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Abstract: In this paper, we explore communication protocols between two or more agents in an
initially partially known environment. We assume two types of agents (A and B), where an agent
of Type A constitutes an information source (e.g., a mobile sensor) with its own local objective
expressed in temporal logic, and an agent of Type B constitutes an agent that accomplishes
its own mission (e.g., search and rescue mission) also expressed in temporal logic. An agent
of Type B requests information from an agent of Type A to update its knowledge about the
environment. In this work, we develop an algorithm that is able to verify if a communication
protocol exists, for any possible initial plan executed by an agent of Type B.
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1. INTRODUCTION

The motivation of this work is derived from problems
in search and rescue missions, where there is great un-
certainty, and the management of the available resources
(e.g., limited power, or limited communication, or time) is
crucial. In the considered setup, restrictions are imposed
on the initial knowledge that the agents have about the
environment. In this work formal methods are employed
to define a motion planning problem for each agent in a
multi-agent system. Based on such specification definition,
high-level control policies are synthesized after processing
local information and information communicated between
agents of different types. The objectives of the agents are
formulated as temporal logic specifications Fainekos et al.
(2009); Kress-Gazit et al. (2009); Lahijanian et al. (2012).
Specifically, task specifications are given as syntactically
co-safe LTL formulas (scLTLs) which are able to express
finite horizon specifications.

Motion planning in partially known environments under
temporal logic specifications has recently attracted interest
from many researchers Ayala et al. (2013); Hoxha and
Fainekos (2016); Meng Guo et al. (2013); Nenchev and
Belta (2016). Specifically, in Ayala et al. (2013), motion
planning for a single agent is devised, where the agent up-
dates its information about the environment by exploring
the area. Our setup is very similar to the one presented
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in that work, with the important difference that our setup
is applied to a multi-agent system. In particular, consider
an agent B with no sensing abilities. That agent relies on
another agent’s sensing ability to update its own knowl-
edge about the surrounding environment. Initially, agentB
has a partial knowledge of the environment, which means
that it is probable that an initial motion planning could
end in a problematic situation, where the agent can not
accomplish its mission. For that reason, communication
is introduced between the agents, and a communication
protocol is designed.

The design of the communication protocol is formulated
as a decision-making problem in a decentralized discrete
event system Debouk et al. (2000, 2003); Keroglou and
Hadjicostis (2018); Yin and Lafortune (2018). In that case,
the communication is event-driven, and formal verification
along with control techniques are used in the discrete
event formalism. Specifically, supervisory control Cassan-
dras and Lafortune (2008) is applied to guarantee speci-
fications expressed in a temporal logic formulation, which
in our case (i.e., scLTL specification) is translated into
an equivalent finite automaton. The major contribution
of this work is the proposal of an algorithm that verifies
the existence or not of a communication policy, which
guarantees the local objectives for the agents.

The remaining sections of this paper are organized as
follows. In Section II, we revisit notions from Languages
and Automata, needed later in the paper. In Section III,
we formulate the problem. In Section IV, we verify the
allowed behavior of a mobile sensor, according to its scLTL
specification. In Section V, we develop the algorithm
that checks, if there exists a communication policy, which
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allows a robotic vehicle, to move without restrictions to its
workspace. This is also the main contribution of the paper.
In Section VI, we conclude the paper, and we propose
extensions of the current work.

2. NOTATION AND BACKGROUND

2.1 Languages and Automata

Let Σ be an alphabet (set of events) and denote by Σ∗ the
set of all finite-length strings of elements of Σ (sequences
of events), including the empty string ε (the length of a
string s is denoted by |s| with |ε| = 0). A language L ⊆ Σ∗

is a subset of finite-length strings in Σ∗ (i.e., sequences of
events with the convention that the first event appears on
the left). Given strings s, t ∈ Σ∗, the string st denotes
the concatenation of s and t, i.e., the sequence of events
captured by s followed by the sequence of events captured
by t. For a string s, s denotes the prefix-closure of s, and
is defined as s̄ = {t ∈ Σ∗ | ∃t′ ∈ Σ∗{tt′ = s}}. For two
strings s and t, we also define t ∈ s, if ∃t1, t2 ∈ Σ∗, such
as t1tt2 = s.

Definition 1. (Finite State Automaton (FSA)). A finite
state automaton is captured by G = (X,Σ, δ,X0, F ),
where X = {1, 2, . . . , N} is the set of states, Σ is the set
of events 1 , δ : X × Σ → 2X is a nondeterministic state
transition function (in the simpler case, where δ : X ×
Σ→ X, then we call it a deterministic transition function,
and the FSA is a deterministic finite automaton or DFA),
X0 ⊆ X is the set of possible initial states 2 , and F is the
set of Accept states.

For a set Q ⊆ X and σ ∈ Σ, we define δ(Q, σ) =
∪q∈Qδ(q, σ); with this notation at hand, the function δ can
be extended from the domain X×Σ to the domain X×Σ∗

in the usual recursive manner: δ(x, σs) := δ(δ(x, σ), s) for
x ∈ X, s ∈ Σ∗ and σ ∈ Σ (note that δ(x, ε) := {x}). The
behavior of G is captured by L(G) := {s ∈ Σ∗ | ∃x0 ∈
X0{δ(x0, s) 6= ∅}}. We use L(G, x) to denote the set
of all traces that originate from state x of G (so that
L(G) =

⋃
x0∈X0

L(G, x0)).

Definition 2. (Refined Observer). Consider an FSA G =
(X,Σ, δ,X0, F ). The Refined Observer Gobs = (Xobs,Σ,
δobs, Xobs,0, Fobs) is constructed as follows:

• The initial state Xobs,0 = {X0};
• Each state of Gobs is associated with a unique subset

of states of the original NFA G (so that there are at
most 2|X| = 2N states);

• Xobs ⊆ 2|X| is the set of states reachable in Gobs from
the set of initial states Xobs,0;

• At any state Z ′ (Z ′ ⊆ X), the next state (Z =
δobs(Z

′, e)) upon observing an event e ∈ Σ is
· Z = ∪x∈Z′δ(x, e), if (∀x ∈ Z ′)→ (δ(x, e) 6= ∅)
· Z is undefined, otherwise.

• Fobs = {Z ′ ∈ Xobs : (∀x ∈ Z ′)→ (x ∈ F )}

1 Usually the set Σ of events is partitioned into the set Σo of
observable events and the set Σuo of unobservable events. For
convenience and simplicity we assume throughout the paper that
Σ = Σo.
2 In the next sections we will use, without loss of generality, a unique
state x0 as initial state of an FSA.

Remark 1. Note that the construction of the Refined Ob-
server presented in this paper, is a modified version of the
Observer that is presented in Cassandras and Lafortune
(2008). In our case, all events are observable. Moreover,
the next state (δobs(Z

′, e)) is defined if and only if δ(x, e)
is defined for all states x ∈ Z ′. Also, the Accept states of
our Observer (Fobs) are different than the states presented
in Cassandras and Lafortune (2008). In our case, we want
all different paths going to the same state Z ∈ Xobs to
reach Accept states (x ∈ Z ⊆ F ).

3. PROBLEM FORMULATION

Consider a heterogeneous multi-agent team, which consists
of two types of agents, Type A: mobile sensors, and Type
B: ground mobile robots deployed in a partially known
environment partitioned into a grid of finite number of
cells. In our setup, an element from the set of labels
{C,NC, SA,UN}, holds true for each cell. The labels
describe i) critical areas (C), ii) non-critical areas (NC),
iii) safe areas (SA), and iv) unknown areas (UN). In
Critical areas (C), one can find human survivors, while
in non-critical areas (NC) there is no presence of human
survivors. While the mobile sensor moves, it could reveal
the label of one or more unknown areas (which can be
either noncritical NC, or critical areas C).

Definition 3. (Observation function o). Given a finite
number of cells |X|, we define the observation map of a
cell (i.e., a state x ∈ X), as the function o : X → L, where
L is the set of labels, and o(x), for any x ∈ X, is the label
of state x.

Assumption: The agents can move from their current cell
to any of the adjacent neighboring cells provided that this
move is possible on a Finite Transition System, which is
a finite abstraction of the dynamics of each agent Ayala
et al. (2013). Each agent needs to satisfy a local objective
expressed in a syntactically co-safe linear temporal logic
formula (scLTL), defined below.

Definition 4. (scLTL syntax)Belta et al. (2017) A (propo-
sitional) syntactically co-safe linear temporal logic (scLTL)
formula φ over a set of observations L (given in Defini-
tion 3) is recursively defined as φ = > | l | ¬l | φ1 ∧
φ2 | φ1 ∨ φ2 | © φ | φ1 U φ2, where l ∈ L is a label and
φ, φ1, and φ2 are scLTL formulas.

Initially agents of type A, and B, have partial knowledge
of the environment. Assuming agents of Type B have
perfect localization, they can perfectly determine their
current cell. Agents of Type B gain information about
their environment communicating with an agent of Type
A (a mobile sensor). The problem is presented in a simple
setup, where there is only one agent A (of Type A), and
one agent B (of Type B). Agent A is described below.

3.1 Agent A (of Type A)

Agent A is a mobile sensor, which can identify the presence
of survivors in an area. The finite abstraction of the
dynamics of agent A is given by the following Finite
Transition System.

Definition 5. (Finite Transition System for agent A).
TA = (XT,A,ΣA, δT,A, X0,T,A, L,oA), where XT,A is the
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set of states, ΣA is the set of inputs (controls or ac-
tions), which in our case is the set of possible movements
ΣA = {W1, E1, S1, N1} (meaning accordingly, moving
West, East, South, or North), δT,A : XT,A × ΣA → 2XT,A

is the transition function, L is the set of labels of the
states L = {C,NC, SA,UN} and oA is a row vector oA

= [oA,1 oA,2 ... oA,|XT,A|], where oA,i = o(xi) ∈ L is the
label of state xi ∈ XT,A.

Agent A needs to satisfy an scLTL formula (φa), which is
expressed as an FSA Ayala et al. (2013).

Definition 6. The finite state automaton, that expresses
the valid behavior conforming to the specification φa is
the tuple Aφa = (Yφa , L, δφa , Y0,φa , Fφa), where Yφa is the
finite set of states, Y0,φa ∈ Yφa is the initial state, L is the
set of labels {NC,C, SA,UN}), δφa : Yφa×L→ Yφa is the
transition function, and Fφa is the set of Accept states.

Example 1. Let agents A (mobile sensor) and B (robotic
vehicle), moving in the workspace, with finite abstractions
of their dynamics given by Finite Transition Systems TA
and TB drawn in Fig. 1. Each agent (A and B), needs
to satisfy an scLTL formula (φa and φb) respectively (see
Fig. 2).

A

NC NC

UNSA
NC NC

UNSA

B

Fig. 1. Finite Transition Systems, TA (upper left) and TB
(lower right) modeling the dynamics of agents A and
B.

A SA

B

SA,C,NC,UN

SA,C,NC,UN

A a

A b

NC,SA

Fig. 2. Finite Automaton Aφa expressing the scLTL for-
mula φa := (¬C)U(SA) for agent A (i.e., agent A
should not reach a state with label C before reaching
a state with label SA), and Finite Automaton Aφb

expressing the scLTL formula φb := (¬UN)U(C) for
agent B (i.e., agent B should not reach a state with
label UN before reaching a state with label C).

3.2 Update of the Observation function

For an agent of type A, every time a new sensor reading is
obtained, the labels of all the cells within the sensor’s range
are updated. Therefore, agent A is able to identify with ac-
curacy the areas labeled as UN (unknown) corresponding
to each cell within the sensor’s range. The sensor range
function (SR) of an agent of Type A is defined below.

Definition 7. (Sensor Range SR). Given a Finite Transi-
tion System TA = (XT,A,ΣA, δT,A, x0,T,A, L,oA), which
captures the dynamics of an agent of Type A, the sensor

range of agent A is defined as the function SR : XT,A →
2|XT,A|, where SR(x), for any x ∈ XT,A, is the set of
reachable states from state x, after the execution of a single
event, e ∈ ΣA. Therefore, we have, SR(x) = {x′ ∈ XT,A :
∃e ∈ ΣA s.t. x′ ∈ δT,A(x, e)}.

The observation function (o) is updated after the execution
of a single event (e ∈ ΣA). In general, the updated
observation row vector ot

A = [otA,1 otA,2 ... otA,|XT,A|] is

defined for a sequence of events t = e1e2...e|t|, where for
j ∈ {1, ...|t|}, we have ej ∈ ΣA. The updated observation
otA,i describes the updated label for state xi ∈ XT,A,

after the execution of t. The updated observation otA,i is

different than oA,i (i.e., otA,i 6= oA,i), if and only if

(1) oA,i = UN ,
(2) ∃s, s.t. t = ss′, with xs = δT,A(x0,T,A, s),
(3) and xi ∈ SR(xs).

The updated label will then be otA,i 6= UN , and it depends
on the sensor readings. Finally, the observation function is
updated (o(xi)← otA,i). In any other case, the observation

function is not updated (o(xi)← oA,i).

Example 1. (continued) We have ΣA = {S1, N1, E1,W1}
and the initial knowledge regarding the labels of the states
is oA = [NC NC SA UN ], because for state X1 we have
o(x1) = oA,1 = NC, for X2 we have o(x2) = oA,2 = NC,
for X3 we have o(x3) = oA,3 = SA, and for state X4

we have o(x4) = oA,4 = UN . Thus, the only label that
needs to be updated is the label of state X4. Assuming
that agent A moves South (i.e., executing S1), then the
current state of agent A, is δT,A(X1, S1) = X3. We also
have SR(X3) = {X3, X4}, which means that the sensor
reading is able to update the label of X4. In our case, the
sensor gives us oS1

A,4 = C, which means that the observation

function is updated for state X4 from o(X4) = UN to
o(X4) = C.

Remark 2. The number of different observation maps ot
A

is finite, and in the worst case the number of all different

observation maps is |O||XT,A|. In our case, one state is
labeled as unknown, with two possible updated labels
{C,NC}, which means that there are two possible updated
observation maps.

3.3 Agent B (of Type B)

Agent B is a ground mobile robot, which can rescue human
survivors, but it cannot sense its environment. The finite
abstraction of the dynamics of agent B is given by the
following Finite Transition System.

Definition 8. (Finite Transition System for agent B).
TB = (XT,B ,ΣB , δT,B , X0,T,B , L,oB), where XT,B is the
set of states, ΣB = {W2, E2, S2, N2} is the set of possi-
ble movements (meaning accordingly, moving West, East,
South, or North), δT,B : XT,B × ΣB → 2|XT,B | is the
transition function, L is the set of labels of the states
L = {C,NC, SA,UN} and oB is a row vector oB =
[oB,1 oB,2 ... oB,|XT,B |], where oB,i = o(xi) ∈ L is the
label of the state xi ∈ XT,B .

Agent B needs to satisfy an scLTL formula (φb).

Definition 9. The finite state automaton, that expresses
the valid behavior conforming the specification φb is the
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tuple Aφb = (Yφb
, L, δφb

, Y0,φb
, Fφb

), where Yφb
is the finite

set of states, Y0,φb
∈ Yφb

is the initial state, L is the set of
labels, δφb

: Yφb
× L→ Yφb

is the transition function, and
Fφb

is the set of accepting (final) states.

3.4 Communication between agents A and B

The communication is initiated by agent B and it is event-
driven. Therefore, agent B initiates communication with
agent A only immediately after the execution of an event
(e.g., agent B moves West (W2)). The decision of the
initiation (or not) of a communication with agent A is
formulated as an action from the set Com = {R, R̄}, where
R denotes the initiation of communication (a request) and
R̄ denotes the absence of communication. Agents of type
B, initiate a request according to a set of communication
protocols which are designed to work locally for each agent
of type B. Agent B requests information from A in order
to establish the objective of its mission (i.e., rescuing
survivors, expressed as φb). The requested information
will be i) the current state of agent A, and ii) the
information about the environment, acquired by agent A
(i.e., identification of the existence of survivors for areas
scanned by agent A). Therefore, agent B requests the
updated observation function of agent A, for states (xi ∈
XT,B), of which it does not have information (oB,i = UN
and otA,i 6= UN).

3.5 Objective

In our setup, one wants to verify if a communication
protocol that guarantees the local specification always
exists. Exploring this setup, one can verify if there are
guarantees about the satisfaction of the objective of agent
B. Therefore, one needs to verify that for any finite
planned trajectory for agent B, agent B will always be
able to achieve its local objective, by acquiring information
from agent A. Therefore, one can be certain, that any
a priori finite planned trajectory, cannot lead agent B
to a state, where its local objective will not be feasible
(i.e., infeasibility occurs if there are no future trajectories
that could establish the objective). This case is important,
because irregardless of an initial planning, one can always
find a trajectory in an unknown environment, without
needing to worry about the possibility of reaching states
where the objective is infeasible. It also indicates how
robust a solution is, in case of uncertainty (e.g., planning
a move W2 and due to uncertainty, having instead a
move E2). The objective is formally specified as follows:
for any sequence of actions t = t1t2...tn ∈ L(TB) of
agent B of any finite length n > 0, there always exists a
communication policy πt ∈ Com∗, where Com = {R, R̄}
s.t. (∃t′ = t′1...t

′
k with tt′ ∈ L(TB)) ∧ (∃πt′ ∈ Com∗) such

that δφB
(Y0,φB

, oπt
t o

πt′
t′ ) ∈ FφB

, where oπt
t = oπt

t1 ..., o
πt
tn ,

with oπt
tj being the updated observation function (o(xj))

for the state xj = δB(x0,B , t1...tj), after the application of
the communication policy πt (o

πt′
t′ is defined similarly).

4. VALID BEHAVIOR OF AGENT A

A product is constructed of i) the Finite Transition system
which describes the abstraction of the dynamics of the
movements of agent A on the workspace, and ii) the finite

automaton which expresses the behavior that validates the
syntactically co-safe specification φa, for agent A. Con-
structing the product automaton, the behavior of agent A
is controlled and the only allowed behavior guarantees the
required local specification.

Definition 10. (Controlled Finite State Product Automa-
ton). Given Finite Transition System TA = (XT,A,ΣA,
δT,A, x0,T,A, L,oA) and FSAAφa = (Yφa , Y0,φa , L, δφa , Fφa),
we construct AP = (XA, X0,A,ΣA, δA, FA), where

• XA = XT,A × Yφa × ot
A, is the product of the

set of states x ∈ XT,A, y ∈ Yφa , and ot
A =

[otA,1 otA,2 ... otA,|XT,A|], after the execution of a se-

quence of events t.
• X0,A = X0,T,A× Y0,φa × oεA, where oεA are the initial

labels, before the execution of any event (t = ε).
• ΣA is the input alphabet,
• δA : XA×ΣA → 2|XA| is the transition map, where for
xA = (xk, y,oA), we have δA((xA, σ) = (xl, y

′,o′A) ∈
XA such that xl ∈ δT,A(xk, σ), y′ = δφa(y, oA,k)),
and o′A is the updated row vector for the labels for
all states xj ∈ XT,A, where o′A,j = oA,j if oA,j ∈
{C,NC, SA}, otherwise, if oA,j = UN , and xj ∈
SR(x), then o′A,j ∈ {C,NC}, is updated according to
the observation of xj after the sensor reading. In case
that, oA,j = UN , and xj /∈ SR(x), then o′A,j = UN .

• xF,A = (x, y,oA) ∈ FA, for x ∈ XT,A and y ∈ Fφa
.

4.1 Refining the behavior of agent A according to local
specification φa

Having constructed the product automaton AP , the be-
havior that satisfies the local specification φa is identi-
fied. First, the nondeterministic finite automaton AP is
converted to the deterministic Refined Observer DP =
(XD, X0,D,ΣA, δD, FD) (see Definition 2). We then take
the Co-accessible automaton of DP Cassandras and Lafor-
tune (2008), which refines the language of DP remov-
ing all states, from which there are no reachable ac-
cept states, and is given by AP

′
= CoAc(DP ) =

(X ′A, X0,A,ΣA, δ
′
A, F

′
A). Finally, the states of AP

′
are un-

folded to produce its language equivalent nondeterminis-
tic automaton, which is called ArA . Automaton ArA =
(XrA , X0,A,ΣA, δ

rA , FA) is a refined version of AP , with
less states (XrA ⊆ XA) and transitions (for a state x ∈
Xra and e ∈ ΣA, always exists δrA(x, e) ⊆ δA(x, e)).

5. VERIFICATION OF THE EXISTENCE OF A
COMMUNICATION PROTOCOL

Agent’s B specification is also expressed in scLTL, and
described as a finite automaton (see Fig. 2). Therefore,
because of the partial knowledge about the environment,
and lack of sensing abilities, agent B needs to request in-
formation from agent A in order to fulfill its own objective.
For that reason, a verification algorithm is developed, that
answers to the question: “does there exist a communication
policy, such that agent B can move without restrictions in
its workspace, and at the same time guarantees that there
always exists a path that satisfies φb?”
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5.1 Verification Algorithm

A Verifier is constructed, to identify if there exists a
communication policy under which agent B, can establish
its own objective. There are two phases and types of
states. In the first phase, agent B controls the initiation
of communication. The movement of agent B is not
considered as a controlled behavior in this case (although
it is an observable behavior), because we are interested in
proving the existence or not of a communication policy, for
any possible movement of agent B. In the second phase,
agents A and B execute a move. Our objective is to verify
that for any possible action sequence (movements of agents
A and B), one can find a communication policy, so that
the objective of agent B is validated. The construction of
the Verifier is presented below.

Definition 11. (Verifier). The Verifier V I = (Xv,Σv, δv,
Xo,v, Fv), is described below:

• Xv is a set formed by the Cartesian product XA ×
P(XA)×XB ×Σv{r,m} and xv ∈ XV is a quintuple

of the form (xA, x
B
A , xB , eB , turn) such that

· xA ∈ XrA is the current-state of agent A
· xBA ∈ P(XA) is the estimate of agent B about the

current-state of agent A.
· xB = (xm, y

B ,oB) is the current-state of agent
B. In case that yB ∈ FφB

, then xv ∈ Fv.
· eB ∈ ΣB is the event that will be executed next

by agent B.
· turn ∈ {r,m}, where r indicates the first phase

(rectangle-shaped states, drawn in Fig. 3) and
m indicates the second phase (elliptical-shaped
states drawn in Fig. 3).

• X0,v describes the initial set of states, where (xA, xA,
xB , eB , r) ∈ X0,v if xA ∈ X0,A, xB = (xm, y

B ,oB),
where xm ∈ X0,T,B , yB ∈ Y B0 , oB = oεA and eB ∈ ΣB
s.t. ∃x′B = (xn, y

′B ,o′B) with xn ∈ δT,B(xm, eB), and
y′B ∈ δφA

(yB , oB,m).
• The event set is Σv = {R, R̄, p}, where R or R̄

describes the initiation or not of a communication
request, and p describes all possible moves for agent
A (a move is an event in ΣA).

• Step 1. Initiation or not of communication by agent
B: The Verifier moves via event R or R̄. The execu-
tion of these events formulate the initiation or not
of communication by agent B. In case that agent
B executes R (initiation of communication), this
is formally expressed as δv((xA, x

B
A , xB , eB , r), R) =

((xA′ , xB
′

A , xB′ , eB′ ,m), where
· xA′ = xA = (xk, y

A,oA)
· xBA′ = {xA}
· eB′ = eB
· xB′ = (xn, y

B′
,oB′), with

xn = xm
yB

′
= yB

oB′ = oA

In case that agent B executes R̄ (agent B does not
initiate communication), this is formally expressed as

δv((xA, x
B
A , xB , eB , r), R̄) = ((xA′ , xB

′

A , xB′ , eB′ ,m),
where
· xA′ = xA = (xk, y

A,oA)

· x′BA = ∪xrA∈XB
A
R(xrA), where R(xrA) is simply

the set of reachable states in ArA , starting from
state xrA .
· eB′ = eB
· xB′ = xB .

• Step 2. Agents A and B move in parallel, where
agent A moves with all possible sequences of moves
s ∈ Σ∗A and agent B is making a single move
e2 ∈ ΣB . All these pairs of moves by both agents,
are described symbolically by a single event p ∈
Σv in the Verifier. This is formally expressed as
δv((xA, x

B
A , xB , eB ,m), p) = ((xA′ , xB

′

A , xB′ , eB′ , r),
where
· xA′ ∈ R(xA)
· x′BA = xBA
· x′B = (xn, y

′B ,o′B), with
xn ∈ δT,B(xm, eB)
y′B ∈ δφB

(yB , oB,m)
o′B = oB

· e′B ∈ {e ∈ ΣB : (δT,B(xm, e) 6= ∅) ∧
(δφB

(yB , oB,m) 6= ∅)}
• Step 3. Steps 1 and 2, are repeated until we finish the

construction of the Verifier. 2

The verification continues by removing the “blocking
states”. The algorithm runs recursively to find all blocking
states, starting from the set of immediately blocking states
(i.e., the set of states with no outgoing transitions at all,
or states where there is no path reaching an Accept state
from that state). Having formulated the problem into a
supervisory control one, the problem of characterizing and
pruning the “blocking states” is solved as an instance of
the Basic Supervisory Control Problem-Nonblocking Case
(BSCP-NB), in the terminology of Cassandras and Lafor-
tune (2008). In the end, after the removal of all blocking
states, the Verifier should satisfy that “the initial states
of the Verifier are not “blocking states”. The proof is
a straightforward outcome of the way that the blocking
states are defined and removed applying the BSCP-NB
formulation.

Remark 3. A simpler Verifier could model only the initi-
ations of communication requests (C = {R}) after any
possible move of agent B. However, the Verifier presented
here can be easily extended to capture the complexity of
a general multi-agent system. We note that our Verifier
cannot be used to synthesize a communication protocol
(other than the protocol which initiates all communication
requests after the execution of any event). In order for the
Verifier to be used to synthesize a protocol, it needs to
combine all possible states of agent A into a set of states.
This extension of the Verifier is left for a future work.

Example 2. Example 1 is now modified in order to illus-
trate a case, where one can choose a communication policy
initiated by agent B, for every possible plan of action
for both agents A and B. Example 1 illustrates another
scenario for the unknown labeled areas. In that case, agent
A i) starts at the initial state x2 and ii) knows a priori, that
the unknown areas cannot be noncritical areas. However, if
agent A cannot pinpoint the exact location of the survivors
in an unknown area, then it does not update the label of
this area, because it cannot provide useful information to
an agent B, responsible for the rescue mission. Therefore,
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taking AP
′

which is the co-accessible part of the Refined
Observer of AP , and unfolding it, we have ArA . The solu-
tion of the problem continues by constructing the Verifier
drawn in Fig. 3.

Fig. 3. A part of the Verifier for Example 2, before re-
moving the “immediately blocking states” (the states
in gray), which are the only “blocking states” in this
Example.

Finally, there are different communication protocols that
agent B can implement based only on local information.
Let us say that the initial state is (x2r, x

2
r, (x2, y

b
0, UN),W2),

this means that the next executed event by agent B, will
be W2 (moving West). In this example, one can synthesize
a protocol, even without knowing the exact state of agent
A (Remark 3 does not apply in this case), because agent A
has a complete knowledge of its surrounding environment
from its initial state x2r (i.e., the state of agent A is not
important). Therefore, agent B will take the same decision
for any possible state that agent A lies in. Let us assume
that agent B decides to not request information from
agent A, which means that R̄ is executed. The Verifier
goes to state (x2r, R(x2r), (x2, y

b
0, UN),W2) from which the

pair (t11, e
1
2) is executed, where t11 ∈ Σ∗1, and e12 = W2

are symbolically represented as p in the Verifier. After
the execution of p, the Verifier is reaching a state of the
form (xkr , R(x2r), (x1, y

b
0, UN), E2), where xkr ∈ R(x2r). For

illustration purposes let us say that xkr = x3r (in Fig. 3,
w.l.o.g., the only case which is drawn, is the one where the
next executed event is E2). Again, agent B does not re-
quest any information from agent A, so R̄ is executed, and
the Verifier reaches the state (x3r, R(x3r), (x1, y

b
0, UN), E2).

Then again some p is executed, which symbolically cap-
tures the pairs (t21, e

2
2), where t21 ∈ Σ∗1, and e22 = E2,

and the state (x4r, R(x3r), (x2, y
b
0, UN), S2) is reached. From

that state, agent B requests information from agent A, be-
cause otherwise the Verifier would be reaching a blocking
state (the state in grey, drawn in Fig. 3). Finally, for any
executed sequence of events by agent A, t = t11t

2
1t

3
1 ∈ Σ∗1,

and for W2E2S2 executed by agent B, there exists a legal
sequence of communication requests which is given as
R̄ p︸︷︷︸

(t11,W2)

R̄ p︸︷︷︸
(t21,E2)

R p︸︷︷︸
(t31,S2)

.

6. CONCLUSION

We have considered the problem of verifying the existence
or not of a communication policy in a multi-agent system
to guarantee temporal logic specifications, in the form of
an scLTL formula. We proposed a verification algorithm

and we provided appropriate constructions from which a
communication policy can be extracted for all possible
initial motion plans for each agent. For the future, we are
interested in developing a method to obtain an optimal
communication policy according to a given criterion (e.g.,
a cost function). We are also interested in extending the
aforementioned problem in various directions, i) extending
it to a more general temporal logic formulation (e.g., LTL),
ii) extending it to a probabilistic setting (Markov decision
processes), and iii) having timed constraints synthesizing
a both time and event-driven communication protocol.
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