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Abstract: The aim of this paper is to study regional optimal control problem for a bilinear
plate equation evolving in a spatial domain Ω ⊂ R2. The control is bounded and acts on the
velocity term. The question is to obtain a feedback control that drives such a system from an
initial state to a desired one in finite time, only on a subregion ω of Ω, and minimises a quadratic
functional cost. Our purpose is to prove that an optimal control exists, and characterised as
solution of an optimality system. The approach is successfully illustrated by simulations.
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1. INTRODUCTION

The controllability of distributed systems was studied in
many works that led to various results. In Lions (1988), au-
thor proved exact controllability of vibrating plate model
with boundary control. In Zuazua (1988), author consid-
ered exact controllability of vibrating plate equation for
arbitrarily small time. In Ball et al. (1982), authors studied
approximate controllability of rod and wave equations.
The multiplicative controllability of parabolic and hyper-
bolic semilinear equations was investigated by Khapalov
(2010).
The problem of optimal control for a class of distributed
bilinear systems have been developed in many works : in
Lenhart (1995), author proved the existence and gave char-
acterization of an optimal control of a convective-diffusive
fluid problem. In Addou and Benbrik (2002), the authors
studied unbounded optimal control for a bilinear system
governed by a fourth-order parabolic operator. Also, in
Bradley and Lenhart (1994), the authors considered the
optimal control of Kirchhoff plate equation by controls
acting on the position of state.
The concept of regional controllability for a distributed
linear system evolving on a spacial domain Ω concerns the
study of the classical notion of controllability only on a
subregion ω of Ω El Jai et al. (1995). The main reasons
for considering this notion is that it is close to real appli-
cations. For example, in the problem of a tunnel furnace
when one has to maintain a prescribed temperature only
in a subregion of the furnace. Also, it becomes possible to
control a system on a subregion of its evolution domain
acting out of the subregion. Besides there exist systems
which are not controllable on the whole domain Ω but con-
trollable on some subregion. Moreover, controlling a sys-
tem on a subregion is cheaper than controlling it globally
El Jai et al. (1995). Regional optimal control of parabolic
distributed bilinear systems with unbounded and bounded
controls involving the minimization of the final state error

and the energy, was considered by Zerrik and Ould Sidi
(2011); Ztot et al. (2011), they established the existence
and gave characterization of an optimal control.
In Ait Aadi and Zerrik (2019), authors studied regional
optimal control of a bilinear plate equation by controls
without constraints and acts on the position of such sys-
tem.
In this work, we examine regional optimal control of a
bilinear plate equation by controls with constraints and
acts on the velocity term of such equation. Then, we prove
the existence and we give characterization of an optimal
control. Moreover, we develop a numerical approach that
leads to an algorithm that we illustrate by simulations.
More precisely, we consider the following bilinear plate
equation

ytt(x, t) + ∆2y(x, t) = u(t)yt(x, t), Q = Ω× (0, T )

y(x, 0) = y0(x), yt(x, 0) = y1(x), Ω

y(x, t) =
∂y

∂ν
(x, t) = 0, Σ = ∂Ω× (0, T )

(1)
where Ω be an open bounded of R2, with a smooth
boundary ∂Ω, Ay = ∆2y is the unbounded bilaplacian
operator with domain D(A) = H4(Ω) ∩ H2

0 (Ω), ν is the
unit outer normal to ∂Ω, u ∈ Uρ := {u ∈ L∞(0, T ) : −ρ ≤
u ≤ ρ} is a control function where ρ is a positive constant.
Let H := H2

0 (Ω) × L2(Ω) be the state space and let
us consider a non-empty subset ω ⊂ Ω, with a positive
Lebesgue measure and a desired state yd ∈ L2(ω). We
define χω : L2(Ω) −→ L2(ω) the restriction operator to ω,
and χ∗ω is the adjoint operator of χω given by

(χ∗ωy)(x) =

{
y(x) if x ∈ ω
0 else x ∈ Ω\ω.

Our problem is expressed by

min
u∈Uρ

J(u), (2)

with
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J(u) =
1

2

∫
ω

∫ T

0

(
χωy(x, t)− yd(x)

)2
dtdx

+
β

2

∫ T

0

u2(t)dt,

(3)

where β is a positive constant.
This paper is organized as follows : in section 2, we prove
the existence of an optimal control solution of problem (2).
In section 3, we give characterization of an optimal control
solution of (2). In section 4, we give a numerical approach
that leads to an algorithm we illustrate by numerical
simulations.

2. EXISTENCE OF AN OPTIMAL CONTROL

This section is devoted to the existence of an optimal
control solution of problem (2).
First, we present an apriori estimate needed for the exis-
tence of an optimal control.

Lemma 1. Given ỹ0 = (y0, y1) ∈ H and u ∈ Uρ, then

(1) the system (1) has a unique weak solution ỹ =
(y, yt) ∈ C([0, T ],H)

(2) the weak solution satisfies the estimate

‖ỹ‖C([0,T ], H) ≤M
(
1 + ρT

) 1
2 eρCT , (4)

where M = ‖ỹ0‖H and C is a positive constant.

Proof. (1) The state equation (1) can be written as
d

dt
ỹ(t) = Aỹ(t) + Bỹ(t)

ỹ(0) = (y0, y1),
(5)

where A : H4(Ω)×H2
0 (Ω) −→ H

Aỹ(t) =

(
0 I
−∆2 0

)
ỹ(t)

with domain D(A) = (H4(Ω) ∩H2
0 (Ω)) ×H2

0 (Ω) and the
operator B is given by

Bỹ(t) =

(
0

u(t)yt(t)

)
.

The domainD(A) is dense inH and the operator A is skew-
adjoint, then A generates a strongly continuous unitary
group onH, and B is bounded operator onH. Then system
(5) has a unique weak solution ỹ(t) ∈ C([0, T ],H) (see Pazy
(1983)).
(2) Since D(A) is dense inH, there exist sequences (yn0 , y

n
1 )

in D(A) and un ∈ Uρ ∩ C2(0, T ) such that

(yn0 , y
n
1 )−→ (y0, y1) strongly in H,
un −→ u strongly in L2(0, T ).

Denote by ỹn(t) the weak solution of system (1) corre-
sponding to the initial data (yn0 , y

n
1 ) with control un.

Multiplying the equation (1) by yt(t) and integrating over
Ω× (0, τ), we obtient

0 =

∫ τ

0

∫
Ω

(
yntt y

n
t + ∆2yn ynt − un(ynt )2

)
dxdt

=

∫ τ

0

∫
Ω

(1

2

d

dt

[(
ynt
)2

+ (∆yn)2
]
− un(ynt )2

)
dxdt

=

∫ τ

0

∫
Ω

1

2

d

dt

(
ynt
)2
dxdt+

1

2

∫ τ

0

d

dt
q(yn, yn)dt

−
∫ τ

0

∫
Ω

un(ynt )2dxdt,

where q(v, w) =

∫
Ω

∆v∆wdx, for all v, w ∈ H2
0 (Ω).

Thus, we have

1

2

∫
Ω

(
ynt
)2

(x, τ)dx+ q(yn, yn)(τ)

=
1

2
‖yn1 ‖2L2(Ω) +

1

2
q(yn0 , y

n
0 ) +

∫ τ

0

∫
Ω

un(ynt )2dxdt

≤ 1

2
‖ỹ(0)n‖2H + ρ

∫ τ

0

‖ỹ(t)n‖2Hdt.

Gronwall’s inequality gives

sup
0≤t≤T

( ∫
Ω

(
ynt
)2

(x, τ)dx+ q(yn, yn)(τ)
)

≤ ‖ỹ(0)n‖2H
(
1 + 2ρT

)
eρCT .

(6)

We pass to the limit and obtain (4) for ỹ(t).

Now, we obtain the existence of an optimal control.

Theorem 1. There exists an optimal control u∗ ∈ Uρ,
solution of problem (2).

Proof. Let un be a minimizing sequence in Uρ, such that

lim
n→+∞

J(un) = inf
u∈Uρ

J(u). (7)

By Lemma 1, we have the estimate

‖yn‖2H2
0 (Ω) + ‖ynt ‖2L2(Ω) ≤MeρCT , (8)

where M is a positive constant.
From system (1) and (8), we conclude that

‖yntt‖2H−2(Ω) ≤M
′eρCT , (9)

where M ′ is a positive constant.
Using (8) and (9), we deduce the following convergence
properties

yn⇀y∗ weakly∗ in L∞([0, T ], H2
0 (Ω)) (10)

ynt → y∗t weakly∗ in L∞([0, T ], L2(Ω)) (11)

yntt⇀y∗tt weakly∗ in L∞([0, T ], H−2(Ω))

un⇀u∗ weakly in L2(0, T ). (12)

Since Uρ is a closed and convex subset of L∞(0, T ) ⊂
L2(0, T ), Uρ is weakly closed in L2(0, T ).
Then u∗ ∈ Uρ ⊂ L2(0, T ). On the other hand, since
−ρ ≤ un(t) ≤ ρ for all n, un ⇀ u∗∗ weakly∗ in L∞(0, T ),
and hence un ⇀ u∗∗ weakly in L2(0, T ).
By the uniqueness of the weak limit, we obtain u∗ = u∗∗

and u∗ ∈ Uρ ⊂ L∞(0, T ).
In other hand, we have yn satisfies the weak form∫ T

0

〈yntt, φ〉dt+

∫ T

0

q(yn, φ)dt =

∫
Q

unynt φdxdt,

∀φ ∈ H2
0 (Ω).

(13)
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We define the sequence of function vn(t) by

vn(t) =

∫
Ω

ynt (x, t)φ(x, t)dx.

So that

∫
Q

unynt φdxdt becomes∫ T

0

un(t)vn(t)dt.

By the estimate of Lemma (1), vn is uniformly bounded
independent of n. Using the continuity of ynt in time into
L2(Ω), for each fixed t,

vn(t)→ v(t) =

∫
Ω

y∗t (x, t)φ(x, t)dx, pointwise as n→ +∞,

using the weak convergences above. By Egorof’s Theorem,
for any ε > 0, there exists a set L ⊂ [0, T ] such that
µ(L) < ε and

vn(t)→ v(t), uniformly on [0, T ]\L.
Then ∫ T

0

|unvn − u∗v|dt ≤
∫ T

0

|(unvn − u∗v)1
L
|dt

+

∫ T

0

|(unvn − u∗v)1
[0,T ]\L |dt.

The integral term on [0, T ]\L approaches 0 as n → +∞
by the uniform convergence of vn → v on [0, T ]\L. The
integral term on L can be estimated∫ T

0

|(unvn − u∗v)1
L
|dt ≤ ρ

∫ T

0

(|vn| − |v|)1
L
dt

≤ ρ(‖vn‖L2(0,T ) + ‖v‖L2(0,T ))µ(L)

≤ Cµ(L),

where C does not depend on n and µ(L) < ε.
Hence

lim
n→+∞

∫
Q

unynt φdxdtdt =

∫
Q

u∗y∗t φdxdt.

Taking the limit as n→ +∞ in (13), we conclude∫ T

0

〈y∗tt(t), φ(t)〉dt+

∫ T

0

q(y∗(t), φ(t))dt

=

∫ T

0

〈u∗y∗t (t), φ(t)〉dt, for all φ ∈ H2
0 (Ω).

Thus y∗ = y(u∗) is the solution of state equation (1) with
control u∗. Since

J(u∗) =
1

2

∫
ω

∫ T

0

(
χωy

∗(x, t)− yd(x)
)2
dtdx

+
β

2

∫ T

0

(u∗)2(t)dt,

using lower-semicontinuity of L2 norm with respect to
weak convergence, we have

J(u∗)≤ 1

2
lim

n→+∞

∫
ω

∫ T

0

(
χωy

n(x, t)− yd(x)
)2
dtdx

+
β

2
lim inf
n→+∞

∫ T

0

(un)2(t)dt

≤ lim inf
n→+∞

J(un)

= inf
u∈Uρ

J(u).

Finally, we conclude that u∗ is an optimal control.

3. CHARACTERIZATION OF AN OPTIMAL
CONTROL

In this section, we give characterization of an optimal
control solution of problem (2).
Let now examine the differentiability of the mapping u→
ỹ(u).

Lemma 2. The mapping u ∈ Uρ → ỹ(u) ∈ C([0, T ],H) is

differentiable in the following sense
ỹ(u+ εh)− ỹ(u)

ε
⇀ λ̃

weakly in L∞([0, T ],H) as ε→ 0, for any u, u+ εh ∈ Uρ.
Moreover, λ̃ = (λ, λt) is a weak solution of the following
system

λtt(x, t) + ∆2λ(x, t) = u(t)λt(x, t) + h(t)yt(x, t)

λ(x, 0) = λt(x, 0) = 0

λ(x, t) =
∂λ

∂ν
(x, t) = 0

(14)

Proof. Denote ỹε = ỹ(u + εh) = (yε, yεt ) and ỹ = ỹ(u).

Then
(
ỹε−ỹ
ε

)
is a weak solution of



(
yε − y
ε

)
tt

+ ∆2

(
yε − y
ε

)
= u

(
yε − y
ε

)
t

+ hyεt(
yε − y
ε

)
(x, 0) =

(
yε − y
ε

)
t

(x, 0) = 0(
yε − y
ε

)
=

∂

∂ν

(
yε − y
ε

)
= 0

Using Lemma 1 with source term hyεt , we obtain

‖ ỹ
ε − ỹ
ε
‖C([0,T ],H) ≤ ‖hyεt ‖L2(Q)e

ρCT .

yεt satisfies the estimate

‖hyεt ‖L2(Q) ≤ T‖h‖∞‖ỹε‖C([0,T ],H)

≤ (1 + ρT )1/2eρCT ‖ỹ(0)‖H.
Hence, we have

ỹε − ỹ
ε

⇀ λ̃ weakly inL∞([0, T ],H) as ε→ 0.

We conclude that λ is a weak solution of system (14).

Now, we give characterization of an optimal control.

Theorem 2. An optimal control solution of problem (2) is
given by the formula

u∗(t) = max(−ρ,min(− 1

β

∫
Ω

χ∗ωχωy
∗
t (x, t)p(x, t)dx, ρ)),

(15)
where (p, pt) ∈ C([0, T ],H) is the weak solution of the
adjoint system
ptt(x, t) + ∆2p(x, t) = u∗(t)pt(x, t) + y∗(x, t)− χ∗ωyd(x)

p(x, T ) = pt(x, T ) = 0

p(x, t) =
∂p

∂ν
(x, t) = 0

(16)

Proof. The proof of existence of the solution to the
adjoint system is similar to the proof of existence of
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solution of the state equation (1) since the source term
(y∗ − χ∗ωyd) ∈ C([0, T ], L2(Ω)).
We now proceed to characterize the optimal control in
terms of the state (y, yt) of system (1) and the one (p, pt) of
the adjoint system (16). Let u∗ ∈ Uρ be an optimal control
and ỹ = ỹ(u∗) be the corresponding optimal solution. Let
u∗ + εh ∈ Uρ for ε > 0 and ỹε = ỹ(u∗ + εh) be the
corresponding weak solution of system (1). We compute
the directional derivative of the cost functional J with
respect to u∗ in the direction of h.
Since J reaches its minimum at u∗, we have

0≤ lim
ε→0+

J(u∗ + εh)− J(u∗)

ε

= lim
ε→0+

1

2

∫
ω

∫ T

0

(χωy
ε − yd)2 − (χωy

∗ − yd)2

ε
dtdx

+ lim
ε→0+

β

2

∫ T

0

(u∗ + εh)2 − u∗2

ε
dt

= lim
ε→0+

1

2

∫
ω

∫ T

0

χω
(yε − y∗)

ε
(χωy

ε + χωy
∗ − 2yd)dtdx

+ lim
ε→0+

β

2

∫ T

0

(2hu∗ + εh2)dt.

Then,

lim
ε→0+

J(u∗ + εh)− J(u∗)

ε
=

∫
Q

χ∗ωχωλ (y∗ − χ∗ωyd)dxdt

+ β

∫ T

0

hu∗dt,

where λ is solution of system (14).
Using the adjoint system (16), and the solution of system
(14), we obtain

0≤
∫

Ω

χ∗ωχω

∫ T

0

λ(x, t)
[
ptt(x, t) + ∆2p(x, t)

− u∗(t)pt(x, t)
]
dtdx+ β

∫ T

0

h(t)u∗(t)dt

=

∫
Ω

χ∗ωχω

∫ T

0

(λtt(x, t)

+ ∆2λ(x, t)− u∗(t)λt(x, t))p(x, t) dtdx

+ β

∫ T

0

h(t)u∗(t) dt

=

∫
Ω

χ∗ωχω

∫ T

0

h(t)y∗t (x, t) p(x, t)dtdx

+ β

∫ T

0

h(t)u∗(t)dt

=

∫
Q

h(t) (βu∗(t) + χ∗ωχωy
∗
t (x, t) p(x, t) ) dxdt.

Using a standard control argument based on the choices
for the variation h(t), an optimal control is given by

u∗(t) = max(−ρ,min(− 1

β

∫
Ω

χ∗ωχωy
∗
t (x, t)p(x, t)dx, ρ)).

4. NUMERICAL APPROACH AND SIMULATIONS

We have seen that the solution of problem (2) is given by

u∗(t) = max(−ρ,min(− 1

β

∫
Ω

χ∗ωχωy
∗
t (x, t)p(x, t)dx, ρ)),

where y∗ is the solution of system (1) associated with the
control u∗ and p is the solution of the adjoint system (16).
The computation of such control can be realised by the
following formulau∗n+1(t) = max(−ρ,min(− 1

β

∫
Ω

χ∗ωχω(y∗t )npndx, ρ))

u∗0 = 0,

(17)

where y∗n is the solution of system (1) associated to the
control u∗n and pn is the solution of the adjoint system
(16). This allows to consider the following algorithm :

Step 1: Initials system data.

� Initial state y0, y1 and u∗0.
� Desired state yd.
� Threshold accuracy ε, subregion
ω and time T .

Step 2 :
� Solving equation (1) gives y∗n.
� Solving equation (16) gives pn.
� Calculate u∗n+1 by (17).

Until ‖u∗n+1 − u∗n‖L∞(0,T ) ≤ ε stop, else n = n+ 1 go
to step 2.
Step 3 : The control u∗n is optimal.

Simulations
On Ω =]0, 1[×]0, 1[, consider a bilinear plate equation

ytt(x, t) + ∆2y(x, t) = u(t)yt(x, t)

y(x, 0) = y0(x), yt(x, 0) = y1(x)

y(x, t) =
∂y

∂ν
(x, t) = 0

(18)

where x = (x1, x2) and consider problem (2) with the
control set Uρ = {u ∈ L∞(0, T ) : −ρ ≤ u(t) ≤ ρ}.
An optimal control solution of problem (2) is given by the
following formula

u∗(t) = max
(
−ρ,min

(
− 1

β

∫
Ω

χ∗ωχωy
∗
t (x, t)pn(x, t)dx, ρ

))
,

where y∗ is solution of system (18) associated to the
control u∗ and p is the solution of the following adjoint
system

ptt(x, t) + ∆2p(x, t) = u∗(t)pt(x, t) + y∗(x, t)

−χ∗ωyd(x, t)
p(x, T ) = pt(x, T ) = 0

p(x, t) =
∂p

∂ν
(x, t) = 0

We take T = 1, ρ = 1, β = 0.1, y0(x1, x2) =
x1x2(1−x1)(1−x2), y1(x1, x2) = 0, and the desired state
yd(x1, x2, T ) = 0 on ω ⊂ Ω.
Applying the previous algorithm, with ε = 10−4 we obtain.

• For ω =]0.7, 1[×]0, 1[
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Fig. 1. Desired and final state on Ω.

Fig. 2. Desired and final state on Ω.

Figure 1 shows that the reached state is very close to the
desired state on ω and the evolution of control function is
given by the figure 2. The desired state is obtained with
error ‖χωy∗(., T )‖2L2(ω) = 4.2 × 10−4, and cost J(u∗) =

3.8× 10−3.

• For ω =]0.5, 1[×]0, 1[

Fig. 3. Desired and final state on Ω.

Fig. 4. Desired and final state on Ω.

Figure 3 shows that the reached state is very close to the
desired state on ω and the evolution of control function is
given by the figure 4. The desired state is obtained with
error ‖χωy∗(., T )‖2L2(ω) = 7.5 × 10−4, and cost J(u∗) =

6.4× 10−3.

5. CONCLUSION

Regional optimal control problem of a bilinear plate equa-
tion was considered using bounded control. The existence
of an optimal control is proved and characterised as a
solution of an optimality system. The approach allows
us to assess the fitness of the final state to a prescribed
target restricted in a subregion of the system domain. The
obtained results are successfully tested through numeri-
cal examples. Questions are still open, as is the case for
regional optimal control of nonlinear plate equation.
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