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Abstract: In this paper, we consider electric vehicle charging facilities with limited space and
power resources. We assume the facility offers a finite selection of levels, i.e., charging rates, for
varying prices. Users arrive at the facility randomly, requiring a random amount of charge and
possessing a random impatience factor dictating their value of time. Each user then chooses
a charging rate that minimizes their total cost that includes an opportunity cost for the time
required to charge associated with their impatience factor. Knowing the probability distribution
of user charging demands, user impatience factors, and the number of arrivals at a charging
facility, we present high-confidence bounds on the total number of active users and aggregate
power use of all active users at any given time. We present a case study to illustrate the results.
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1. INTRODUCTION

Improved affordability of electric vehicles (EVs) has cat-
alyzed their adoption such that McKerracher et al. (2019)
predict that by 2040 the United States’ new vehicle sales
will be comprised of 57% electric vehicles and the global
passenger vehicle market will be 30% electric. With the
growing numbers of electric vehicles, the demands on
charging facilities will be greater. Analysis and control of
the EV charging problem is therefore needed to ensure
effortless operation of EV charging facilities.

This has led to research studying charging facility usage
from an optimization or control system framework, e.g.,
in Wu et al. (2011); Zhang and Li (2015). Similarly, in Li
et al. (2013), charging management is performed by solving
a social welfare nonlinear optimization problem. In Gan
et al. (2012), scheduling electric vehicle charging is formu-
lated as an optimal control problem which algorithmically
converges to optimal charging profiles. Bae and Kwasinski
(2011) consider a spatiotemporal model for rapid charging
facilities. Moradipari and Alizadeh (2019) study optimal
pricing and routing schemes for a charging network where
users specify their priority level while the charging network
chooses between a profit and a social welfare maximizing
mode.

In contrast to previously mentioned work, the present
work analyzes the EV charging problem from a purely
probabilistic perspective. We model the user-charging fa-
cility dynamics in a queuing framework by leveraging the
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knowledge of the probability distribution of users’ demand
and impatience factor to provide confidence intervals on
a charging facility’s likelihood of not exceeding specific
active user and power budget levels. Confidence intervals
for the number of active users and total power consump-
tion have previously been presented in Pandit and Coogan
(2018), in the case when the users can choose their charg-
ing rate arbitrarily. In contrast to Pandit and Coogan
(2018), we formulate a model as a discrete choice model
under stochastic demand where a user seeks to minimize
the price paid to charge their vehicle from L-levels of
service, i.e., L pricing functions. Each level of service offers
a different charging rate, and hence the users’ impatience
factors will affect their level choices.

This paper is organized as follows: Section 2 formally in-
troduces relevant parameters and formulates the problem
statement for the discrete choice model, Section 3 presents
the main results of this paper, Section 4 presents a case
study which compares the theoretical to simulated results,
and Section 5 concludes the paper. The Appendix contains
proofs of some of the results presented in the paper.

2. PROBLEM FORMULATION

We consider an EV charging facility that has a finite num-
ber of charging stations for individual vehicles, receives
power from a local utility operator, and does not face
competition. At this facility, a user j arrives at some time
aj (in hr.) with charging demand xj (in kW-hr.) and an
impatience factor αj (in $/hr.). The impatience factor
quantifies how much a user values their time versus money
and is also called the opportunity cost factor. Throughout
the paper we will make the following assumption about
the aforementioned variables:
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Assumption 1. (Users). User arrivals at the charging facil-
ity are a Poisson process with parameter λ (in EVs/hr.)
and hence users are arriving with no information on the
current charging availability. Individual charging demand
xj and the impatience factor αj for each user j are ran-
dom variables which are independent and identically dis-
tributed (i.i.d) with probability density functions (PDF)
fX(x) and fA(α), respectively. Additionally, these random
variables are positive and bounded so that there exists
finite 0 < xmin < xmax and 0 < αmin < αmax such
that fX(x) is supported only on [xmin, xmax] and fA(α)
is supported only on [αmin, αmax].

When considering a collection of i.i.d random variables
indexed by subscripts, we use non-subscript variables
when referring to properties that hold for any of the i.i.d
random variables. For example, E[x] =

∫∞
0
ξfX(ξ) dξ is

the expectation of each xj .

The charging facility offers L levels of service. Each level
of service ` ∈ {1, . . . , L} corresponds to a distinct charging
rate R` > 0 (in kW) and price V ` (in $/kW) that is the
cost per unit energy for the service level. Thus, user j
with charging demand xj pays xjV

` (in $) to receive a full
charge over the time horizon xj/R

` (in hr) when choosing
level of service `.

Assumption 2. (EV Charging Facility) Among L levels of
service offered by the charging facility, a higher charging
rate is more costly, i.e., if Ri > Rk then V i > V k.
Moreover, charging rates and prices are distinct so that
Ri 6= Rk for all i 6= k. Lastly, and without loss of
generality, the charging facility’s pricing functions are
enumerated such that V 1 < V 2 < . . . < V L and therefore
R1 < R2 < . . . < RL. Define the minimum charging rate
Rmin := R1 and the maximum charging rate Rmax := RL.

Since user j values their time at a rate αj , they may be
willing to pay for a higher level of service since it delivers
a full charge faster. To this end, the total cost faced by a
user with impatience factor αj and charge demand xj who
chooses service level ` is given by

g`(xj , αj) = xjV
` + αj

xj
R`

. (1)

In (1), the first term, xjV
`, quantifies the cost to the

user resulting from their demand at arrival. The second
term of (1), αj

xj

R` , is the cost associated with how much

a user values their time where
xj

R` is the time to charge
for a particular service level `. Individual users choose
a level of service at a charging facility which minimizes
their total cost of charging factoring in their impatience.
Let S(xj , αj) : [xmin, xmax]× [αmin, αmax]→ {1, . . . , L} be
defined by

S(xj , αj) = arg min
`∈{1,...,L}

g`(xj , αj) . (2)

Then, a rational user j chooses level of service S(xj , αj)
in order to minimize their total cost as formalized in
Assumption 3.

We also define the values vj and rj to be the charging rate
and cost per unit of energy chosen by user j after solving
(2), i.e., rj = RS(xj ,αj) and vj = V S(xj ,αj). Observe
that the charging times uj := xj/rj , and αj , constitute

a collection of independent and identically distributed
random variables.

Assumption 3. (Users are Rational) Each user chooses a
charging rate according to (2) and leaves the charging
facility once they have satisfied their charging demand.
Thus, user j occupies a charger at the facility during the
time interval [aj , aj + uj ].

Charging facilities are concerned with adhering to both
user capacity and energy consumption restrictions. Let
N(t) be the set of active users at the charging facility at
time t, i.e., N(t) = {i : t ∈ [ai, ai + ui]}, where ui is the
time to charge, and let η(t) = |N(t)| be the cardinality of
the set of active users. Moreover,

Q(t) =
∑
i∈N(t)

ri =
∑
i∈N(t)

xi
ui

is the total charging rate at time t for all active users, i.e.,
the charging facility’s power consumption.

We consider the problem in which the charging facility
is interested in providing probabilistic guarantees on the
number of users in the system and the total power re-
quirements at any given time t. We thus wish to compute
a high-confidence bound on the total number of of active
users and their respective aggregate power draw at any
given time, as is made precise in the following problem
statement.

Problem Statement 1. Given an EV charging facility with
L service levels satisfying Assumption 2 and EV users
satisfying Assumptions 1 and 3, for any M number of
users and R total charging facility power consumption
rate, compute δ(M) and γ(R) such that

P
(
η(t) <M

)
≥ 1− δ(M) (3)

and
P
(
Q(t) < R

)
≥ 1− γ(R) . (4)

3. MAIN RESULTS

In this section, we first introduce a proposition which
formalizes the probability a randomly selected user will
choose a particular level of service. Then, we present a
theorem which solves the problem statement above and
provides probabilistic guarantees of the form of (3)–(4).

First, we present Proposition 1 which defines the probabil-
ity a cost function of the form of (1) will be the minimum
within the set of broadcast levels of service.

Proposition 1. Under Assumptions 1, 2, and 3, consider
the set of L functions of two independent random variables{
g`(xj , αj)

}L
`=1

where each g` is as in (1). Then, for

k ∈ {1, . . . , L},

P
(
S(xj , αj) = k

)
= max

{
0,

∫ ᾱk

¯
αk

fA(α) dα

}
where

ᾱk = min

(
αmax, min

i<k

V k − V i
1
Ri − 1

Rk

)
, (5)

¯
αk = max

(
αmin, max

k>i

V k − V i
1
Ri − 1

Rk

)
. (6)
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Proposition 1 states that, when a given level of service is
chosen with nonzero probability, there exists an interval,
which is possibly empty, of impatience factor values for
which that level of service minimizes the total cost to a
user. The probability that the given level of service will
be chosen is therefore computed by integrating the PDF
fA(α) on that interval.

Proposition 1 defines the probability a user will choose
level of service k. This probability is equivalent to the
probability of choosing a specific charging rate. The de-
tailed proof of Proposition 1 is in the Appendix A.1. Since
choosing a charging rate is a discrete choice, a probability
mass function (PMF) can be formulated for the rates of
charge.

Corollary 2. Under Assumptions 1, 2, and 3, the charging
rates rj chosen by each user j is a collection of independent
and identically distributed discrete random variables each
with probability mass function

pr(r) =



max

{
0,

∫ ᾱ1

¯
α1

fA(α) dα

}
, r = R1

...

max

{
0,

∫ ᾱL

¯
αL

fA(α) dα

}
, r = RL

(7)

where ᾱk and
¯
αk are as in (5) and (6) for k ∈ {1, . . . , L}.

Note that E[r] =
∑L
`=1R

`pr(R
`). Moreover, the choice of

charging rate rj chosen by a user j is only a function of
the impatience factor αj . Thus rj is independent of xj so
that E[u] = E[x]/E[r] is the expected charging time for
each user j. Next, we introduce the main theorem for this
paper which addresses Problem Statement 1.

Theorem 3. Consider a charging facility offering L levels of
service with a minimum charging rate of Rmin = R1 and
a maximum charging rate Rmax = RL operating under
Assumptions 1, 2, and 3. Given any M ≥ 0 number
of users and R ≥ 0 total charging rate, the following
statements hold at steady state for any time t:

(1) With confidence 1− δ(M), where

δ (M) =
exp

 −(M− λE[u])2

2
(
ME[r2] + Rmax(M−λE[u])

3

)
, if M > λE[u]

1 otherwise,

the number of users will not exceedM, i.e., P
(
η(t) <

M
)
≥ 1− δ(M).

(2) With confidence 1− γ(R), where

γ (R) =

min

{
1,

⌊
R
E[r]

⌋∑
m=
⌈

R
Rmax

⌉ exp

 − (R−mE[r])
2

2
(
mE[r2] + Rmax(R−mE[r])

3

)


×P
(
η(t) = m

)
+ δ

(⌊ R
E [r]

⌋)}
, if R > λE [u]E [r]

1, otherwise,

the total charging rate for all active users will not
exceed R, i.e., P (Q(t) < R) ≥ 1− γ(R).

Proof.

(1) We begin by proving the first statement. First, we
observe that, for a Poisson random variable Z with
mean λ, for any M, P

(
Z <M

)
≥ 1− δ†(M) where

δ†(M) = exp

(
− (M− λ)

2

2
(
λ+ M−λ

3

)).
This observation is made in Proposition 4 of Ap-
pendix A.2. This observation leads to Corollary 6
for a charging facility operating under Assumption 1.
Moreover, since the arrival and service process can
be seen as an M/G/∞ queue, η(t) is itself a Poisson
random variable for each t with mean λE[u] (Massey,
2002, Equation (9)). We can then apply this observa-
tion to E[η(t)] in Corollary 6 and this completes the
proof of the first statement.

(2) To prove the the second statement, recall we are inter-
ested in the sum of of the charging rate of active users
in the charging facility. Then, P

(∑
i∈N(t) (ri − E[r]) ≥

ν
)

= P (Q(t) ≥ η(t)E [r] + ν) . Let R = η(t)E[r] + ν
which implies ν = R− η(t)E[r]. By total probability,
it holds that

P
(
Q(t) ≥ R

)
=

∞∑
m=0

P
(
Q(t) ≥ R | η(t) = m

)
P
(
η(t) = m

)
=

β∑
m=
⌈

R
Rmax

⌉P(Q(t) ≥ R | η(t) = m
)
P
(
η(t) = m

)
+ P (η(t) > β)

Notice that the lower bound of the summation is
no longer zero since the probability of exceeding R
is zero even when choosing the worst case rate for
m < R/Rmax. Hence, we take the lower bound of the
summation to be the ceiling ofR/Rmax and the upper
bound to be some value β. Using Fact 5 (Bernstein’s
Inequality) in Appendix A.2, with b = Rmax and
n = η(t), gives

P
(
Q(t) ≥ η(t)E[r] + ν | η(t)

)
≤ exp

(
−ν2

2
(
η(t)E[r2] + Rmaxν

3

)).
Using this fact and substituting for ν,

P
(
Q(t) ≥ R

)
≤

β∑
m=
⌈

R
Rmax

⌉ exp

 − (R−mE[r])
2

2
(
mE[r2] + Rmax(R−mE[r])

3

)


× P
(
η(t) = m

)
+ P (η(t) > β) .

Note that to apply Bernstein’s inequality, R −
mE [r] > 0. This implies, m < R/E [r]. Then, β =⌊
R/E [r]

⌋
, i.e., the floor value of R/E [r]. Using this

fact, and the result from Statement 1 of Theorem 3,
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P
(
Q(t) ≥ R

)
≤

⌊
R
E[r]

⌋∑
m=
⌈

R
Rmax

⌉ exp

 − (R−mE[r])
2

2
(
mE[r2] + Rmax(R−mE[r])

3

)


× P
(
η(t) = m

)
+ δ

(⌊ R
E [r]

⌋)
= γ† (R) .

Similar to Corollary 6, as a result of Bernstein’s
inequality, the bound γ† (R) is less than 1 for some
interval of R ∈ (Γa,∞) where it attains the value
of 1 if R ≤ Γa. To find the exact interval for when
γ† (R) = 1 requires finding a specific value of R;
however, we know that Γa must be greater than or
equal to E [η(t)]E [r] as a result of using Bernstein’s
inequality on Q(t). Hence, by using the min function
finding the exact Γa can be avoided, i.e.,

γ (R) =

{
min

{
1, γ† (R)

}
R > E [η(t)]E [r]

1, otherwise.

Now, recalling E [η(t)] = λE[u] (Massey, 2002, Equa-
tion (9)) and P (Q(t) < R) = 1− P

(
Q(t) ≥ R

)
≥ 1−

γ (R) completes the proof.

Theorem 3 quantifies the likelihood a charging facility
under stochastic user arrivals and charging demand with
discrete levels of service will stay within (or exceed) a
specified threshold of user capacity and active user rate
consumption.

3.1 Main Result Discussion

A charging facility operator whose facility operates under
the construct of Section 2 and Assumptions 1, 2, and 3 can
utilize Proposition 1 and Theorem 3 to properly estimate a
high-confidence bound on the number of active users using
its facilities and their power consumption.

Computing the high-confidence bounds depends on E[u]
and E[r]. As an example, consider an EV charging facility
operator with capacity for 40 vehicles simultaneously and
would like to ensure with high probability that a charger
is available for each arriving user. Therefore, the facility
operator would like to quantify the likelihood the number
of active users will exceed a specified threshold. Here, an
operator can use Statement 1 from Theorem 3 to get such
a bound.

For instance, suppose the operator offers two levels of
service with R1 = 30, R2 = 40, V 1 = 5.2, and V 2 = 5.4.
Each arriving user chooses a level of service according
to (2). For these numerical values, the total user cost (1)
as a function of the impatience factor is illustrated in blue
in the left plot of Fig. 1. The resulting theoretical upper
bound on the number of active users for various confidence
bounds is illustrated in blue in the upper right plot of
Fig. 1. Notice that the theoretical bound predicts that, for
M = 40 active users there is only an 80% confidence that
40 will not be exceeded by η(t), i.e., the number of active
users.

If the operator wishes to achieve a higher level of confi-
dence that the facility capacity will not be exceeded, the
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1.0

1
−
δ(
M

)

δ(M)

δ+(M)

1500 2000 2500
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(R
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γ(R)
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g `
(x
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R2, V 2

(R1)+, V 1

(R2)+, V 2

Fig. 1. An illustration of the change in the theoretical
bounds after an increase in the vehicle charge rates.
The lines in blue indicate the initial costs and bounds
prior to a rate increase while red indicates those same
values post charge rate increase.

operator can increase the charging rates to (R1)+ = 50 and
(R2)+ = 70 while maintaining V 1 and V 2 the same. The
new total cost functions (1) as a function of the impatience
factor are illustrated in red in the left plot of Fig. 1. Notice
that the new theoretical bound, 1−δ+

M(M), has increased
the confidence that the number of active users will not
exceed 40; however, this occurs at the expense of higher
total active user charging rates. Hence, a charging facility
operator can use Theorem 3 to adjust the individual level
of service charging rates to manage the number of active
users. A similar exercise can be conducted for a case when
the facility total charging rate is of concern.

4. CASE STUDY

We present a case study which illustrates the theoretical
results of Theorem 3 compared to a simulated Monte
Carlo results. We consider a charging facility system which
broadcasts L = 5 pricing functions. 2

Satisfying Assumption 1, α has a truncated normal distri-
bution in this case study. We use the notationNtrunc to de-
note a truncated normal distribution. Similarly, satisfying
Assumption 1, we define the demand x to have a uniform
distribution where x ∈ [xmin, xmax]. Given the case study
parameters, we illustrate the charging facility’s 5 pricing
functions in Fig. 2. In the left plot, all of the charging
facility’s pricing functions are plot on [αmin, αmax] with
the truncated normal distribution Ntrunc(30, 20) superim-
posed while x, i.e., charging demand, is fixed. As stated
in Proposition 1, the probability a user chooses a level of
service can be computed by integrating the PDF fA(α)
on the interval during which a particular (1) is minimum.
To illustrate this fact, in the right-hand plot of Fig. 2,
the second pricing function from this case study is singled
out. Here, the region of the truncated normal distribu-
tion which corresponds to when g2(x, α) is a minimum is
shaded for a fixed x.

The simulation is run for T = 100 hrs with λ = 20
EVs/hr with a total of 1000 Monte Carlo draws. For the
set of pricing functions illustrated in Fig. 2, we obtain

2 The code for this case study is available at
https://github.com/gtfactslab/ifac_charging_facility
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Fig. 2. The charging facility’s 5 pricing functions on the
interval [αmin, αmax] for a fixed value of x. Here, the
truncated normal distribution, fA(α) which governs
the α statistics is superimposed. The region of the
domain [αmin, αmax] over which g2(·, α) is a minimum.
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δ(
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Total Active Users vs. Confidence Interval

M
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Fig. 3. A plot of the theoretical upper bound from The-
orem 3 on the total number of active users in the
charging facility versus Monte Carlo results. The error
bars represent the min. and max. values attained in a
particular percentile for all Monte Carlo draws while
the curve itself is the mean.

E[u] = 1.44 (hr.) and E[r] = 38.15 (kW). First, we
illustrate the high-confidence bound on the number of
users in the charging facility, i.e., 1− δ(M), as a function
ofM. The second set of data points in Fig. 3 illustrate the
1 − δ(M) percentile average across all the Monte Carlo
runs. Here, the error bars illustrate the minimum and
maximum values attained across all the Monte Carlo runs.
Empirically, we see the theoretical bound on the number
of active users in the charging facility for a specified levels
of service provides operators with the ability to adequately
quantify the likelihood η(t) will exceed some threshold.

Similarly, a charging facility may be required to adhere to
power rate constraints for all of its active users at some
time t. Because of this, we are interested in illustrating
the second statement of Theorem 3. Fig. 4 shows the
upper bound γ(R) on the total power draw of the active
users. Similarly, the average total power consumption
and the minimum and maximum values are presented in
Fig. 4. Here, we see that the theoretical bound provides a

0 500 1000 1500 2000 2500

R
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1
-
γ
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Total Charging Rate vs. Confidence Interval

R
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Fig. 4. A plot of the theoretical upper bound from The-
orem 3 on the total rate demanded by active users
(kW). Here, 1 − γ(R) is compared to the Monte
Carlo percentile mean values. The error bars represent
the min. and max. values attained in a particular
percentile for all Monte Carlo draws.

conservative quantification of the amount of power draw
of the active users in the charging facility. This bound is
more conservative than the bound on the total number of
active users because it is dependent on the bound from
Statement 1 of Theorem 3 which is itself not an exact
account of the number of active users in the charging
facility.

5. CONCLUSION

We studied the problem of computing high-confidence
bounds for charging facilities that work under the con-
struct of Section 2 and Assumption 1, 2, and 3. Specifically,
we consider the case when charging facilities present users
with L-discrete choices for levels of service, i.e., pricing
functions. We derived a theoretical bound which gives a
bound on the likelihood the total charging rate or total
number of active users in the charging facility will exceed
some threshold. We illustrated how a charging facility op-
erator may use the main result for modifying the number
of users in the charging facility. Lastly, we presented a
case study which illustrates the theoretical results and the
compares high-confidence bounds to simulated results.
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Appendix A. PROOFS

A.1 Proof of Proposition 1

Proof. Under Assumptions 1, 2, and 3, consider a set of
L functions of two independent positive random variables{
g`(xj , αj)

}L
`=1

of the form g`(xj , αj) = xjV
` + αj

xj

R`

Denote the difference gk(xj , αj)− gi(xj , αj) = xj
(
∆V ki +

αj∆R
ki) where ∆V ki = V k − V i, ∆Rki = 1

Rk − 1
Ri

and V i < V k and 1
Ri > 1

Rk for all i < k. Define

P
(
min {g`(xj , αj)}Li=1 = gk(xj , αj)

)
= P

(
S(xj , αj) = k

)
For a function gk(xj , αj) to be the minimum function, then
gk(xj , αj) < gi(xj , αj) for all i 6= k. It follows that

P
(
gk(xj , αj) < gi(xj , αj)

)
= P

(
xj
(
∆V ki + αj∆R

ki
)
< 0
)
.

we are specifically interested in ∆V ki + αj∆R
ki < 0. The

domain over which function gk is a minimum is [
¯
αk, ᾱk].

Since the functions have an ordering, i.e., V 1 < V 2 < . . . <

V L, we can define ᾱk = min
(
αmax,mini<k

V k−V i

1

Ri−
1

Rk

)
and

¯
αk = max

(
αmin,maxk>i

V k−V i

1

Ri−
1

Rk

)
. Since we are interested

in when ∆V ki+αj∆R
ki < 0, we can use these as the bound

of integration for the PDF of α whose definite integral
obtains the probability a function will be a minimum.
A function may never be a minimum on the domain
[αmin, αmax], for this case we add the max{·} function.
This completes the proof.

A.2 Proof of observation in Theorem 3

The proof of statement 1 of Theorem 3 relies on the
following observation.

Proposition 4. Let Z be a Poisson random variable with
mean λ. Then, for anyM > λ ≥ 0, P

(
Z <M

)
≥ 1−δ(M)

where

δ(M) = exp

(
− (M− λ)

2

2
(
λ+ M−λ

3

)) .

As an initial step to proving Proposition 4, we first recall
Bernstein’s inequality.

Fact 5. (Bernstein’s Inequality, Wainwright (2019)). Given
n independent, zero-mean random variables Xi such that,
for some b > 0, ν > 0, 0 ≤ Xi ≤ b for all 1 ≤ i ≤ n. Then,
almost surely, it holds that

P

(
n∑
i=1

(Xi − E[Xi]
)
≥ ν

)
≤

exp

(
−ν2

2
(∑n

i=1 E[X2
i ] + bν

3

)) . (A.1)

Finally, we apply the Fact 5 to prove Proposition 4.

Proof. [Proof of Proposition 4.] Recall from the Poisson
limit theorem (Durrett, 2019, Theorem 3.6.1) that a Pois-
son random variable Z with mean λ can be seen as a sum
of n Bernoulli random variables Xi ≤ 1 with mean p,
where p is such that np → λ when n → +∞. In other
words,

∑n
i=1Xi → Z as n → +∞. Here, we see that we

can now apply Fact 5 to find a bound on the value of a
Poisson random variable which is approximated as the sum
of Bernoulli random variables.

Let X =
∑n
i=1Xi and E[X] =

∑n
i=1 E [Xi] = np. Since

Fact 5 applies to zero-mean random variables, let X0 =
X−E[X] =

∑n
i=1Xi−

∑n
i=1 E [Xi] be a zero-mean sum of

Bernoulli random variables where E[X0] = 0. Then, we can
apply Fact 5 with b = 1 and letting M = ν + E [X] = ν +
np. Since we can approximate a Poisson random variable
via the Poisson limit theorem, by letting n→ +∞, we get

P (Z ≥M) ≤ exp

(
− (M− λ)

2

2
(
λ+ M−λ

3

)) .
This proves the proposition.

A direct corollary of Proposition 4 arises when dealing with
a charging station whose arrivals are a Poisson process,
then the number of active users in the charging facility
has a Poisson distribution, i.e., λ = E[η(t)].

Corollary 6. Consider a charging facility operating under
Assumption 1 where η(t) is the number of active users
in the charging facility at time t and E [η(t)] is the mean
number of users in the charging facility. For any M≥ 0,

P (η(t) <M) ≥ 1− δ (M)

where

δ (M) =


exp

 −(M− E [η(t)])2

2
(
E [η(t)] + M−E[η(t)]

3

)
 M > E [η(t)]

1 otherwise.

Proof. The prove this corollary recall the fact the number
of users in a charging facility has a Poisson distribution
with λ = E[η(t)] and directly substituting into Proposition
4 yields Corollary 6. Then, observe that ifM≤ E [η(t)] =
λE[u], Bernstein’s inequality can not be applied and hence
δ(M) = 1 gives an upper bound for the sought probability.
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