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Abstract: Process optimization is an important topic in process industry, most process industry optimization 

works are based on mechanism models or performance test methods. However, it is very difficult to carry 

out optimization in actual operation because of the difficulty in obtaining the mechanism model, the 

difficulty in on-line measurement of objective function and the high test cost. In order to solve the problem, 

an online optimization method based on system identification is proposed. By replacing the unmeasurable 

variable with the measurable variable, the process model is identified on-line, and the gain of identified 

model is used as the optimization gradient to find the optimal variable value on-line. The method is verified 

using both simulation and real plant data. 
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1. INTRODUCTION 

Process industry generally refers to the processing of raw 

materials such as petrochemicals, chemicals, and the energy 

industry. It is characterized by the continuous processing of 

raw materials for production, generally accompanied by 

chemical, physical, and phase changes. Process industry is 

dominant in the national economy, and its development status 

directly affects the country's economic foundation. 

Process operation optimization has attracted many researchers 

in academia and industry to carry out research, and many 

academic and application results have been produced, which 

can be summarized into two types: one is the process 

optimization method based on mechanism model, the other is 

the process optimization method based on performance test. 

The key point of optimization based on mechanism model lies 

in the modelling and solution problem of the mechanism 

model(Biegler, Grossmann, 2004).  

Due to the complex nonlinear, time-varying, and coupling 

characteristics of the process industry, an important research 

direction of optimization based on mechanism is to obtain 

optimization propositions: in most researches, the 

optimization model is obtained through the material balance 

equation, energy conservation equation, working medium 

balance equation and so on; the constraints of the variables are 

given by simplifying the actual constraints; and a certain 

performance index(Jin, et al, 2015; Cong, et al, 2017) (such as 

benefit, minimum consumption) is optimized in combination 

with relevant methods of process characteristic evaluation 

(such as laws of thermodynamics). Modelling by process 

mechanism is costly (Wang, 2017), and in practical 

applications, the model needs to be greatly simplified. Because 

the real processes are mostly dynamic, the deviations between 

the model and the actual system will result in poor 

optimization results. 

Another research direction of optimization based on 

mechanism model is how to solve the optimization proposition. 

In the past few decades, the solution of some typical 

optimization problems has been a research hotspot (Biegler, 

Grossmann, 1985; Padberg, 2013): such as linear 

programming (LP) and nonlinear programming (NLP) 

problems, and mixed integer linear programming (MILP) and 

mixed integer nonlinear programming (MINLP) problems. 

The solution difficulty of optimization propositions varies 

greatly according to the complexity of the problem. For a 

complex process industrial system, the computing time often 

increases exponentially with the problem size. Similar 

problem often restricts the application of optimization based 

on mechanism models in practice. 

Another important method of process optimization is 

optimization based on performance test. Compared with the 

optimization based on the mechanism model, the optimization 

based on the performance test is more practical(Jiao, Guo, 

2007) and avoids the difficulty in modelling and solving of the 

mechanism model. Most industrial systems are optimized by 

performance test before they are put into operation.  

Although the optimization based on performance test method 

is more practical, performance test is time consuming because 

of the multiple operating conditions, the complex scenarios of 

the actual system and the fact that many variables related to 

the optimization objective cannot be measured online. In 

addition, due to the large interference of the test to the regular 

production, the test usually needs to be operated off-line, and 

regular production cannot be carried out, which makes the test 

costly. Taking the combustion optimization test of industrial 

boiler as an example: it is usually necessary to monitor dozens 

of variables at the same time to calculate the boiler efficiency, 

key variables such as carbon content of fly ash and 

composition of coal cannot even be measured directly, which 

makes the test time consuming and costly. Therefore, the 

performance test method is usually carried out only after the 
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initial or retrofit of the system, on-line optimization cannot be 

realized. 

To sum up, the main problems of the existing process 

optimization methods are that the optimization cost is high, the 

methods are complex, and the optimization cannot be carried 

out online.  

Aiming at the above problems, a process optimization method 

based on system identification is proposed, which can 

guarantee the online application in the system operation and 

effectively reduce the optimization cost.  

2. OPTIMIZATION USING SYSTEM IDENTIFICATION 

METHOD 

The process optimization can be considered as a mathematical 

optimization problem. In a mathematical optimization 

problem, an objective (loss) function is maximized (minimized) 

by adjusting the related optimizing variables (Forst, Hoffmann, 

2010). The objective function for the process optimization is 

normally the efficiency or some other benefit indexes, which 

should be maximized; equivalently, the loss function is the 

total energy loss or some other punishment indexes, which 

should be minimized.  

𝑀𝑖𝑛 Φ(𝑥) 

           𝑠. 𝑡.  𝑔(𝑥) ≤ 0     (1) 

𝑐(𝑥) = 0 

In order to measure the objective function, very dedicated test 

needs to be conducted with strict test conditions and very long 

test time, for example, the thermal performance test for power 

plant always last for several weeks. It is difficult to use this 

method during normal operation, because it is not possible to 

calculate the objective function accurately as some related 

variables cannot be measured on-line.  

One may ask if it is possible to perform process optimization 

without using objective functions that cannot be measured 

online and without using time consuming test. 

Take a step back now, the ultimate goal of process 

optimization is to maximize the efficiency, if the unmeasurable 

variable can be replaced by some on-line measurable variables, 

the optimization will be available online. For example, if the 

goal is to optimize boiler efficiency in a power plant, although 

boiler efficiency cannot be measured online, but when the 

turbine is in closed loop operation, the absolute internal 

efficiency of the turbine is stable, then generated electrical 

power for a given amount of coal flow is directly related to 

boiler efficiency, therefore, one can use the real power output 

of the unit as the objective function to perform online 

optimization. 

2.1 The optimization procedure 

As the objective function can be measure on line, an 

optimization procedure based on multivariable system 

identification is developed.  

Denote 𝑦(𝑡) as the objective function at time 𝑡 , 𝑢(𝑡) is the 

input vector of independent variables that affect the objective 

function 𝑦(𝑡). The input vector 𝑢(𝑡) contains variables can be 

determined according to the field process experience. 

The relationship between input vector 𝑢(𝑡)  and the output 

𝑦(𝑡)  can be described by a set of nonlinear difference 

equations: 

𝑦(𝑡 + 1) = 𝑓(𝑦(𝑡), 𝑢(𝑡)      (2) 

Where function 𝑓 is unknown and assumed differentiable in its 

arguments. Denote 𝑢𝑖(𝑡) as an optimization variable in vector 

𝑢(𝑡). Then, optimization using the well-known hill-climbing 

is as follows.  

2.2 Hill-climbing optimization 

(1) If gradient 𝜕𝑦 𝜕𝑢𝑖 > 0⁄ , then increase 𝑢𝑖(𝑡) by a certain 

amount; 

(2) If gradient 𝜕𝑦 𝜕𝑢𝑖 < 0⁄ , then decrease 𝑢𝑖(𝑡) by a certain 

amount; 

(3) If gradient 𝜕𝑦 𝜕𝑢𝑖 = 0⁄ , then the objective function 𝑦(𝑡) is 

at its (local) maximal, keep 𝑢𝑖(𝑡) unchanged. 

At a stationary point of 𝑦∗ , the gradients of the unknown 

function 𝑓 to all the input variables, including the optimization 

variables, are the steady state gains of the linear model at y*. 

These gains can be obtained by identifying a linear dynamic 

model with vector 𝑢(𝑡) as the inputs and vector y(t) as the 

output.  

Applying the hill-climbing optimization to the process and 

doing it for all optimization variables, one obtains the 

following procedure. 

Step 0. Define the optimization model. 

The model output is the objective function, the model inputs 

are the operation variables and the optimization variables. 

Step 1. Model identification.  

Collect normal operation data at different working conditions, 

and perform model identification (Zhu, 2001) for the 

optimization model at different working conditions. If some of 

the input variables are not sufficiently exciting, add test signals 

on them. Compared with the traditional performance test 

method, the proposed method does not require strict test 

conditions, such as maintaining a certain working condition for 

a certain time, which enables the optimization to be carried out 

online. 

Step 2. Adjusting optimization variables by hill-climbing.  

Increase the optimization variable if its gain is positive; 

decrease it when negative. The adjustment size can be 

determined from process knowledge and operation experience.  

Step 3. Optimization completed 
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If the gain of the optimization variable is not zero, go to Step 

1; if the gain is zero, stop adjusting the optimization variable. 

Fig.1. shows a flow diagram of the optimization procedure. 

 

Fig.1. Flow diagram of identification-based optimization 

Comments:  

The optimization procedure is multi-variable meaning that it 

can be used to adjust several optimization variables 

simultaneously.  

The advantage of the optimization approach is its low cost. The 

traditional process optimization is based on the performance 

test lasts several weeks or even months; it disturbs normal 

operation and costs much manpower. Optimization based on 

mechanism model is costly and less accurate. The new 

optimization approach only needs several days of operation 

data per iteration and its cost is only a fraction of that of the 

other method. It can be used when necessary. 

However, the identification-based optimization is not as 

rigorous as the performance test. Therefore, one need to use 

the information provided from field test in identification-based 

approach, for example, in determining the feasible ranges of 

the optimization variables. 

There is no need to perform process optimization daily. It is 

only necessary after long time of operation, or when there is 

raw material type change or equipment maintenance. Although 

the parameters of the raw material may change randomly, such 

as the calorific value of coal, as the parameters do not change 

widely, the disturbance can be regarded as stationary random 

disturbance, it does not have much effect on the proposed 

method. However, if the parameters of the raw material change 

a lot, such as coal type changes, then the proposed 

optimization method should be performed again. 

What needs to be emphasized is that when the operation 

conditions or raw material parameters change a lot, the change 

can be found by system identification method which can be 

regarded as a system identification based diagnostic method, 

for example, add a little excitation signal to the optimization 

variable, if the gain deviation is found to be significant, then 

the optimization should be performed. The diagnostic method 

is not the key point of this article, but it is feasible.  

In fact, the identification-based optimization can be used for 

all process units in all industries where the objective function 

can be measured online or can be calculated from online 

measured signals. 

3. CASE STUDY 

3.1 Case description 

Coal-fired power generation is an important part of power 

production, in which the quality of boiler operation is directly 

related to the unit economy. 

The heat loss is directly related to air volume, the qualitative 

analysis is shown in Fig.2, where: q2 is flue gas heat loss, q3 is 

non-full burning loss, q4 is solid incomplete combustion heat 

loss, they are the main components of boiler heat loss. 

Generally speaking, the coal rate of boiler operation is based 

on the power demand of the unit; the air volume required for 

fuel combustion is determined by multiplying the amount of 

fuel by the pre-designed air-fuel ratio (AFR). Whether the 

AFR is reasonable or not should be judged by the oxygen 

content in the flue gas. 

 

Fig. 2. Boiler combustion characteristic curve 

In order to maintain the efficient operation of the boiler, the 

coal-fired units need to determine an optimal air volume, some 

literatures also call it optimal oxygen content, optimal AFR, 

because adjusting oxygen or AFR is the main way to adjust air 

volume. Usually, engineers use a mechanism-based model 

(Zhang, 2015) or an on-line test to determine the optimal air 

volume. However, it is very difficult to obtain the mechanism 

model of boiler (Williams, 2018), which includes complicated 

mass transfer and heat transfer process. On-line test 

optimization is difficult to be used in practical operation 

because of its high cost and interference to normal operation 

of boiler (China National Standardization Management 

Committee, 2015). 

Air volume control logic is as shown in Fig.3. Generally 

speaking, the coal feeding rate is changed according to the 

boiler power output demand, during system operation, air 

volume setting value is determined by coal feed rate and AFR. 

However, when the working condition changes (which 
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happens frequently), the excess air in the furnace cannot be 

kept stable and the economic combustion cannot be 

maintained. In order to keep economic combustion at any time, 

it is necessary to check the oxygen content in the boiler 

frequently, and adjust (correct) the air volume according to the 

oxygen content, therefore, the function of oxygen control loop 

is to correct the AFR value. 

Therefore, to obtain the optimal air volume is to obtain the 

optimal setpoint of oxygen content and AFR. This case will be 

optimized by the proposed method 

×
Air volume 

control system
Unit

AFR

Controller

Oxygen

Oxygen

Setpoint

×

-

Coal  

feed rate

 

Fig.3. Boiler air volume Control Logic Diagram 

. 

 

Fig.4 Cross validation of power output, air volume, coal feed rate at different AFR. (a) AFR=7.6; (b) AFR=8.1; (c) AFR=8.4. 

3.2 Simulation result 

Apros Process Simulation Software is used in carrying out the 

simulations for the study. Predictive error method (ARMAX 

model) is used to ensure the consistency of identified model in 

close loop. 

The research object is the boiler in a 1000MW unit, and the 

main task is to optimize the air volume to maximize the boiler 

efficiency. Online Air volume optimization is performed with 

the following procedure. 

Step 0. Define the optimization model. 

Although boiler efficiency cannot be measured online, when 

the turbine is in closed loop operation, the absolute internal 

efficiency of the turbine is stable, then power output for a 

given amount of coal flow is directly related to boiler 

efficiency. So, power output is used as the objective function 

instead of boiler efficiency. Coal feed rate and air volume are 

used as operation variables. 

Step 1. Model identification.  

The pre-set AFR value is 7.6, by adding excitation signals to 

AFR setpoint, air volume changes, and identification 

experiments are carried out to identify the air volume-power 

output model, and the coal feed rate-power output model. The 

gain of air volume-power output model is used as gradient.  

Step 2. Adjusting optimization variables by hill-climbing.  

When the value of AFR is set to 7.6, the gain of air volume-

power output model is 0.5, this means that each unit increase 

in air volume is associated with 0.5MW increase in power 

output. Obviously, increasing air volume can increase profits, 

so AFR is set to 7.7 (add 0.1 to the original value) then to 

repeat Step 1. 

Step 3. Optimization completed 

When ARF gradually increased to 8.1, the gain of air volume-

power output model is about 0, and it is very difficult for the 

test signal to generate excitation to the system. If AFR 

continues to increase to 8.2, the gain of air volume-power 

output model is -0.1, this means that each unit increase in air 

volume is associated with -0.1MW decrease in power output.  

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13410



 

 

     

 

The objective function reaches the inflection point when AFR 

value is 8.1 as the gain is 0. And the optimization is ended. The 

optimal set value of AFR is 8.1, and the corresponding oxygen 

content value (2.75%) is the optimal oxygen content value. 

The proposed method only requires eight hours of operating 

data (AFR changes from 7.6 to 8.1), it is very time saving and 

less costly compared to traditional performance test method.  

 

Fig.5. Air volume-Power output model step response 

 

Fig.6. Comparison of experimental results 

To better illustrate the changing trend of optimization function, 

the experimental range of AFR was expanded to 7.6-8.4. The 

step responses of the identified models obtained by 

identification experiments under different AFR values are 

shown in Fig.5. The variation trend of coal consumption with 

gain is shown in Fig.6. 

When AFR varies from 7.6 to 8.4, the model gain changes 

from positive to negative. When the model gain is 0, the coal 

consumption of the unit is the lowest (270g/kw·h), and the 

corresponding oxygen content and AFR are the optimal values, 

and the corresponding boiler efficiency is the highest. It can be 

seen that when the system identification method is used for 

optimization, when the model gain reaches 0, it should be the 

optimal point, and it is also the goal of our optimization work. 

The coal rate decreased by 8g/kw·h (from 278g/kw·h to 

270g/kw·h) by optimization, suppose that the unit has an 

effective operating time of 5,000 hours per year, then the 

annual power generation is 5 billion kw·h, and 40,000 tons of 

coal will be saved. 

3.3 Field test results 

The field test is done in the #1 Power Generation Unit at a 

power plant in Foshan, Guangdong Province, China.  

Test signals with small amplitudes have been added at the 

setpoints of the PID control loops, which have not caused any 

problem for normal operation of the unit. 

Here oxygen content and the coal feeder separator velocity will 

be optimized in order to improve unit efficiency. To this end a 

model is identified.  

As discussed in Section 2, the model output is the objective 

function which is also the power output. In total 5 inputs are 

used in the model: (1) boiler main control which is a 

combination of coal feed, air flow and water flow; (2) turbine 

valve opening; (3) water flow for middle temperature; (4) 

oxygen content; (5) burner angle. 

The optimization model has been identified using three days 

of normal operation data and two set of models are obtained: 

high power output model and low power output model; see 

Fig.9 and Fig.10 for the result. The model gains from oxygen 

content to real power output are negative at both high-power 

output and low-power output. This implies that oxygen content 

is set too high for the whole power output range. Based on the 

model and the experience of the authors, it is recommended an 

oxygen content reduction of 0.3~0.4%.  

Based on the modelling result, the oxygen content setpoint has 

been reduced by 0.3% for the whole power output range and 

tested. Testing result has shown that oxygen content reduction 

resulted in 10% NOx reduction and 0.3% saving of coal. No 

more reduction is permitted from the operation staff and, 

therefore, second iteration of optimization was not carried out. 

The coal feeder separator velocity influences the fineness of 

the coal powder which can be optimized. Currently this 

velocity is set constant. Some small test signal is used to 

identify models that includes coal feeder separator velocity as 

the 6th input of the above model. The model from the separator 

velocity to the real power output is very poor according to 

model validation, which is due to too small amplitude of the 

test signal. No conclusion can be draw from the poor model 

and no adjustment of the separator velocity was made. 

Other variables, such as primary air pressure and the 

distribution of damper opening, can also be optimized, but are 

not included due to limited project scope. 

4. CONCLUSIONS 

This paper realizes on-line optimization of process industry by 

system identification method. This method does not need to 

use mechanism model, does not need to calculate unmeasured 

objective function, and has little interference to the normal 

operation. The experimental results show that the model 

obtained by identification method can accurately determine 
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the optimal direction of operation variables and finally obtain 

the optimal point. The same method can also be used for more 

complex multi-variable and multi-objective optimization 

problems, which will be validated by selecting CCHP unit 

operation optimization as an example in the following work.

 

Fig.9. High power output work condition optimization model. Step responses (upper row) and frequency responses and upper 

error bounds (lower row) of the model where input 4 is oxygen content. The oxygen content model has a gain of -18.13 

 

Fig.10. High power output work condition optimization model. Step responses (upper row) and frequency responses and upper 

error bounds (lower row) of the model where input 4 is oxygen content. The oxygen content model has a gain of -10.00 
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