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Abstract: We analyze stabilizability of passive dynamical systems subject to actuator and
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1. INTRODUCTION

Passive dynamical systems play the central role in many
theoretical control areas and applications. Passivity prop-
erty is of major importance in adaptive control, see e.g.
Seron et al. (1995), Jiang et al. (1996), Astolfi et al. (2008),
and nonlinear observer design (Shim and Seo (2000), Shim
et al. (2003)). The key nonlinear state feedback design
methods explicitly or at least implicitly rely on passiv-
ity properties of dynamics, see e.g. Byrnes et al. (1991),
Sepulchre et al. (1997), Khalil (2002). For instance, such
effective and popular nonlinear control design philosophy
as integrator backstepping (Krstić et al. (1995)) by its
virtue can be considered as a feedback passivation scheme,
see e.g. Sepulchre et al. (1997).

The success of passivity based designs is underpinned
by the fact that many physical systems can be rendered
passive by proper choice of input and output functions, see
e.g. Ortega et al. (1998), Fantoni and Lozano (2002), As-
tolfi et al. (2008), Glazkov and Reshmin (2019), Reshmin
(2019), Reshmin (2019a), Golubev et al. (2019), Glazkov
and Golubev (2019).

In the present paper we analyze the zero equilibrium stabi-
lization problem for disturbed passive nonlinear dynamical
systems of the form

ẋ = f(x, u+ d1),
ỹ = h(x) + d2,

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the
control input, y = h(x) ∈ Rm is the output function to be
measured, d1 ∈ Rm and d2 ∈ Rm stand for actuator and
sensor disturbances, respectively, f : Rn × Rm → Rn and
h : Rn → Rm are locally Lipschitz, f(0, 0) = 0, h(0) = 0.
Here, as actuator and sensor disturbance models one takes
unknown piecewise continuous bounded functions d1 =
d1(t) and d2 = d2(t) of t ≥ 0, respectively.
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Let us recall that the unperturbed dynamical system (1)
given by

ẋ = f(x, u),
y = h(x),

(2)

is called passive, see e.g. Byrnes et al. (1991), Khalil
(2002), if there exists a continuously differentiable positive
semidefinite (storage) function V (x) such that for all x ∈
Rn and u ∈ Rm the (dissipation) inequality holds

V̇ =
∂V (x)

∂x
f(x, u) ≤ w(y, u) (3)

with the (supply rate) function w(y, u) = yTu. Addition-
ally, a passive system (2) is said to be strictly passive, if
w(y, u) = yTu−ψ(x) for some continuous positive definite
function ψ(·), and output strictly passive if w(y, u) =
yTu − yT%(y), where %(·) is a continuous function such
that yT%(y) > 0 for all y 6= 0 (see e.g. Byrnes et al. (1991),
Khalil (2002)).

Further, a dynamical system of the form (2) is zero-
state detectable (Byrnes et al. (1991)) if for any solution
x = x(t) of the system with u = u(t) ≡ 0 such that
y(t) = h(x(t)) ≡ 0 one has x(t)→ 0 as t→ +∞.

Then, a zero-state detectable passive system (2) with
positive definite proper storage function V (x) can readily
be globally asymptotically stabilized by static output
feedback u = −k(y), with k(y) being any locally Lipschitz
function such that k(0) = 0 and yTk(y) > 0 for all y 6= 0
(Byrnes et al. (1991)).

However, it is well known that stabilizability of an un-
perturbed system does not guarantee stabilizability of
the system in presence of disturbances, see e.g. Freeman
(1995). Notice that the most powerful concept when an-
alyzing behavior of nonlinear dynamical systems subject
to disturbances and model uncertainties proved to be the
input-to-state stability (ISS) introduced in Sontag (1989)
and promoted in later works, see e.g. Sontag and Wang
(1995), Sontag and Wang (1996), Sontag (1998), Angeli
et al. (2000).
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The ISS properties of passive dynamical systems were
investigated e.g. in Efimov (2006), Wang and Weiss (2007),
Dashkovskiy et al. (2011). In Efimov (2006) it was shown
that the control law u = −k(y) + d1 with k(0) = 0
guarantees the (integral) ISS property of a control-affine
strictly passive system (2) with respect to the d1 input
if the condition yTk(y) ≥ c‖y‖2 holds for some c > 0.
Here and further in the paper ‖ · ‖ denotes the Euclidian
norm. The last inequality by its virtue implies that a linear
”LgV ” control law u = −ky with some positive gain k > 0
is used.

In this paper, we obtain more general results that are not
confined to a linear control u = −ky and are more natural
for nonlinear functions k(y). Using nonlinear controls of
the form u = −k(y) to stabilize passive dynamical systems
can be motivated by the fact that linear control laws may
fail under some extra uncertainties. This can be easily
illustrated by a well known example, see Krstić et al.
(1995),

ẋ = −kx+ x2d, (4)

where x ∈ R, k is some positive constant, d ∈ R stands
for disturbances. The system (4) can be seen as the
unperturbed passive system ẋ = u, y = x with a linear
control u = −ky facing extra model uncertainty x2d. It
can be easily shown that the system (4) does not have the
ISS property (Krstić et al. (1995)) with respect to the d
input. Still, e.g. the nonlinear choice u = −ky− y5 readily
results in the ISS system ẋ = −kx− x5 + x2d.

The rest of the paper is organized as follows. Some ISS
related results used throughout the paper are revised
in section 2. Stabilization of passive dynamical systems
under actuator disturbances is discussed in section 3.
Section 4 contains sufficient conditions of stabilizability of
passive systems under sensor disturbances given in terms
of integral ISS. Application of the obtained results to
robust state observer redesign is considered in section 5.
Finally, the paper concludes with some remarks in Section
6.

2. ISS PRELIMINARIES

In this section, for convenience sake, let us revise the main
ISS notions and theorems used later in the paper.

Consider a nonlinear dynamical system

ẋ = F (x, d), (5)

where x ∈ Rn is the state vector, the input d ∈ Rm stands
for disturbances, F : Rn × Rm → Rn is locally Lipschitz,
F (0, 0) = 0.

A system (5) is said to be input-to-state stable (Sontag
(1989)) if there exist a class KL function β(·, ·) and a class
K function γ(·) such that for any piecewise continuous
bounded input function d = d(t) of t ≥ 0 and any initial
condition x(0) = x0 ∈ Rn the solution x(t) of the system
(5) exists for all t ≥ 0 and satisfies the inequality

‖x(t)‖ ≤ β(‖x0‖, t) + γ( sup
0≤τ≤t

‖d(τ)‖).

Theorem 1. (Sontag and Wang (1995), Sontag and Wang
(1996)) A system (5) is input-to-state stable if there
exists a continuously differentiable positive definite proper

function V (x) such that for all x ∈ Rn and d ∈ Rm holds
the inequality

V̇ (x) =
∂V (x)

∂x
F (x, d) ≤ −α1(‖x‖) + %(‖d‖),

where α1(·) and %(·) are some class K∞ and class K
functions, respectively.

A system (5) is said to be integrally input-to-state stable
(Sontag (1998), Angeli et al. (2000)) if there exist a class
K∞ function α(·), a class KL function β(·, ·) and a class
K function γ(·) such that for any piecewise continuous
bounded input function d = d(t) of t ≥ 0 and any initial
condition x(0) = x0 ∈ Rn the solution x(t) of the system
(5) exists for all t ≥ 0 and satisfies the inequality

α(‖x(t)‖) ≤ β(‖x0‖, t) +

∫ t

0

γ(‖d(s)‖)ds.

Theorem 2. (Angeli et al. (2000)) A system (5) is inte-
grally input-to-state stable if there exists a continuously
differentiable positive definite proper function V (x) such
that for all x ∈ Rn and d ∈ Rm holds the inequality

V̇ (x) =
∂V (x)

∂x
F (x, d) ≤ −α2(‖x‖) + %(‖d‖),

where α2(·) is a continuous positive definite function, %(·)
is a class K function.

Theorem 3. (Angeli et al. (2000)) A system (5) is inte-
grally input-to-state stable if for d = d(t) ≡ 0 the origin
x = 0 is globally asymptotically stable and there exists
a continuously differentiable positive definite proper func-
tion V (x) such that for all x ∈ Rn and d ∈ Rm holds the
inequality

V̇ (x) =
∂V (x)

∂x
F (x, d) ≤ %(‖d‖),

where %(·) is a class K function.

Theorem 4. (Angeli et al. (2000)) A system (5) is in-
tegrally input-to-state stable if there exist a continuous
output function y = h1(x), h1(0) = 0, y ∈ Rp such
that the system (5) considered with that output is zero-
state detectable, and a continuously differentiable positive
definite proper function V (x) such that for all x ∈ Rn and
d ∈ Rm holds the inequality

V̇ (x) =
∂V (x)

∂x
F (x, d) ≤ −α3(‖h1(x)‖) + %(‖d‖),

where α3(·) is a continuous positive definite function, %(·)
is a class K function.

3. STABILIZATION UNDER ACTUATOR
DISTURBANCES

We start with the following lemma.

Lemma 5. Let the system (2) be zero-state detectable
and output strictly passive with a positive definite proper
storage function V (x). If the function %(y) in the supply
rate satisfies for all y ∈ Rm the inequality

yT%(y) ≥ c‖y‖2l, (6)

where l ∈ N is some natural number and c > 0 is a positive
constant, then the system (2) is integrally ISS with respect
to the input u.

Proof. Since the system (2) is output strictly passive the
following dissipation inequality holds for all x ∈ Rn and
u ∈ Rm:
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V̇ =
∂V (x)

∂x
f(x, u) ≤ yTu− yT%(y),

where yT%(y) > 0 for all y 6= 0. Then, in view of (6) and
the Young’s inequality

ab ≤ 1

ε
ap + ε

1
p−1 b

p
p−1 (7)

which is valid for all a, b ∈ R+ = [0,+∞), p > 1, ε > 0,
one gets

V̇ ≤ −c‖y‖2l + yTu ≤ −c‖y‖2l + ‖y‖‖u‖

≤ −c‖y‖2l +
1

ε
‖y‖2l + ε

1
2l−1 ‖u‖

2l
2l−1

= −
(
c− 1

ε

)
‖y‖2l + ε

1
2l−1 ‖u‖

2l
2l−1

= −α3(‖y‖) + %(‖u‖)

for all x ∈ Rn, u ∈ Rm and ε > 0. Here, if ε >
1

c
the

functions α3(s) = (c−1/ε)s2l and %(s) = ε
1

2l−1 s
2l

2l−1 , s ≥ 0,
belong to class K∞.

Hence, according to theorem 4 the system (2) is integrally
ISS with respect to the input u. �

Consider now the system (1) with d2(t) ≡ 0 written as
below

ẋ = f(x, u+ d1),
ỹ = h(x) = y.

(8)

Theorem 6. Let the system (2) be zero-state detectable
and passive with a positive definite proper storage function
V (x). Then the control law u = −k(y), where k(y) is a
locally Lipschitz function such that k(0) = 0 and for all
y ∈ Rm the inequality

yTk(y) ≥ c‖y‖2l (9)

holds with some natural number l ∈ N and positive
constant c > 0, makes the system (8) integrally ISS with
respect to the input d1.

Proof. From passivity property of the system (2) follows
that time derivative of the storage function V (x) along
solutions of the system (8) with control law u = −k(y)
(i.e. the system (2) with control u = −k(y) + d1) for all
x ∈ Rn and d1 ∈ Rm satisfies

V̇ =
∂V (x)

∂x
f(x,−k(y) + d1)

≤ yT(−k(y) + d1) = −yTk(y) + yTd1.

Here, in view of the inequality (9) holds yTk(y) > 0 for all
y 6= 0.

Therefore, the system (8) with control u = −k(y) is output
strictly passive and, by lemma 5, is integrally ISS with
respect to the input d1. �

Theorem 7. Let the system (2) be strictly passive with a
positive definite proper storage function V (x). Then the
control law u = −k(y), with k(y) being a locally Lipschitz
function such that k(0) = 0 and for all y ∈ Rm the
inequality (9) holds with some natural number l ∈ N and
positive constant c > 0, makes the system (8) integrally
ISS with respect to the input d1. If additionally the ψ(·)
function in the supply rate is proper, i.e. ψ(x) → +∞ as
‖x‖ → +∞, the control law u = −k(y) makes the system
(8) ISS with respect to the input d1.

Proof. By strict passivity property of the system (2)
the time derivative of the storage function V (x) along
solutions of the system (8) with control law u = −k(y)
for all x ∈ Rn and d1 ∈ Rm can be estimated from above
as

V̇ =
∂V (x)

∂x
f(x,−k(y) + d1) ≤ yT(−k(y) + d1)− ψ(x)

= −yTk(y) + yTd1 − ψ(x).

Next, taking into account the inequalities (7) and (9) yields

V̇ ≤ −c‖y‖2l + yTd1 − ψ(x)

≤ −c‖y‖2l + ‖y‖‖d1‖ − ψ(x)

≤ −c‖y‖2l +
1

ε
‖y‖2l + ε

1
2l−1 ‖d1‖

2l
2l−1 − ψ(x)

= −
(
c− 1

ε

)
‖y‖2l − ψ(x) + ε

1
2l−1 ‖d1‖

2l
2l−1

≤ −ψ(x) + ε
1

2l−1 ‖d1‖
2l

2l−1 .

(10)

for all x ∈ Rn, d1 ∈ Rm and ε > 1/c.

Since ψ(x) is positive definite there exists a class K

function ψ̃(·), see Khalil (2002), such that for all x ∈ Rn
ψ(x) can be estimated from below as

ψ(x) ≥ ψ̃(‖x‖). (11)

Hence, the inequality (10) can be written as

V̇ ≤ −ψ̃(‖x‖) + %(‖d1‖), (12)

where

%(s) = ε
1

2l−1 s
2l

2l−1 , s ≥ 0

belongs to class K∞. Thus, by theorem 2 the system (8)
with control u = −k(y) is integrally ISS with respect to
the input d1.

If additionally the ψ(·) function has the property ψ(x)→
+∞ as ‖x‖ → +∞ then the ψ̃(·) function in the inequal-
ities (11) and (12) can be chosen to belong to K∞, see
Khalil (2002). Hence, according to theorem 1 the system
(8) with control u = −k(y) is ISS with respect to the input
d1. �

4. STABILIZATION UNDER SENSOR
DISTURBANCES

Let us first analyze the system (1) with d1(t) ≡ 0 given by

ẋ = f(x, u),
ỹ = h(x) + d2.

(13)

The following result holds.

Theorem 8. Let the system (2) be zero-state detectable
and passive with a positive definite proper storage function
V (x). Then the control law u = −k(ỹ) = −k(y+d2), where
k(ỹ) is a locally Lipschitz function such that k(0) = 0 and
for all ỹ ∈ Rm the inequalities

ỹTk(ỹ) ≥ c1‖ỹ‖2l, ‖k(ỹ)‖ ≤ c2‖ỹ‖2l−1 (14)

hold with some natural number l ∈ N and positive
constants c1 > 0, c2 > 0, makes the system (13) integrally
ISS with respect to the input d2.

Proof. Due to passivity of the system (2) time derivative
of the storage function V (x) along solutions of the system
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(13) with control law u = −k(y + d2) for all x ∈ Rn and
d2 ∈ Rm can be written as

V̇ =
∂V (x)

∂x
f(x,−k(y + d2)) ≤ −yTk(y + d2)

= −(y + d2)Tk(y + d2) + dT2 k(y + d2).

Then, by the inequalities (7) and (14) one gets

V̇ ≤ −c1‖y + d2‖2l + ‖d2‖‖k(y + d2)‖
≤ −c1‖y + d2‖2l + c2‖d2‖‖y + d2‖2l−1

≤ −c1‖y + d2‖2l +
c2
ε
‖d2‖2l + c2ε

1
2l−1 ‖y + d2‖2l

= −
(
c1 − c2ε

1
2l−1

)
‖y + d2‖2l +

c2
ε
‖d2‖2l

≤ c2
ε
‖d2‖2l = %(‖d2‖)

for all x ∈ Rn, d2 ∈ Rm and ε <
(c1
c2

)2l−1
. Here

%(s) =
c2
ε
s2l, s ≥ 0

is a class K∞ function.

Notice that from the conditions (14) follows that yTk(y) >
0 for all y 6= 0. Thus, if d2 = d2(t) ≡ 0 the system (13)
with control u = −k(y) is globally asymptotically stable
at x = 0 (Byrnes et al. (1991)). Hence, by theorem 3 the
system (13) with control u = −k(y + d2) is integrally ISS
with respect to the input d2. �

Consider now the system (1) with d1(t) 6≡ 0 and d2(t) 6≡ 0.
Then, the above theorems 6, 8 can be combined as below.

Theorem 9. Let the system (2) be zero-state detectable
and passive with a positive definite proper storage function
V (x). Then the control law u = −k(ỹ) = −k(y+d2), where
k(ỹ) is a locally Lipschitz function such that k(0) = 0 and
for all ỹ ∈ Rm the inequalities (14) hold with some natural
number l ∈ N and positive constants c1 > 0, c2 > 0, makes
the system (1) integrally ISS with respect to the inputs d1
and d2.

Proof. By passivity of the system (2) the dissipation
inequality (3) is rewritten for the system (1) with control
u = −k(y + d2) as follows

V̇ =
∂V (x)

∂x
f(x,−k(y + d2) + d1)

≤ −yTk(y + d2) + yTd1

= −(y + d2)Tk(y + d2) + dT2 k(y + d2)

+ (y + d2)Td1 − dT2 d1
for all x ∈ Rn, d1 ∈ Rm and d2 ∈ Rm. Then, in view of
the inequalities (7) and (14) one has

V̇ ≤ −c1‖y + d2‖2l + ‖d2‖‖k(y + d2)‖
+ ‖y + d2‖‖d1‖+ ‖d2‖‖d1‖
≤ −c1‖y + d2‖2l + c2‖d2‖‖y + d2‖2l−1

+ ‖y + d2‖‖d1‖+ ‖d2‖‖d1‖

≤ −c1‖y + d2‖2l +
c2
ε1
‖d2‖2l + c2ε

1
2l−1

1 ‖y + d2‖2l

+
1

ε2
‖y + d2‖2l + ε

1
2l−1

2 ‖d1‖
2l

2l−1

+
1

ε3
‖d2‖2l + ε

1
2l−1

3 ‖d1‖
2l

2l−1 .

Finally,

V̇ ≤ −
(
c1 − c2ε

1
2l−1

1 − 1

ε2

)
‖y + d2‖2l

+
(
ε

1
2l−1

2 + ε
1

2l−1

3

)
‖d1‖

2l
2l−1 +

( c2
ε1

+
1

ε3

)
‖d2‖2l

≤
(
ε

1
2l−1

2 + ε
1

2l−1

3

)
‖d1‖

2l
2l−1 +

( c2
ε1

+
1

ε3

)
‖d2‖2l

= %1(‖d1‖) + %2(‖d2‖)
for all x ∈ Rn, d1 ∈ Rm, d2 ∈ Rm and any ε1, ε2 such that

the condition c1 − c2ε
1

2l−1

1 − 1/ε2 > 0 is satisfied. Here

%1(s) =
(
ε

1
2l−1

2 + ε
1

2l−1

3

)
s

2l
2l−1 , %2(s) =

( c2
ε1

+
1

ε3

)
s2l, s ≥ 0

are class K∞ functions.

Moreover, the inequalities (14) imply that yTk(y) > 0
holds for all y 6= 0. Hence, if d1 = d1(t) ≡ 0 and
d2 = d2(t) ≡ 0 the system (1) with control u = −k(y)
is globally asymptotically stable at x = 0 (Byrnes et al.
(1991)). Then, by theorem 3 the system (1) with control
u = −k(y+d2) is integrally ISS with respect to the inputs
d1 and d2. �

5. ROBUST STATE OBSERVER REDESIGN

One of possible applications of the results in section 3
and 4 is state observer performance analysis and robust
redesign under measurements noise. It can be shown (see
e.g. Shim and Seo (2000), Shim et al. (2003), Golubev
et al. (2005)) that many popular nonlinear state observer
design techniques, e.g. observer with linear error dynamics
(Krener and Respondek (1985)), observer for systems with
globally Lipschitz nonlinearities (Thau (1973)), high-gain
observer (Gauthier et al. (1992)), observer for systems
with sector nonlinearities (Arcak and Kokotović (2001))
and, in particular, observer design in Shim and Seo (2000),
Shim et al. (2003), can be considered as state estimation
error dynamics passivation with further stabilization of the
resultant passive system by a static output feedback.

For instance, let us discuss state observer design for a
dynamical system of the form

ẋ = Ax+ %(y, u),
y = Cx,

(15)

where x ∈ Rn is the state, y ∈ Rp is the system output
to be measured, u = u(t) ∈ Rm is a known input
function of t ≥ 0 which is piecewise continuous and
bounded, A ∈ Rn×n, C ∈ Rp×n, pair (A,C) is detectable,
% : Rp × Rm → Rn is locally Lipschitz.

State observer for the system (15) is constructed as follows
˙̂x = Ax̂+ %(ỹ, u) + k(Cx̂− ỹ), (16)

where ỹ = y + d is the measured output, d = d(t) stands
for measurements noise which is considered to be unknown
piecewise continuous bounded function of t ≥ 0, k(·) is a
locally Lipschitz function to be designed, which satisfies
k(0) = 0.

The state estimation error e = x̂ − x dynamics are given
by

ė = Ae+ [%(y + d, u)− %(y, u)] + k(Ce− d). (17)

Consider first the case when d = d(t) ≡ 0 and rewrite the
system (17) as
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ė = Ae+ v,
y1 = Ce,

(18)

where v = k(y1) can be seen as a control input. Then,
the observer design problem can be reformulated as the
control problem to stabilize the zero equilibrium e = 0,
v = 0 of the system (18) by a static output feedback
v = k(y1) = k(Ce) (Shim and Seo (2000)).

Since the pair (A,C) is detectable there exists a matrix
L ∈ Rn×p such that A + LC is Hurwitz. Consider the
storage function candidate V (e) = eTPe > 0, where
P = PT > 0 satisfies the Lyapunov equation

(A+ LC)TP + P (A+ LC) = −Q
with some positive definite matrix Q = QT > 0. Its time
derivative along solutions of the system (18) can be written
as

V̇ = ėTPe+ eTP ė = eTATPe+ vTPe+ eTPAe+ eTPv

= eT(A+ LC)TPe+ eTP (A+ LC)e− 2eTPLCe

+ 2eTPv = −eTQe− 2eTPLCe+ 2eTPv

= −eTQe− 2eTPLy1 + 2eTPv.

The choice

v = Ly1 +
1

2
L1ṽ,

where ṽ ∈ Rp is the new control input, L1 = P−1CT,
yields

V̇ = −eTQe+ eTCTṽ = −eTQe+ yT1 ṽ.

Hence, the system

ė = (A+ LC)e+
1

2
L1ṽ,

y1 = Ce
(19)

is strictly passive.

Notice that the choice ṽ = ṽ(t) ≡ 0 results in the linear
function k(y1) = Ly1 = LCe and linear state estimation
error dynamics ė = (A + LC)e which are associated with
a conventional state observer (16) design for d = d(t) ≡ 0.

Still, similarly to Shim and Seo (2000) one can try to

choose a nontrivial nonlinear function ṽ = −k̃(y1), where

k̃(·) satisfies conditions of the theorem 9, to guarantee the
integral input-to-state stability of the error dynamics (17)
which take the form

ė = (A+ LC)e+ [%(y + d, u)− %(y, u)]− Ld

− 1

2
L1k̃(Ce− d).

(20)

Notice that, in particular, if the function %(y, u) is globally
Lipschitz in y uniformly in u, then the error system (20)

with k̃(·) ≡ 0 is input-to-state stable with respect to the d
input, see Khalil (2002).

6. CONCLUSION

In this paper, stabilization of passive dynamical systems
under actuator and sensor disturbances was investigated.
New sufficient conditions for stabilizability of passive sys-
tems with disturbances have been given in terms of integral
input-to-state stability. Application of the obtained results
to robust state observer redesign was discussed.
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