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Abstract: Remaining useful life prediction is a key procedure for prognostics and health
management. However, traditional data-driven methods rely on handcrafted feature selection
from the whole range of time series data, which may not obtain the temporal information for
complex systems. This study proposes a gated recurrent unit networks based approach to predict
remaining useful life. First, time window approach is applied on sample preparation for multiple
sensor data. In particular, unsupervised stacked sparse autoencoder is utilized to automatically
extract nonlinear features, then the selected features are fed into gated recurrent unit based
recurrent neural networks to predict remaining useful life. The effectiveness of the proposed
method is demonstrated on the commercial modular aero-propulsion system simulation data
from NASA. Experimental results validate that the proposed approach achieves better prediction
performance than other methods.
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1. INTRODUCTION

Prognostics and health management (PHM) play an im-
portant role in predictive maintenance and have been
receiving increasing attention in the past decades (Tao
et al. (2018)). PHM can maximize the operation avail-
ability, reduce the maintenance costs and improve the
system safety and reliability. Specially, remaining useful
life (RUL) prediction is one of the most significant tasks
in PHM.

There are different ways to categorize the RUL predic-
tion methods. Generally, the existing approaches for RUL
prediction can be classified into three categories: model-
based approaches, data-driven approaches and hybrid ap-
proaches. Model-based approaches use physical mecha-
nisms or mathematical functions to model the degradation
and failure process of a system or component. Common
model-based approaches include state space algorithms,
such as extended Kalman filter (EKF) and particle filter
(Baraldi et al. (2012)), and classical deterioration methods
such as Weibull distribution model (Liu et al. (2020)).
However, they require extensive expert knowledge, and
it is very challenging to obtain prior knowledge in prac-
tice due to system complexity and stochastic degradation
behavior of components. Data-driven approaches estimate
RUL using information from condition monitoring (CM)
data collected by various sensors, and they can be easily
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applied and generalized in practical applications. Different
kinds of data-driven algorithms have been proposed and
obtained efficient results. Artificial intelligent methods in-
clude neuro-fuzzy (NF) systems, artificial neural networks
(ANN), support vector machines (SVM) and Gaussian
process regression (GPR) (Lei et al. (2018)). Most of these
methods consist of two stages: an offline learning with the
feature extractor and the degradation state learner; an
online stage for RUL prediction via the learned model.
But traditional data-driven approaches rely heavily on
manual feature extraction. A hybrid approach attempts
to integrate advantages of different approaches. Acuña
and Orchard (2017) used different methods to construct
a degradation model and combined it with particle filter
for RUL prediction. Du et al. (2012) predicted RULs
using several prediction methods and made a final decision
through fusion strategies. It is still difficult to find an
effective hybrid approach for the combination of model-
based and data-driven approaches.

Recently, deep learning is emerging a highly effective
networks applied for many applications, such as image
recognition, object detection, natural language processing
and speech recognition fields (LeCun et al. (2015)). Since
the raw data obtained from machinery health monitor-
ing share similar high dimensionality with those in im-
age processing, deep learning has great potential in RUL
prediction (Khan and Yairi (2018), Zhao et al. (2019)).
Moreover, layer-by-layer feature learning in deep networks
can learn essential and representative features hidden in
condition monitoring data. Zhang et al. (2016) proposed
a multi-objective deep belief networks (DBN) ensemble
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method, and the evolutionary algorithm is integrated with
traditional DBN training to evolve multiple DBNs simulta-
neously subject to accuracy and diversity. Zhu et al. (2018)
presented a new deep feature learning method for RUL
estimation through time frequency representation (TFR)
and multiscale convolutional neural network (MSCNN). Li
et al. (2018) proposed a deep convolutional neural network
for RUL estimation using raw collected data. However, its
difficult to extract heterogeneous features indicating the
variation until the failure of a machine.

Recurrent neural networks (RNN) are widely used in RUL
prediction because of its ability in dealing with explicit
time series data. Guo et al. (2017) proposed a recurrent
neural network based health indicator (RNN-HI) for RUL
prediction of bearings, which can obtain high monotonicity
and correlation values and can be beneficial to bear RUL
prediction. However, RNN cannot link two similar data if
they are separated too far away. Long short term memory
(LSTM) is proposed to overcome the weakness of RNN,
which incorporates input gate, output gate and cell state
into RNN. To deal with uncertainty due to operational and
environmental disturbance, Zhang et al. (2018) proposed a
bi-directional LSTM for characterizing system degradation
behaviour and predicting RUL, in which information flow
through the LSTM cells forwards for prediction and back-
wards for ruling out the disturbance and smoothing the
tracking. Huang et al. (2019) developed a novel prognostics
method based on bi-directional LSTM, which integrated
multiple sensors data with operational condition data for
RUL prediction. Wu et al. (2018) proposed utilizing vanilla
LSTM neural networks to predict RUL for complicated
systems under dynamic operational modes, and a dynamic
differential technology was used to extract inter-frame in-
formation to find the real physical degradation mechanism
behind sensor readings.

However, each memory blocks in LSTM requires an input
gate and an output gate, and these gates make the training
more difficult and increase the training time. A simplified
variant of LSTM named gated recurrent unit (GRU) is
proposed to reduce training time and improve network
performance (Tang et al. (2015)). The GRU combines the
forget gate and the input gate into a single update gate
and mixes the cell state and the hidden state into one state
as well.

Inspired by these prior researches, this paper presents a
GRU based approach for RUL prediction. First, unsu-
pervised stacked sparse autoencoder is applied to auto-
matically extract nonlinear features from consecutive time
windows of multiple sensor data. Then, the codings of
stacked sparse autoencoders are treated as the input of
GRU to predict RUL. A case study based on aircraft
engines is used to verify the performance of the proposed
approach.

The rest of this paper is organized as follows. Section 2
describes the proposed SAE-GRU based regression model
for RUL prediction. In Section 3, the proposed approach
is applied on the C-MAPSS dataset to demonstrate the
effectiveness. Conclusion and future works are drawn in
Section 4.

NOMENCLATURE

Acronyms
RUL remaining useful life
PHM prognostics and health management
SAE sparse autoencoder
RNN recurrent neural network
LSTM long short term memory
GRU gated recurrent unit
FNN feedforward neural network
MAE mean absolute error
Notation
n number of data samples
x input data(sensor data)
y system states
y′ predicted states
ythreshold a predefined failure threshold
RULactual actual RUL value
RULpred predicted RUL value
h hidden state
x̃ reconstructed input
W,V weights of network
b the bias
g, f activation functions
J cost function
sl number of neurons in l-th layer
λ weight decay parameter
ρ sparsity parameter
r reset gate
z update gate
Ntw size of time window
R2 coefficient of determination

2. METHODOLOGY

2.1 Problem formulation

Giving sensor data collected from n time steps x =
[x1,x2, . . . ,xn] and corresponding system states y =
[y1, y2, . . . , yn] , the RUL prediction is to find y over time
through exploring the variation of sensor data, it can be
defined as,

xn = F [xn−1,xn−2, . . . ,x1]

⇒ yn = G [yn−1, yn−2, . . . , y1]
(1)

which means current state performance is associated with
its previous state performance. Through machine learning
techniques, the predicted states are labelled as follows,

y′ =
[
y′n+1, y

′
n+2, . . .

]
(2)

where y′n+1 = G [yn, yn−1, . . . , y1].

Given a predefined failure threshold, the predicted RUL
can be defined as,

RULpred = inf
{
k : y′n+k ≤ ythreshold

}
(3)

The main challenge of this study is to capture non-linearity
associated with the system variation and data uncertainty
(e.g. sensor failure or environmental changes). To handle
with the non-linearity, stacked sparse autoencoder is p-
resented in this study as well as GRU, which has better
performance in dealing with time series data.
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2.2 Sparse autoencoder

Autoencoder is an artificial neural network for unsuper-
vised learning of feature extraction and dimensionality
reduction (Bengio et al. (2013)). An autoencoder is gen-
erally composed of encoder and decoder. The network
architecture of an autoencoder with 5 layers is shown in
Fig 1.

Fig. 1. Network architecture of autoencoder with 5 layers

Assume that x = [x1,x2, ...,xn] is the original input data
consisting of n data samples, f and g are the activation
functions for encoding and decoding respectively. The
hidden representation h after encoding is shown as follows,

h1 = f(W (1)x + b(1)),h2 = f(W (2)h1 + b(2)) (4)

and the reconstructed output x̃ after decoding is calculat-
ed as follows,

x̃ = g(W (4)h3 + b(4)), (5)

where h3 = g(W (3)h2 + b(3)), W , b are the weights and
bias of networks.

The aim of autoencoder is to minimize reconstruction
error between the original input xi and the reconstructed
output x̃i from the hidden representation h. The cost
function is defined as follows,

J (W , b) =
1

n

n∑
i=1

(
1

2
‖xi − x̃i‖2

)
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ij

)2 (6)

where J (W , b) is the cost function, nl is the number of
layers in the network, and sl is the number of neurons
in l-th layer. The first term is the reconstruction error,
and the second term is the regularization term to prevent
overfitting. The weight decay parameter λ controls the
relative importance of the two terms.

The autoencoder just simply copies the input. Although
the learned feature representation may perfectly recon-
struct the original input data, the features are redundant
and are not representative enough. Thus, the cost function
of autoencoder is added with a sparsity penalty term.
Sparse autoencoder (SAE), which has great potential to

learn more abstract and representative compressed fea-
tures than autoencoder. In a hidden layer, averaged ac-
tivation of j-th neuron over the dataset is expressed as,

ρj =
1

n

n∑
i=1

hj (xi), j = 1, . . . , sl (7)

A sparse parameter ρ is given to limit activation of hidden-
layer, and overall constraint for all neurons in l-th hidden
layer is expressed as follows,

sl∑
j=1

KL (ρ ‖ρj ) =

sl∑
j=1

ρ log
ρ

ρj
+ (1− ρ) log

(1− ρ)

(1− ρj)
(8)

The KL (ρ ‖ρj ) is Kullback-Leibler (KL) divergence be-
tween a Bernoulli random variable with mean ρ and a
Bernoulli random variable with mean ρj , and activation of
neurons ρj is made to be close to the given sparse param-
eter ρ with this constraint. Considering sparse constraint,
cost function of SAE is defined as follows,

Jsparse (W , b) = J (W , b) + β

sl∑
j=1

KL (ρ ‖ρj ) (9)

where β controls the weight of the sparsity penalty term.
Because SAE can learn more representative features, it is
utilized to extract features from sensor data automatically
in the proposed method.

2.3 Gated recurrent unit

The basic RNN structure consists of a cell with a cyclic
loop whose internal state evolves over time by the current
sample input xt and its previous hidden state ht−1 at each
time step t , then updates the current hidden state ht as
follows,

ht = H(xt,ht−1) (10)

where H defines a nonlinear and differentiable transfor-
mation function. The RNN parameters can be trained
using backpropagation. However, it suffers from vanishing
gradient problem because the recurrent network grows
deep as sequence length. One of the most popular solution
to address vanishing gradient is long short term memory
(LSTM), which is regarded as one of the most efficient
RNN models. LSTM uses a well-designed memory cell,
which consists of an input gate, a forget gate and an output
gate to protect and update the cell state.

GRU is a simpler variant of LSTM, two gates including a
reset gate r that adjusts the incorporation of new input
with the previous memory and an update gate z that
controls the preservation of the previous memory. The
architecture of GRU cell is shown in Fig 2.

GRU contains less variables than LSTM, which makes it
more efficient. The transition functions in hidden units of
GRU are shown as follows,

zt = σ (W zxt + V zht−1 + bz)
rt = σ (W rxt + V rht−1 + br)

(11)

the new remember h̃t is generated by rt with a tanh layer,

h̃t = tanh (W cxt + V c (rt � ht−1)) (12)
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Fig. 2. The architecture of GRU cell

the hidden state value is updated by

ht = (1− zt)� ht−1 + zt � h̃t (13)

where model parameters including W , V and b are shared
by all time steps and learned during training, and �
represents the element-wise product. Due to its efficiency
while achieving similar accuracy, GRU is used to learn
latent fault features from time series of sensor data.

2.4 The procedure of proposed method

The flow chart of the proposed RUL prediction approach is
presented in Fig 3. As we can see from Fig 3, the proposed
approach includes three stages: data preprocessing, fea-
ture extraction and prediction model based on SAE-GRU
neural networks.

Data preprocessing is applied to improve the data quality.
Besides data cleaning, normalization is used to transform
these data into a common scale, and a time window strat-
egy is incorporated to convert the multivariate time series
data into the desired sequence data. Then the sequence
data after using the time window are treated as the input
of SAE, and the objective of SAE is dimensionality reduc-
tion and nonlinear feature extraction from the normalized
data. No prior expert knowledge on prognostics and signal
processing is required in the proposed method.

A GRU-FNN model is constructed to handle time series
of sensor data, since GRU can learn latent fault features
from long-time context and FNN is capable of mapping
latent features from GRU into regression outcomes, such
as the target RUL of the current time before failure. The
codings of SAE are treated as the input of GRU-FNN to
obtain the predicted results. In offline stage, the predicted
RUL and labels of training data can be used to calculate
the loss function to train the proposed SAE-GRU model
through back-propagation algorithm. In online stage, after
data preprocessing, the testing data samples are fed into
the trained models to obtain the predicted RUL values.

3. EXPERIMENTS

3.1 C-MAPSS dataset

The proposed method is evaluated on a prognostic
benchmark dataset: NASA’s turbofan engine degrada-
tion dataset, which contains simulated data produced by

a model-based simulation program Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS). The C-
MAPSS dataset includes 4 sub-datasets: single operational
condition, single fault mode issue, multiple operational
conditions and hybrid fault modes issue. Each dataset
contains a training set and a testing set, where each row is
a snapshot of data from engine running cycles. There are
26 columns: the 1st and 2nd columns represent engine ID
and running cycle, the next 3 columns are operational con-
ditions indicating that the engine is running in the current
operational condition, and the remaining 21 columns are
sensor readings corresponding to degradation information
(e.g. temperature, pressure, speed) of engines. The detailed
information of the C-MAPSS dataset is shown in Table 1.

Table 1. Information of the C-MAPSS dataset

Dataset FD001 FD002 FD003 FD004

Engine units 100 260 100 249
Operational conditions 1 6 1 6

Fault conditions 1 1 2 2
Maximum life cycles 362 378 525 543
Minimum life cycles 128 128 145 128
Training samples 17731 48819 21820 57522
Testing samples 100 259 100 248

All the experiments are carried out on a PC with Intel
Core i7 CPU, 32GB RAM and GEFORCE GTX 1070
GPU. We find the optimal hyperparameters for the model
by random search. The Adam optimizer is used with mini
batches for the updates of weights in the networks. For
each epoch, the batch size is set as 200, the maximum
number of epochs is set as 100. The initial learning rate is
0.001. Sparse parameter ρ for the hidden layer of SAE is
0.01. Parameter β is set as 20 to tune sparsity of SAE.

In particular, dropout technique is applied to solve over-
fitting problem. Dropout randomly drops neurons (along
with their connections) from the neural network during
training. Each neuron is retained with a fixed probability
p independent of other neurons. We set p = 0.5, applying
dropout to a neural network is also a simple method for
model ensemble, which can improve the feature extraction.

3.2 Data Preprocessing

Data normalization Although there are 21 sensors
available in the C-MAPSS dataset, not all of them are
informative. Some sensor readings provide constant values
in the entire lifetime of engines. Therefore, 14 sensor
measurements are used as the raw input as suggested in
Li et al. (2018). Different ranges of sensor readings have
an influence on the accuracy and convergence speed of the
model, so the normalization of data is required prior to
training and testing, which ensures that all features under
different operational conditions and fault modes have an
equal contribution. The collected measure data from each
sensor are normalized to be within the range of [-1, 1] using
the min-max normalization method shown as,

xi,jnorm =
2(xi,j − xjmin)

xjmax − xjmin

− 1 (14)

where xi,j represents the original i-th data point of the j-
th sensor, and xi,jnorm is the normalized value of xi,j . xjmin
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Fig. 3. Flow chart of the proposed SAE-GRU based RUL prediction

and xjmax represent the minimum and maximum values of
the original data from the j-th sensor respectively. Fig 4
shows the original sensor data and its normalized sensor
data of engine ID =4.

Fig. 4. The sensor data of Engine ID=4 before and after
normalization

Target RUL Different from common regression prob-
lems, the desired output value of the input data is difficult
to determine for RUL prediction problem. In many prac-
tical industrial applications, it is difficult to evaluate the
accurate health condition and estimate the RUL of the
component at each time without a precise physical-based
model. However, a sensible solution is to simplify actual
time before system failure as the desired output. For the
C-MAPSS dataset, a piece-wise linear degradation model
has been validated to be suitable and effective in Heimes
(2008). As shown in Fig 5, the engine unit works normally
in the early age, indicating that the initial degradation is
ignored, and then it degrades linearly at a certain point, it

is assumed that a constant RUL label in the initial period.
We set the constant in the first half as 130 (Heimes (2008)).

Fig. 5. RUL target function on the C-MAPSS dataset, the
initial RUL is set as 130

Time window processing After normalization, a time
window strategy is incorporated for data preprocessing. A
fixed-length time window is utilized to enclose multivariate
data samples at consecutive cycles, then the time window
will shift one measurement cycle each time to generate
a new time window to the end of life. Finally, each
multivariate time window will be taken as the input of
networks. Let Ntw represent the size of time window,
then Fig 6 shows normalized data sample from some
selected sensors of a single engine ID =4 within a time
window of size 50 in the training set of FD001 subdataset.
More information can be obtained from the temporal
sequence data in RUL prediction. Therefore time sequence
processing can obtain better prediction performance.

3.3 Performance evaluation

Two performance metrics have been used for evaluating
the performance of different prognostic methods, the mean
absolute error (MAE) and coefficient of determination R2.
The formulation of MAE is shown as follows.

MAE =
1

n

n∑
i=1

|di| (15)
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Fig. 6. Some features of Engine ID=4 using a time window
of length 50

where n is the number of samples, di = RULpred −
RULactual, which is the error between predicted RUL
value and actual RUL value for the i-th testing data
sample.

3.4 Experimental results

The performance comparison results of different methods
on the C-MAPSS datasets are shown in Table 2. It can be
observed from Table 2 that the GRU method achieves the
best performance in most cases.

Table 2. Performance comparison of different
methods on the C-MAPSS dataset

Dataset Metrics LSTM Bi-LSTM Proposed

FD001 MAE 13.5581 14.3862 13.4545
R2 0.7682 0.7555 0.7886

FD002 MAE 44.2737 19.9247 22.0161
R2 -0.0484 0.7228 0.6896

FD003 MAE 17.0519 20.8028 16.3749
R2 0.5070 0.2482 0.5697

FD004 MAE 47.9062 28.0477 25.4020
R2 -0.2043 0.5331 0.5614

The RUL prediction results of the testing engine units
regarding the last recorded data points in FD001 sub-
dataset is shown in Fig 7. As we can see from Fig 7,
the predicted RUL values by the proposed method are
very close to the actual values for many units. When
the RUL value is small, which means the engine unit is
working close to the failure point, the predicted accuracy is
higher. Because the extracted features can represent more
accurate information for better prediction.

Also, the RUL prediction results of the testing engine
units in FD002, FD003 and FD004 are shown in Fig 8,
Fig 9 and Fig 10 respectively. Just like the results in
FD001 subdataset, although there are some errors between
the predicted RUL values and actual RUL values, the
predicted accuracy is high when the engine units are close
to the failure point. So the late period of life time is
significant for maintenance and health management.

We further analyse the influence of time window size on
prediction performance. The performance metric MAE
using different time window size Ntw in FD001 subdataset
is shown in Fig 11. It should be noted that in the test

Fig. 7. RUL prediction for 100 testing engine units in
FD001 subdataset

Fig. 8. RUL prediction for 250 testing engine units in
FD002 subdataset

Fig. 9. RUL prediction for 100 testing engine units in
FD003 subdataset

Fig. 10. RUL prediction for 249 testing engine units in
FD004 subdataset

dataset, the data cycles of testing units have different
lengths. The testing units which have shorter cycles than
Ntw are removed, so as to provide a more comprehensive
analysis of the time window size.
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Fig. 11. MAE using different time window sizes for 100
testing engine units in FD001 subdataset

As we can see from Fig 11, larger time window size has
better prediction for all RNN-based approaches. Specially,
the proposed GRU method shows superiority than others
within different sizes of time window. More information
can be contained through larger time window, which can
be beneficial for extracting informative features. However,
the training time of networks increases as the time window
size rises. Therefore, we set the Ntw = 50 in FD001
subdataset to balance the performance and efficiency. The
Ntw = 20, 30, 15 are set for FD002, FD003 and FD004
subdatasets respectively.

4. CONCLUSION

This paper provides a general framework based on GRU
for RUL prediction, which includes three stages: data
preprocessing, feature extraction and prediction model
based on GRU neural networks. After nonlinear feature
extraction using the stacked sparse autoencoder, a GRU-
FNN network is adopted to learn the representation of
sequence of those features and estimate the RUL values.
The effectiveness of proposed approach has been verified
on C-MAPSS data. We also explore the influence of the
time window size to obtain the trade off between accuracy
and efficiency. In the future, we will focus on uncertainty
propagation and management to improve the accuracy and
robustness.
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