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Abstract: Engine-based traction control marks a paradigm shift for electronic stability systems
in the automotive industry. It enables traction control systems with higher bandwidth and
performance by an architectural change. As a new approach, only few work exists that considers
analytic control design for engine-based traction control. This paper extends our recent work
on input-output linearization for engine-based traction control. Global, exponential stability for
arbitrary vehicle parameters and time-varying road adhesion coefficients is shown for the first
time. Experiments in a test vehicle compare the proposed design with different traction control
systems. It is shown that on the considered maneuver, the control design achieves superior
tracking performance, disturbance attenuation and damping of drivetrain oscillations.
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1. INTRODUCTION

Traction control systems (TCSs) are important for auto-
motive safety as they assist the driver in difficult driving
situations, like accelerating on a slippery road or during
cornering. This is achieved by adjusting the speed of the
accelerated wheels such, that the traction force between
road and tire is maximized.

Traditional TCSs partition the control algorithm on the
driving dynamics control unit (DCU), which transmits its
commands to the engine control unit (ECU). Engine-based
traction control is a recent development that partitions
the controller directly on the ECU, which reduces commu-
nication delay due to synchronization and enables faster
computation cycles.

Only few work exists dealing with analytic control design
for engine-based TCSs. Jaime et al. (2014) proposed PD
control for this purpose, while Zech et al. (2017) used
proportional control for active damping. Our recent work,
see Reichensdörfer et al. (2018), proposed a complete con-
trol design for engine-based TCSs based on input-output
linearization, including torsional dynamics of the drive-
train in the design model, cf. also Zech et al. (2018). This
ECU-based TCS has been also extended recently to plug-
in hybrid electric vehicles (PHEVs) by Zech et al. (2019)
and to vehicles with four-wheel drive (4WD) on-demand
torque bias systems by Reichensdörfer et al. (2019). While
we also presented a detailed stability analysis of the zero
dynamics, there still remained some open question, which
are addressed within this work.
? This work was supported in part by the BMW Group Driving
Dynamics and in part by BMW M.

There already exists different work on input-output lin-
earization for TCSs. Fujii and Fujimoto (2007) use this
method based on a 2-state design model and evaluate it in
a test vehicle. The same is done by Chapuis et al. (2013),
while Nakakuki et al. (2008) put focus on stability analysis
of the zero dynamics of the 2-state model. The 2-state
model is also used for input-output linearization of anti-
lock braking systems (ABSs), for example by Nyandoro
et al. (2011) and Mousavi et al. (2018). A detailed analysis
of different approaches for both TCSs and ABSs is given
in the survey paper by Ivanov et al. (2015).

These approaches however all apply input-output lin-
earization to the widely used 2-state model, which de-
scribes the longitudinal speed of the vehicle and the
wheel rotational speed only. Also, they do not consider
the control architecture explicitly, which however is an
important factor in the industry. It is interesting to note
that König et al. (2019) proposed a variant of input-output
linearization for traction control using the 2-state model
in conjunction with a gain scheduling mechanism, stating
that performance could be further improved by locating
the control algorithm on the ECU.

This paper extends our previous work of applying input-
output linearization to a more complex design model with
5 states, including the torsional dynamics of the drivetrain.
This leads to an additional damping term in the resulting
control law which is shown to be beneficial for traction
control. The control algorithm is partitioned on the ECU,
evaluated in a test vehicle and compared to both a DCU-
based and a benchmark ECU-based TCS. Also, a detailed
stability analysis based on parametric Lyapunov functions
and passivity is performed, extending our previous results.
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2. BACKGROUND

2.1 Modeling of Longitudinal Vehicle Dynamics

The model for the longitudinal vehicle dynamics is taken
from our previous published work by Reichensdörfer et al.
(2018) and Zech et al. (2018). In state space notation, with
state vector xT = [x1 x2 x3 x4 x5], it is given by

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


−x1/τm
x3/iG − x4

(x1 − 2Tr/iG)/Jc
(2Tr − rrFx)/Jr

(Fx − Fw)/m

+


1/τm

0
0
0
0

u , (1)

with u the input motor torque in Nm, x1 the motor torque
in Nm, x2 the twist angle of the crankshaft in rad, x3
the crankshaft rotational speed in rad/s, x4 the rotational
speed of the rear axle in rad/s and x5 the longitudinal
vehicle speed in m/s. The system output is the crankshaft
rotational speed, scaled to wheel level by the total gear
ratio iG as y = x3/iG. The inertia of the rear axle is Jr,
the one of the crankshaft Jc. Further, in (1) we have

Tr = kcx2 + dc(x3/iG − x4) (2a)

Fx = µFz sin
(
Cr arctan(Brλx)

)
(2b)

Fz = mg lf/(lf + lr) (2c)

λx = (rrx4 − x5)/vn (2d)

vn = maxε(|rrx4|ε, |x5|ε) (2e)

Fw = (1/2)ρ cwAstx5|x5| . (2f)

Here, Tr is the torque on the rear axle, with kc and dc
stiffness and damping factor of the crankshaft, modeled as
torsional spring. Further, Fx is the nonlinear friction force
between tire and road, using the tire model by Pacejka
(2005), µ the road adhesion coefficient, Fz the normal force
on the rear axle, Br and Cr ∈ (1, 2) parameters of the
Pacejka tire model and τm the motor time constant.

The tire force Fx depends further on λx, the wheel slip in
longitudinal direction, which is the difference of longitu-
dinal speed and rear axle rotational speed, scaled by the
tire radius rr, divided by the normalization velocity. This
velocity, here denoted with vn, is the absolute maximum
of rrx4 and x5 and is typically modified in literature,
cf. Rill (2007), in order to avoid zero denominator in (2d).
We use our previously proposed modification, given by
max(a, b) ≈ maxε(a, b) = (1/2)(a+ b+ |a− b|ε) and |a| ≈
|a|ε =

√
a2 + ε with ε > 0, so vn > 0. This method avoids

division by zero for x4 = x5 = 0 and instead produces
λx = Fx = 0 in this case, which makes sense physically,
as in standstill no longitudinal force is generated. Also, it
keeps Fx continuously differentiable and produces accurate
results in simulation of standard maneuvers for TCSs,
see Reichensdörfer et al. (2018) and Zech et al. (2018) for
a model validation and numerical parameters.

Finally, the normal force Fz depends on the vehicle mass
m, gravitational constant g and the lever arm as a function
of the distance between the vehicle center of gravity and
its rear axle lr, respectively front axle lf . The aerodynamic
drag force Fw depends on air density ρ, vehicle front
surface area Ast and aerodynamic drag coefficient cw. All
vehicle parameters are assumed to be strictly positive.

In the following, the control design for TCSs using engine-
based input-output linearization is restated.

2.2 Engine-Based Input-Output Linearization for TCSs

Using the method of input-output linearization by Isidori
(1989), cf. also Byrnes and Isidori (1989), differentiating
the system output y twice results in

ÿ =
1

iGJc

[ 1

τm

(
u−x1

)
− 2

iG

(
kcẋ2 + dc

( ẋ3
iG
− ẋ4

))]
. (3)

Since the system input u appears in (3), it can be solved
for the linearizing input by defining ÿ = v as input to the
linearized substitute system. This control input is

u = x1 + τm

[
vJciG +

2

iG

(
kcẋ2 + dc

( ẋ3
iG
− ẋ4

))]
. (4)

The state transformation φ : R5 7→ R5, mapping from x
to ξ-coordinates, with ξT = [ξ1 ξ2 ξ3 ξ4 ξ5] and

ξ = φ(x) =


φ1(x)
φ2(x)
φ3(x)
φ4(x)
φ5(x)

 =


x3/iG

(iGx1 − 2Tr)/(Jci
2
G)

x2
x4
x5

 (5)

can be used, together with the inverse transformation,

x = φ−1(ξ) =


φ−11 (ξ)
φ−12 (ξ)
φ−13 (ξ)
φ−14 (ξ)
φ−15 (ξ)

 =


iGJcξ2 + 2Tr/iG

ξ3
iGξ1
ξ4
ξ5

 , (6)

to obtain the system in Byrnes-Isidori normal form. To
derive the resulting zero dynamics, set ξ1 = ξ2 = v = 0
and insert the expression for u from (4). Note that Tr in (6)
is expressed as Tr = kcξ3 + dc(ξ1 − ξ4) in ξ-coordinates.
Define zT = [z1 z2 z3] = [ξ3 ξ4 ξ5] to get

ż =

[
ż1
ż2
ż3

]
=

 −z2(
2(kcz1 − dcz2)− rrFx

)
/Jr

(Fx − Fw)/m

 , (7)

which are the zero dynamics of the system (1). This
procedure has been applied to derive an engine-based
TCS by Reichensdörfer et al. (2018), where it was shown
that (7) is globally asymptotically stable for all vehicle
parameters and constant road adhesion coefficients, while
the performance of the TCS was verified in experiments.
However, some open questions remained, which can be
stated as follows.

2.3 Problem Statement

Overall, there are three open research questions that this
paper aims to address:

(1) Are the zero dynamics (7) exponentially stable?
(2) How compares (4) to traditional DCU-based TCSs?
(3) How compares (4) to other ECU-based TCSs?

Item 1 is of interest for safety critical systems like TCSs, as
exponential stability not only guarantees that the system
trajectories are stable and decay to zero eventually, but
also decay to zero “fast”. Also, stability for time-varying
road adhesion coefficients has not been proved formally
yet, which is of interest for realistic road conditions.

Items 2 and 3 are of practical interest. While item 3 was
evaluated in our previous work using sensitivity functions
and simulation, experimental validation is still missing.
Hence, this work closes these gaps.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14253



3. METHODS

3.1 Passivity and Absolute Stability Considerations

One interesting fact about the zero dynamics (7) is, that
they can be expressed as a Lur’e system, as introduced by
Lur’e and Postnikov (1944), by ż = Az +Bu, y = Cz,
yT = [y1 y2], uT = [u1 u2], with u = −ψ(y) and

ż =

[
0 −1 0

2kc/Jr −2dc/Jr 0
0 0 0

]
z +

[
0 0

rr/Jr 0
−1/m 1/m

]
u (8a)

y =

[
0 rr 0
0 0 1

]
z , ψ(y) =

[
ψ1(y1, y2, t)
ψ2(y2)

]
=

[
Fx
Fw

]
. (8b)

Assuming 0 < µmin ≤ µ(t) ≤ µmax < ∞∀t ∈ R+
0 , (8a)

and (8b) describe a linear time-invariant (LTI) system in
negative feedback with a sector-bounded, time-varying, 2-
dimensional nonlinearity. The longitudinal slip stiffness of
the tire is cx = µFzBrCr and λx ∈ (−2, 2) by (2d), so the
bounds for Fx are cx = (1/2)µminFz sin

(
Cr arctan(2Br)

)
,

c̄x = µmaxFzBrCr, with (Fx − cxλx)(Fx − c̄xλx) ≤ 0.

It can be noted that the Kalman conjecture does not apply
here. While it is known due to Barabanov (1988) that the
conjecture is true for systems of order n = 3 (and false
due to Fitts (1966) for n ≥ 4), it requires a single-input,
single-output LTI system in feedback with a monotone,
scalar nonlinearity, which is not the case for (8a)-(8b).

A common way to analyze systems like (8a)-(8b) is
the Kalman-Yakubovich-Popov Lemma, cf. Khalil (1996),

which states that if ∃P = P T � 0 such that

ATP + PA � 0 and PB = CT , (9)

then the corresponding linear system is positive real (pas-
sive), denoting with �,≺,�,� positive/negative (semi)
definiteness. Here, the linear part is not passive, because
PB = CT results in contradicting conditions.

Choosing a slightly different, less obvious formulation with

ŷ =

[
ŷ1
ŷ2

]
=

[
0 rr −1
0 0 1

]
z (10)

and vn a function of (ŷ1 + ŷ2, ŷ2) instead of (y1, y2), so
that λx = ŷ1/vn instead of λx = (y1 − y2)/vn, gives an
LTI system for which (9) admits the unique solution

P = diag(2kc, Jr,m) . (11)

This is not sufficient to show exponential stability of (7),
as will be shown in the following. The next step is usually
to apply loop transformations to the Lur’e system in order
to compensate shortage of passivity in one channel with
excess of passivity in another channel, cf. Khalil (1996).

Here, only ŷ1 can be used for output feedback of the
LTI part, since limz3→0 ∂Fw/(∂z3) = 0. This results, with
k1 > 0, in the following passivity condition

(rrz2 − z3)Fx − k1(rrz2 − z3)2 + z3Fw ≥ 0 . (12)

However, no such k1 can exist if global stability is of
interest and (z2, z3) can get arbitrarily large. Limiting
(z2, z3) to practical ranges, cf. Adamy (2014), makes decay
rates depend on these ranges, which is undesirable. Input-
feedforward on the other hand introduces a feed-through
term in (10), which complicates symbolic analyses.

Therefore, we propose a different approach that combines
these new passivity-based findings with our previous work.

3.2 Stability Analysis of Wheel-Slip Zero Dynamics

Considering the parametric Lyapunov function candidate

Vs(z) =
1

2
zTPz =

1

2
(2kcz

2
1 + Jrz

2
2 +mz23) (13)

obtained from (11). Calculation of its time derivative gives

V̇s(z, t) = −2dcz
2
2 − z3Fw − (rrz2 − z3)Fx (14a)

= −2dcz
2
2 − z3Fw − vnλxFx, (14b)

and since λxFx ≥ 0 ⇒ V̇s(z, t) � 0, so the zero dynamics
are Lyapunov stable. Asymptotic stability was shown
by Reichensdörfer et al. (2018) using a more complicated,
parametric Lyapunov function which included a mixed
term for z1 and z2. Asymptotic stability can also be shown
by LaSalle’s invariance principle, when assuming that µ is
constant, as then V̇s(z, t) = V̇s(z) = 0 ⇐⇒ z2 = z3 = 0,

but then also ż2 = (2kc/Jr)z1 6= 0 for z1 6= 0, so V̇s(z) = 0
can only be maintained by the zero solution.

However, the question if the zero dynamics are also ex-
ponentially stable has not been considered yet. We show
in the following that the zero dynamics are globally expo-
nentially stable for bounded, time-varying µ(t), arbitrary
vehicle parameters and arbitrary sector bounded tire force
nonlinearities. This provides stronger stability and robust-
ness guarantees than previous work.

In order to show exponential stability, we combine the
herein proposed Lyapunov function (13) with the Lya-
punov function we previously proposed, given by

Vc(z) = p11z
2
1 + p22z

2
2 + p33z

2
3 − z1z2 (15)

with parameter dependent coefficients defined as

p11 =
c̄xdcr

2
r + 48Jrkc

√
ε+ 12d2c

√
ε

12Jrdc
√
ε

(16a)

p22 =
c̄xdcr

2
r + 48Jrkc

√
ε

24dckc
√
ε

(16b)

p33 = (m/Jr)p22 . (16c)

It was shown by Reichensdörfer et al. (2018) that (15) is
positive definite for all vehicle parameters and that its time
derivative, given by

V̇c(z, t) = V̇c1(z) + V̇c2(z, t) (17a)

V̇c1(z) = −q1z21 − q2z22 − q3z23 |z3| (17b)

V̇c2(z, t) = −q4vnλxFx + q5z1Fx (17c)

with the coefficients of V̇c1 and V̇c2 defined as

q1 = 2kc/Jr , q2 = 7 + (dcc̄xr
2
r)/(6kcJr

√
ε) ,

q3 = ρcwAst(c̄xdcr
2
r + 48Jrkc

√
ε)/(24kcdcJr

√
ε) ,

q4 = 4/dc + c̄xr
2
r/(12Jrkc

√
ε) , q5 = rr/Jr ,

is negative definite. Two difficulties arise when trying to
strengthen the results from asymptotic stability and con-
stant µ to exponential stability with time-varying µ. First,
as (14b) does not contain a z1 term, neither exponential,
nor asymptotic stability can be concluded using Vs. Also,
both LaSalle’s invariance principle and Barbalat’s Lemma
cannot be applied, since µ is time-varying and might not
be uniformly continuous. Second, as the z23 |z3| term is
effectively cubic in z3, its exponent does not match the
exponents of Vs, Vc, which are both quadratic. Therefore,
exponential stability cannot be concluded directly.
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While V̇c does contain the quadratic term −q1z21 , it cannot
be used directly for constructing an upper bound, as the
original proof uses this term to partially compensate the
indefinite q5z1Fx term in (17c). Hence, we first resolve this
by a slight modification of the original proof.
Theorem 1. The zero dynamics are globally asymptoti-
cally stable for all vehicle parameters and bounded positive
time-varying road adhesion coefficients µ(t).

Proof. Define the parametric scaling factor η by

η =
c̄xdcr

2
r

c̄xdcr2r + 6Jrkc
√
ε
∈ (0, 1) (18)

and redefine (17a) to V̇c(z, t) = V̇c3(z) + V̇c4(z, t) with

V̇c3(z) = −q1(1− η)z21 − q2z22 − q3z23 |z3| (19a)

V̇c4(z, t) = −q4vnλxFx + q5z1Fx − q1ηz21 . (19b)

The rest follows analogously to the original proof: V̇c4(z, t) =
0 is a quadratic equation in z1 with discriminant dz1

dz1 = −η
(32kc
dcJr

+
2c̄xr

2
r

3J2
r

√
ε

)
vnλxFx +

r2r
J2
r

F 2
x (20a)

≤ −η
(32kc
dcJr

+
2c̄xr

2
r

3J2
r

√
ε

)
vnλxFx +

r2r
J2
r

c̄xλxFx , (20b)

and w.l.o.g. assume λx 6= 0 ⇒ Fx 6= 0, so if (20b) < 0
then λxFx can be canceled out from (20b). Finally, using
vn ≥ 3

√
ε/2, we get dz1 ≤ −42ηkc

√
ε/(dcJr) < 0, so

V̇c4(z, t) = 0 has no real solutions and V̇c4(z, t) ≤ 0.

Furthermore, V̇c(z, t) ≤ V̇c3(z) ≺ 0 and since Vc(z) � 0
does not depend on time explicitly, global asymptotic
stability for all parameters and time-varying µ follows.

Remark 1. The original proof used η = 1, which gives
also a time invariant V̇c3 as in (19a), however without the
z21 term, which is required for exponential stability and for
time-varying adhesion coefficients. Theorem 1 solves this
by shifting only a large enough portion of the −q1z21 term

from V̇c1 to V̇c2 in order to construct V̇c3 and V̇c4.

However, this still does not resolve the problem that the
−q3z23 |z3| term in V̇c3 is not quadratic. In order to address
this, we define the new Lyapunov function

V (z) = Vs(z) + Vc(z) , (21)

which is positive definite since Vs and Vc are positive
definite. After some rearrangements, its time-derivative is
derived as

V̇ (z, t) = V̇1(z, t) + V̇2(z, t) (22a)

V̇1(z, t) = −q̃1z21 − q̃2z22 − q̃3z23 |z3| − vnλxFx (22b)

V̇2(z, t) = −q2z22 − q3z23 |z3|+ V̇c4(z, t) (22c)

with q̃1 = q1(1− η), q̃2 = 2dc and q̃3 = (1/2)ρcwAst. Since

V̇2(z, t) ≤ 0, it would suffice for exponential stability to

show that V̇1(z, t) ≤ −W (z) ≺ 0 for some positive definite
quadratic form W (z).
Remark 2. Since for z3 → 0, the −q̃3z23 |z3| term vanishes
faster than any quadratic, no such W can exist if only
the first three terms in (22b) would be considered. In the
following, it is shown how the −vnλxFx term can be used
to guarantee exponential stability nevertheless.

We can now state the main stability result of this work.

Theorem 2. The zero dynamics are globally exponentially
stable for all vehicle parameters and bounded positive time-
varying road adhesion coefficients µ(t).

Proof. Since cx|λx| ≤ |Fx|, so V̇1(z, t) ≤ −U̇1(z) with

U̇1(z) = q̃1z
2
1 + q̃2z

2
2 + q̃3z

2
3 |z3|+ cx(rrz2 − z3)2/vn . (23)

Because cx is constant, compare section 3.1, the function

U̇1(z) does not depend on time explicitly and it remains
to show that

U̇1(z) ≥W (z) (24)
with W (z) = α1z

2
1 +α2z

2
2 +α3z

2
3 , so a necessary condition

is α1 ≤ q̃1 and α2 ≤ q̃2. First, assume that (z2, z3) ∈ R2 \
(−1, 1)2. If |z3| ≥ 1 ⇒ q̃3z

2
3 |z3| ≥ α3z

2
3 with α3 ≤ q̃3. If

|z3| < 1 and |z2| ≥ 1 then it is required that

q̃2z
2
2 + q̃3z

2
3 |z3| ≥ α2z

2
2 + α3z

2
3 (25a)

⇒ q̃2z
2
2 ≥ α2z

2
2 + α3z

2
3 as |z3| < 1, |z2| ≥ 1 (25b)

⇒ (q̃2 − α2)z22 ≥ α3z
2
3 (25c)

⇒ (q̃2 − α2) ≥ α3 . (25d)

Inequality (25b) must hold since the q̃3z
2
3 |z3| term vanishes

faster than the quadratic terms. Inequality (25d) follows
by minimizing over |z2| ≥ 1 and maximizing over |z3| ≤ 1
to ensure the inequality holds in the “worst case” when
|z2| = |z3| = 1. Thus, (24) holds for z1 ∈ R and (z2, z3) ∈
R2 \ (−1, 1)2 if α1 ≤ q̃1, α2 + α3 ≤ q̃2 and α3 ≤ q̃3.

Next, consider the more interesting case when z1 ∈ R and
(z2, z3) ∈ [−1, 1]2. Within this domain, vn can be bounded
by a constant like vn ≤ ṽn with

ṽn = maxε(|rr|ε, |1|ε) . (26)

Now, with q̃4 = cx/ṽn > 0 and (z2, z3) ∈ [−1, 1]2, (24) can

be bounded by U̇1(z) ≥ U̇2(z) with

U̇2(z) = q̃1z
2
1 + q̃2z

2
2 + q̃3z

2
3 |z3|+ q̃4(rrz2 − z3)2 , (27)

so if U̇2(z) ≥ W (z) then also (24) holds. Expand the last

term in (27) and rewrite δU̇2(z) = U̇2(z)−W (z) as

δU̇2(z) = (q̃1 − α1)z21 + [z2 z3]Q

[
z2
z3

]
+ q̃3z

2
3 |z3| , (28a)

Q =

[
q̃4r

2
r + (q̃2 − α2) −q̃4rr
−q̃4rr (q̃4 − α3)

]
. (28b)

Now the problem reduces to finding conditions on α2, α3

such that Q � 0 and for which also the previous derived
necessary inequalities still hold. These conditions can be
obtained by the two principal minors of Q, given by

∆1 = q̃4r
2
r + q̃2 − α2 > 0 (29a)

∆2 = q̃2q̃4 + α2α3 − q̃4α2 − q̃2α3 − q̃4r2rα3 > 0 . (29b)

Condition (29a) can be ensured by taking α2 ≤ q̃2, which is
already implicitly required by (25d). For condition (29b),
it is clear that by making α2 and α3 small enough that
∆2 ≈ q̃2q̃4 > 0 can be enforced with arbitrary accuracy.
Therefore, there always exist α1, α2, α3 > 0 such that
Q � 0 and additionally α1 ≤ q̃1, α2+α3 ≤ q̃2 and α3 ≤ q̃3.
Hence, the origin is globally exponentially stable for all
vehicle parameters and for bounded positive time-varying
road adhesion coefficients.

Combining the passivity based Vs with Vc in (21) enabled
us to proof Theorem 2, while keeping coefficients simple,
thus solving item 1 from section 2.3. We proceed with an
additional experimental evaluation of the proposed TCS.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14255



4. EXPERIMENTS

Experimental validation is done in a test vehicle, where the
ECU-based controllers are implemented prototypical on
an embedded real-time system, bypassing the commands
of the standard, DCU-based TCS with a sample time of
10 ms. The proposed controller (4) is implemented as by
Reichensdörfer et al. (2018), where the x3/iG − x4 term
can be interpreted as differential speed, damped by a PD
controller with proportional gain 2τmkc/iG and derivative
gain 2τmdc/iG and filter time constant of 20 ms. The
target speed generation is out of the scope of this work
and assumed to be provided by a higher level controller.
By default, the controller is turned off (the driver is the
controller then) and only if the actual engine speed exceeds
the target speed, the TCS is activated. The input v in (4)
is generated by the reference model

v = −(1/τm)ẏ + iGw/(τmJr) (30)

where ẏ is also estimated using a derivative filter of the
measured y signal and w is the reference model input gen-
erated by a PID controller, taking the deviation between
target and actual engine speed as input. The PID con-
troller was tuned in experiments using the Ziegler-Nichols
tuning rules and included an anti-windup mechanism to
account for actuator saturation.

This control design is compared to a standard DCU-based
TCS and also to a benchmark implementation of an ECU-
based TCS. The benchmark is an ECU-based PI controller,
combined with a fine-tuned disturbance observer that is
used for feedforward control. The considered maneuver is
a longitudinal acceleration from almost standstill, with an
abrupt change in the road adhesion coefficient changing
from dry asphalt (µ ≈ 1) to a watered metal plate
(µ ≈ 0.1), which at the end changes back again to dry
asphalt.

The results of the three considered TCSs on this maneuver
are depicted in figure 1, where the approximate start and
end points of the watered metal plate are indicated with
vertical, black, dashed lines. Figure 1a shows the results
of the DCU-based TCS, where around t ≈ 2 s the road
adhesion coefficient drops to µ ≈ 0.1 and at around
t ≈ 12 s raises back to µ ≈ 1 again. The DCU-based TCS
is able to stabilize the longitudinal dynamics but shows a
large overshoot after the initial change in µ and oscillates
during driving on the low friction underground.

Figure 1b shows the results of the ECU-based benchmark
controller. Due to higher bandwidth of this architecture,
the over shot at t ≈ 2 s is significantly lower than for the
DCU-based TCS. However, this design requires approx-
imately one additional second to track the target speed
with a small error only after t ≈ 4 s. Also, at t ≈ 10 s, the
engine speed starts to oscillate such that the maneuver
is interrupted at t ≈ 12 s, indicating a lack of robustness
to varying µ. Finally, figure 1c shows the results of the
ECU-based TCS using input-output linearization. The
overshoot at t ≈ 3 s is 21% smaller than for the benchmark
and the controller almost immediately tracks the target
speed without visible oscillations. Also, the acceleration
at t ≈ 11 s on µ ≈ 1 shows no oscillations, despite the
highly nonlinear disturbance.
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(a) Traditional DCU-based traction control.
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(b) Benchmark for ECU-based traction control.
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(c) Proposed ECU-based traction control.

Fig. 1. Experimental comparison of the proposed TCS.

These results show that ECU-based traction control offers
substantial advantages compared to classical DCU-based
TCSs. Performance can be improved further by an analytic
control design based on input-output linearization.

1 The target speed was estimated and drawn manually for reference
in figure 1a, as the DCU-based TCS was available as blackbox only
in the considered prototypical test vehicle.
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5. CONCLUSION

We proposed a novel stability and passivity analysis of the
zero dynamics of TCSs resulting from the input-output lin-
earization of a 5-state longitudinal vehicle model including
torsional dynamics of the drivetrain. This led to the first
proof of global, exponential, parameter independent sta-
bility assuming a time-varying road adhesion coefficient.
Furthermore, the ECU-based TCS was evaluated in a test
vehicle and compared to both a DCU-based and an ECU-
based benchmark TCS. The novel experimental valida-
tion showed, that the ECU-based TCS based on input-
output linearization outperforms the other approaches in
terms of tracking performance, disturbance attenuation
and damping of drivetrain oscillations. This confirmed the
robustness of the TCS with respect to parameter varia-
tions, as for example tires, vehicle load and environmental
conditions were different to our previous work.

It can further be noted that the herein presented stability
results can also directly be extended to the case of a 4WD
drivetrain with on-demand torque bias systems, as pro-
posed by Reichensdörfer et al. (2019). Therefore, the pro-
posed method shows global, exponential stability for such
vehicles as well. Also, it is interesting that exponential sta-
bility for time-varying road adhesion coefficients required
only the mild assumption that the adhesion coefficient is
bounded from below by a strictly positive value, while
asymptotic stability required it only to be non-negative.
However, this lower bound can be chosen arbitrarily close
to zero and even for µ = 0, at least asymptotic stability of
the zero dynamics can still be guaranteed.

Future work could focus on more complex design models
for the input-output linearization, including additional dy-
namics or on the reference speed generation for the ECU-
based controller. Also, different control approaches for the
linearized substitute system could be further investigated,
as well as different reference models.
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