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Abstract: Mathematical models of tumor growth in response to chemotherapy are crucial for
therapy optimization and outcome. We create a relatively simple tumor growth model describing
the antitumor effect of pegylated liposomal doxorubicin (PLD) validated with real experimental
data obtained in a genetically engineered mouse model of breast cancer. We use formal reaction
kinetics to describe the pathophysiological phenomena using differential equations, and carry
out parametric identification based on experiments using a mixed-effect model with stochastic
approximation expectation maximization. The model gives a sufficient fit to describe tumor
growth and pharmacokinetic data, and a satisfactory fit for the complex case, i.e., tumor
response to chemotherapy. The results showed that identification of certain subsystems is easy
using experimental data even if it is not specifically designed for identification. However, the
identification of the complex pathophysiological phenomena may require experiments specially
designed for identification purposes.

Keywords: Model formulation, experiment design; Identification and validation;
Pharmacokinetics and drug delivery

1. INTRODUCTION

Mathematical modeling is becoming an increasingly valu-
able tool for studying therapeutic and chemotherapeutic
drug effect in cancer. Several models have been defined in
the literature with different complexity, see e.g. the reviews
of Altrock et al. (2015) and Jarrett et al. (2018). However,
validation is usually restricted to relatively simple model
structures, and complex models are not validated with
clinical data.

A model of HIV-related non-Hodgkin lyphosomas is given
by Aogo and Nyabadza (2018), where the differential equa-
tions have eight states and the authors use 42 parameters.
They carry out sensitivity analysis and analyse the steady-
states of the model. Chakravarty and Dalal (2019) analyse
an intracellular drug dynamics model with seven states.
They carry out the qualitative analysis of the system and
prove the boundedness of the solutions. Paez Chavez et al.
(2019) create a model for the effect of chemotherapy on
HIV/AIDS-cancer dynamics. They use a model with six
states and 22 parameters. They show the boundedness

? This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 679681). The
present work has also been supported by the Hungarian National
Research, Development and Innovation Office (2018- 2.1.11-T ÉT-
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of the solutions, and consider therapy optimization with
a fixed amount of drug. They use an impulsive system.
Fabian Morales-Delgado et al. (2019) use fractional-order
differential equations to describe tumor dynamics. These
models are rather complex, and there is no validation using
clinical data in the literature.

Murphy et al. (2016) use clinical data to evaluate different
tumor dynamics models. They use relatively simple models
to model the tumor dynamics; they show that the expo-
nential models and logistic models have the best fits. They
use similar measurements we use for the untreated tumor
in Subsection 2.2, where we show that the exponential-
like model can describe the experimental data. Kühleitner
et al. (2019) use untreated tumor growth data to identify a
Bertalanffy-Pütter type tumor model, however, this model
can not take the effect of drug into consideration.

We propose an impulsive system with four states and nine
parameters with mostly linear terms in the differential
equations and carry out parametric identification based on
experiments in Section 3. The experiments are based on
the response of a murine breast cancer model to treatment
by pegylated liposomal doxorubicin (PLD or Doxil) as
published in Füredi et al. (2017). The experimental results
encompass a large time span (between 80 and 250 days)
and show rich dynamics of the treated tumor.
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Initially, we use the model from Drexler et al. (2017) and
Drexler et al. (2019b) with three states and reformulate
it to get an impulsive system described in Subsection 2.1.
We use measurements carried out on nine mice with breast
cancer without treatment to identify the parameters for
the tumor growth dynamics in Subsection 2.2. We use
pharmacokinetics measurements from three mice without
tumor in Subsection 3.1 to identify the pharmacokinetics
parameters of the drug. Based on the results, we replace
the mixed-order pharmacokinetic model used in Drexler
et al. (2017) with a two-compartment pharmacokinetic
model, thus increase the number of states by one. Finally,
the tumor growth model containing pharmacokinetics and
effect of the drug is identified in Subsection 3.2. We use
only the experimental results of seven out of 10 mice,
where the drug resistance does not seem to be evident
based on the measurements. The results show that a
relatively simple model can effectively capture the rich
dynamics of the treated tumor in a large time span.

2. TUMOR GROWTH MODEL

2.1 The original model and the impulsive model

The differential equations describing the tumor growth
used in (Drexler et al. (2019a)) are

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 − wx2 + b
x1x3

ED50 + x3
(2)

ẋ3 =−c x3

KB + x3
− bκ

x1x3

ED50 + x3
+ u, (3)

where x1 is the time function of the living tumor volume
[mm3], x2 is the time function of the dead tumor volume
[mm3] and x3 is the time function of the drug level
[mg/kg], while u is the time function of the drug input
[mg/kg/day].The output of the system is the total tumor
volume, i.e., y = x1 + x2, which is the measured variable
in the experiments.

The terms in the differential equations can be explained
with formal reaction kinetics analogy (Tóth et al. (2018)),
by supposing that X1, X2 and X3 are fictive species
corresponding to the living tumor volume, dead tumor
volume and drug level. The fictive reaction steps

X1
a−−→ 2 X1 (4)

X1
n−−→ X2 (5)

X1 + X3
b−−→ X2 (6)

X3
c−−→ O, (7)

describe the tumor proliferation (4), tumor necrosis with-
out drug (5), effect of the drug (6) and clearance of the
drug (7). The first two equations are considered with mass-
action kinetics resulting in linear terms in the differential
equations, while the last two equations are considered with
Michaelis-Menten kinetics resulting in Hill functions in the
differential equations having extra parameters ED50 and
KB as Michaelis-Menten constants of reactions (6) and (7),
respectively. Hill functions are used widely in biological
models to describe saturated effects, see e.g. the work of
Ionescu (2018).

The system dynamics is defined by the differential equa-
tions (1)-(3), supposing that the input u is a continuous
function of time. However, in practice, the input is an
injection, thus the dynamical model should be described
by differential inclusions, i.e., generalization of differential
equations with discontinuous right-hand side (Perestyuk
et al. (2011)). Thus, we remove u from the differential
equations, and consider the input as discontinuity in the
drug level x3 in the following way.

Let the time of injections be denoted by ti, with i =
1, 2, . . ., and the dose of injection at time instant ti be ui.
Then the system dynamics is described by the differential
equations (1)-(3) with u = 0 on the intervals [0, t1], [t1, t2],
. . .,[ti, ti+1], . . . and in the time instants ti, i = 1, 2, . . . we
have

x3(t+i ) = x3(t−i ) + ui. (8)

2.2 Tumor growth dynamics

The tumor growth dynamics without treatment is de-
scribed by the formal reaction kinetics equations (4)-

(5), considered with mass-action kinetics (Érdi and Tóth
(1989)), resulting in

ẋ1 = (a− n)x1 (9)

ẋ2 = nx1 − wx2. (10)

We use measurements with untreated tumor to identify the
parameters a, n and w. The measurements were carried
out on nine mice (SAL1-SAL9). We suppose that initially
x2(0) = 0 mm3, and estimate x1(0). The identification is
carried out by converting the system of equations into a
mixed-effect model and then applying stochastic approx-
imation Expectation-Maximization (SAEM) algorithm as
in (Drexler et al. (2019a)).

The results of the identification are shown in Fig. 1. For
each mouse, the magenta circles show the measurements,
while the blue circles show the estimated values based
on the differential equations (9)-(10) and the estimated
parameters and initial values. The measured and estimated
values are interpolated linearly only for visualization pur-
poses. The results show that a good fit can be achieved
with the differential equations.

The estimated parameters for the population mean are
shown in Table 1 along with the between-subject variation,
standard errors and confidence intervals. The confidence
interval of the parameter w shows that the available
measurements are not sufficient to estimate this parameter
accurately. This deficiency will be corrected later in the
identification phase based on the treated cases.

3. EFFECT OF CHEMOTHERAPY

3.1 Pharmacokinetics of PLD

The pharmacokinetics of the drug is defined by (7) in the
original model in Drexler et al. (2019a), which results in
the Hill function

ẋ3 = −c x3

KB + x3
. (11)

We carried out parametric identification based on mea-
surements with three mice (MouseA, MouseB and MouseC),
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Fig. 1. Untreated tumor growth in nine mice

Parameter Est. SE %RSE Back-transformed(95%CI) BSV(CV%)

Log a -0.437 0.294 67.2 0.646 (0.363, 1.15) 11.7
Log n -0.982 0.514 52.3 0.374 (0.137, 1.03) 15.7
Log w -17.5 6.85·104 3.91·105 2.42·10�8 (0, ∞) 108.
Log x10 3.74 0.395 10.6 41.9 (19.3, 91) 99.6
Additive error 158 158

Table 1. Numerical results for the untreated model. (SE: standard error, RSE: relative standard
error, BSV: between-subject variation.)

where healthy mice got only one injection (8 mg/kg), and
the serum levels [ng/ml] were measured at certain time
instants [minutes]. The measurements are shown by green
dots in Fig. 2.

The initial value x3(0) was considered as an identified
parameter. The identification was carried out using the
same methodology as previously. The results are shown by
the blue curves in Fig. 2. The blue curves are not shown
after about 4000 minutes since the values were close to zero
and plotting them would hinder the visualization. The fit
is not satisfactory, so we modified the pharmacokinetics
model to a two-compartment model.

Let X3 denote the fictive species corresponding to the drug
level in the central compartment, and X4 be the fictive
species corresponding to the drug level in the peripheral
compartment. The fictive chemical equations describing
the pharmacokinetics are

X3

k1−−→←−−
k2

X4 (12)

X3
c−−→ O. (13)

These equations are considered with mass-action kinetics
to get

ẋ3 =−(c + k1)x3 + k2x4 (14)

ẋ4 = k1x3 − k2x4. (15)

Here x3 and x4 are serum levels, and they have the
dimension [ng/ml]. During the parametric identification,
x3(0) is an identified parameter, while we suppose that
x4(0) = 0. The results after the identification are shown
by the magenta curves in Fig. 2, which shows that this
model has significantly better fit, thus we use the two-
compartment model for the final version of the model used
in the next subsection.
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Fig. 2. Serum levels of PLD in three different mice

The identified parameters for the mean population are
shown in Table 2, along with the standard errors,
confidence intervals and between-subject variation. The
between-subject variations show that the parameters c and
k1 are very stable, i.e., almost the same for all the mice.

3.2 Treated case with PLD

The model used to describe the tumor growth and the
effect of PLD is the combination of the equations (4)-(6)
and (12)-(13), which results in the differential equations

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(16)

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2 (17)

ẋ3 =− (c + k1)x3 + k2x4 − bk
x1x3

ED50 + x3
(18)

ẋ4 = k1x3 − k2x4 (19)

describing the dynamics in the intervals [0, t1], [t1, t2], . . .,
[ti, ti+1],. . . for i = 1, 2, . . .. The states correspond to the
living tumor volume [mm3], necrotic tumor volume [mm3],
drug level in the central compartment [mg/kg] and drug
level in the peripheral compartment [mg/kg], respectively.
The injections ui at time instants ti are considered as
given in (8), thus the drug is injected into the central
compartment. The output of the model, which is the
measured tumor volume in the experiment, is the total
tumor volume, i.e., y = x1 + x2.

The parametric identification was carried out using mea-
surements where the mice recieved 8 mg/kg dose of PLD at
certain time instants according to the protocol described in
Füredi et al. (2017). The experiment was carried out with
10 mice (PLD1–PLD10); we used only those results (seven
mice) where we supposed that the mice did not acquire
resistance against the drug (Fig. 3). The identification was
carried out using the same methodology, the initial value
x1(0) was estimated as a parameter, while the other states
were supposed to be zero initially. For the initial estimation
of the parameters a, n, w we have used the values from
Table 1, while for the initial estimation of the parameters
c, k1, k2 we used the values from Table 2. Note that the unit
of the parameters in Table 2 are given in [1/min], while the
unit of the parameters in the current model is [1/day], thus
the parameters from Table 2 had to be multiplied by 1440
to convert from [1/min] to [1/day]. The first identification

results showed that the parameter bk is close to zero, so
for having better convergence, we supposed during the
identification that bk = 0.

The result of the identification is shown in Fig. 3. The
simulated values based on the model and the identified
parameters are the blue circles, while the measured values
are the magenta circles. The values are interpolated lin-
early for visualization purposes. The black arrows indicate
the time of injections. The results show that the model
is able to follow the trends. Note that the measurements
are carried out by calipers, measuring only the length and
width of the tumor, and the volume is approximated with
a formula, which can result in large measurement errors.
This implies that based on caliper measurements, it is
hard to decide if the measured results for PLD5 oscillate
around the estimated values due to the measurement error,
or due to the dynamics of the original system. This can
be clarified using more accurate measurements (e.g., using
small animal MRI) in the future.

The identified parameter values for the mean population
are shown in Table 3. The parameter with the largest
between-subject variation is the median effective dose
(ED50), which is the parameter responsible for the order of
magnitude of the dose during therapy optimization Drexler
and Kovács (2019). If the therapy optimization is done
offline, i.e., the feedback is not available during therapy,
and the protocol has to be generated using virtual patients,
then, provided the large between-subject variability, the
virtual patient with largest ED50 should be chosen for
therapy generation.

4. DISCUSSION AND CONCLUSIONS

We proposed a tumor growth model incorporating the
effect and pharmacokinetics of PLD. The model has four
states and nine parameters, and most of the terms in the
differential equations are linear. The model is formulated
using formal reaction kinetics analogy, which helps the in-
terpretation of the terms and parameters of the equations.
The results of the identification provided good fits for the
untreated case and the pure pharmacokinetics measure-
ments, however, for the treated case, the fits show diverse
performance. The fits are good for some mice, however,
for some mice, the performance of the identified model
needs improvement. The performance is limited due to
the fact that we can only measure the sum of the first
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Parameter Est. SE %RSE Back-transformed (95% CI) BSV (CV%)

Log c -7.12 0.161 2.26 0.000809 (0.00059, 0.00111) 0.262
Log k1 -4.13 0.295 7.13 0.0161 (0.00902, 0.0286) 0.759
Log k2 -3.63 0.61 16.8 0.0265 (0.00802, 0.0876) 109.
Log x30 10.6 0.109 1.03 4.02·104 (3.24·104, 4.97·104) 16.4
Additive error 3.13·103 3.13·103

Table 2. Numerical results for the well-fitting two-comparment pharmacokinetic model. (SE:
standard error, RSE: relative standard error, BSV: between-subject variation.)

Parameter Est. SE %RSE Back-transformed (95 %CI) BSV (CV%)

Log a -2.08 0.207 9.94 0.125 (0.0834, 0.187) 47.6
Log n -8.07 4.81 59.5 0.000312 (2.53·10�8, 3.85) 178.
Log b -0.801 0.296 37 0.449 (0.251, 0.802) 59.9
Log ED50 -7.48 3.18 42.5 0.000562 (1.11·10�6, 0.285) 2480.
Log w -3.29 0.42 12.7 0.0371 (0.0163, 0.0845) 143.
Log c -0.211 0.216 103 0.81 (0.53, 1.24) 36.2
Log k1 1.91 1.31 68.6 6.78 (0.518, 88.8) 82.0
Log k2 4.2 0.971 23.1 66.7 (9.95, 447) 113.
Log x10 3.6 0.426 11.8 36.7 (15.9, 84.6) 125.
Additive error 109 109

Table 3. Numerical results for the treated model. (SE: standard error, RSE: relative standard
error, BSV: between-subject variation.)
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Fig. 3. Treated tumor growth using PLD in seven mice

two states. The performance can be increased by having
measurements from more states of the system, which is
subject to further research.

The identification of such model is not a straightforward
task. The high number of parameters (relative to the

available observations) makes the results sensitive to the
choice of starting values. (I.e., the algorithm often con-
verges to a local optimum.) To counter this, we employed
several different countermeasures. First, we increased both
the burn-in and the number of EM steps in the SAEM
algorithm. Much more importantly, we employed a hier-
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archical strategy: we run submodels with fewer number of
parameters and less equations (e.g., purely pharmacoki-
netic model and the untreated tumor growth), extracted
the final estimated values and used them as starting values
in the more complex model for the respective parameters.
We also re-started SAEM after the fitting was done to
make sure that no further convergence happens. Overall,
this strategy resulted in a much better fit than the naive
estimation.

The model can be developed further by adding additional
physiological phenomena. The experimental results show
that after the first injection, the tumor is almost totally
eliminated (see cases 2,4, 5, 6 and 9 in Fig. 3), and in these
cases the tumor remains in a rested state for a certain
time. In this state, tumor proliferation has different speed
than in the normal phase, which is not considered in the
model. This results in bad fit for the intervals after the
first treatment where the measured volume is zero. This
is a limitation of the current model and can be improved
by changing the tumor proliferation rate when the tumor
volumes are small.

When the tumor grows back after the first successful
treatment, its physiological parameters (proliferation rate,
sensitivity to the drug, etc) may be different then in the
initial phase. In the current form of the model, the param-
eters are supposed to be constant, thus this phenomenon
is not taken into consideration. A possible direction for
improvement is to incorporate the effect of treatment on
the model parameters, which could be an alternative to
incorporate the acquired drug resistane into the model.
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