control inputs.

In silico results showed that the appropriate initial value
for the input can greatly affect the performance of the
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Fig. 1. The tumor volume during the 300 days therapy in the case of the H∞ controller Drexler et al. (2018) (left) and
the H2/H∞ controller (right)

Fig. 2. The drug level during the 300 days therapy in the case of the H∞ controller Drexler et al. (2018) (left) and the
H2/H∞ controller (right)

Fig. 3. The injection rate during the 300 days therapy in the case of the H∞ controller Drexler et al. (2018) (left) and
the H2/H∞ controller (right)
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controller; by using larger initial injection dose, and chang-
ing the design scheme for the robust controller, the tumor
volume evolution became more desirable which results in a
great increase in the quality of life of a patient in practice.
Moreover, this did not require larger doses or injections,
the absolute values are similar, only the dynamical char-
acteristics changed. This proves that the therapies can be
optimized without the need for a significant increase in the
applied doses.
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Harmati, I., and Sápi, Z. (2014). Model-based angio-
genic inhibition of tumor growth using modern robust
control method. Computer Methods and Programs in
Biomedicine, 114, e98–e110.

Queinnec, I., Tarbouriech, S., and Mazerolles, M. (2018).
Reference tracking controller design for anesthesia. In
Proceedings of the 9th IFAC Symposium on Robust
Control Design ROCOND 2018, volume 51, 158 – 163.
doi:https://doi.org/10.1016/j.ifacol.2018.11.098.

Ren, H.P., Yang, Y., Baptista, M.S., and Grebogi, C.
(2017). Tumour chemotherapy strategy based on im-
pulse control theory. Philosophical Transactions Math-
ematical Physical & Engineering Sciences, 375(2088).
doi:10.1098/rsta.2016.0221.

Shi, D., Dassau, E., and Doyle III, F.J. (2018). Multi-
variate learning framework for long-term adaptation in
the artificial pancreas. Bioengineering & Translational
Medicine, 0(0). doi:10.1002/btm2.10119.

Wu, F., Tamhane, M., and Morris, M. (2012). Pharmacoki-
netics, lymph node uptake, and mechanistic pk model
of near-infrared dye-labeled bevacizumab after iv and
sc administration in mice. The AAPS Journal, 14(2).
doi:10.1208/s12248-012-9342-9.

Zhou, K., Doyle, J.C., and Glover, K. (1996). Robust
and Optimal Control. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16465


