Engine-Based Input-Output Linearization
for Traction Control Systems*

Elias Reichensdörfer * Dirk Odenthal ** Dirk Wollherr ***

* Technical University of Munich, Chair of Automatic Control
Engineering, 80333 Munich, Germany and BMW Group, 80788
Munich, Germany (e-mail: elias.reichensdorfer@bmw.de).
** BMW M GmbH, 85748 Garching near Munich, Germany (e-mail:
dirk.odenthal@bmw-m.com)
*** Technical University of Munich, Chair of Automatic Control
Engineering, 80333 Munich, Germany (e-mail: dw@tum.de)

Abstract: Engine-based traction control marks a paradigm shift for electronic stability systems
in the automotive industry. It enables traction control systems with higher bandwidth and
performance by an architectural change. As a new approach, only few work exists that considers
analytic control design for engine-based traction control. This paper extends our recent work
on input-output linearization for engine-based traction control. Global, exponential stability for
arbitrary vehicle parameters and time-varying road adhesion coefficients is shown for the first
time. Experiments in a test vehicle compare the proposed design with different traction control
systems. It is shown that on the considered maneuver, the control design achieves superior
tracking performance, disturbance attenuation and damping of drivetrain oscillations.

Keywords: Traction control system, input-output linearization, passivity, zero dynamics.

1. INTRODUCTION

Traction control systems (TCSs) are important for auto-
motive safety as they assist the driver in difficult driving
situations, like accelerating on a slippery road or during
cornering. This is achieved by adjusting the speed of the
accelerated wheels such, that the traction force between
road and tire is maximized.

Traditional TCSs partition the control algorithm on the
driving dynamics control unit (DCU), which transmits its
commands to the engine control unit (ECU). Engine-based
traction control is a recent development that partitions
the controller directly on the ECU, which reduces commu-
nication delay due to synchronization and enables faster
computation cycles.

Only few work exists dealing with analytic control design
for engine-based TCSs. Jaime et al. (2014) proposed PD
control for this purpose, while Zech et al. (2017) used
proportional control for active damping. Our recent work,
see Reichensdörfer et al. (2018), proposed a complete con-
trol design for engine-based TCSs based on input-output
linearization, including torsional dynamics of the drive-
train in the design model, cf. also Zech et al. (2018). This
ECU-based TCS has been also extended recently to plug-
in hybrid electric vehicles (PHEVs) by Zech et al. (2019)
and to vehicles with four-wheel drive (4WD) on-demand
torque bias systems by Reichensdörfer et al. (2019). While
we also presented a detailed stability analysis of the zero
dynamics, there still remained some open question, which
are addressed within this work.

* This work was supported in part by the BMW Group Driving
Dynamics and in part by BMW M.

There already exists different work on input-output lin-
erization for TCSs. Fuji and Fujimoto (2007) use this
method based on a 2-state design model and evaluate it in
a test vehicle. The same is done by Chapuis et al. (2013),
while Nakakuki et al. (2008) put focus on stability analysis
of the zero dynamics of the 2-state model. The 2-state
model is also used for input-output linearization of anti-
lock braking systems (ABSs), for example by Nyandoro
et al. (2011) and Mousavi et al. (2018). A detailed analysis
of different approaches for both TCSs and ABSs is given
in the survey paper by Ivanov et al. (2015).

These approaches however all apply input-output lin-
erization to the widely used 2-state model, which de-
scribes the longitudinal speed of the vehicle and the
wheel rotational speed only. Also, they do not consider
the control architecture explicitly, which however is an
important factor in the industry. It is interesting to note
that König et al. (2019) proposed a variant of input-output
linearization for traction control using the 2-state model
in conjunction with a gain scheduling mechanism, stating
that performance could be further improved by locating
the control algorithm on the ECU.

This paper extends our previous work of applying input-
output linearization to a more complex design model with
5 states, including the torsional dynamics of the drivetrain.
This leads to an additional damping term in the resulting
control law which is shown to be beneficial for traction
control. The control algorithm is partitioned on the ECU,
evaluated in a test vehicle and compared to both a DCU-
based and a benchmark ECU-based TCS. Also, a detailed
stability analysis based on parametric Lyapunov functions
and passivity is performed, extending our previous results.
2. BACKGROUND

2.1 Modeling of Longitudinal Vehicle Dynamics

The model for the longitudinal vehicle dynamics is taken from our previous published work by Reichenspörl et al. (2018) and Zech et al. (2018). In state space notation, with state vector \( x^T = [x_1 \ x_2 \ x_3 \ x_4 \ x_5] \), it is given by

\[
\dot{x} = \begin{bmatrix}
x_1 \\
-x_1/\tau_m \\
x_3/\tau_m - x_4 \\
(2T_r - r_c F_3)/J_r \\
(F_x - F_w)/m
\end{bmatrix} + \frac{1}{\tau_m} u,
\]

with \( u \) the input motor torque in Nm, \( x_1 \) the motor torque in Nm, \( x_2 \) the twist angle of the crankshaft in rad, \( x_3 \) the crankshaft rotational speed in rad/s, \( x_4 \) the rotational speed of the rear axle in rad/s and \( x_5 \) the longitudinal vehicle speed in m/s. The system output is the crankshaft rotational speed, scaled to wheel level by the total gear ratio \( i_G \) as \( y = x_3/i_G \).

Hence, this work closes these gaps.

2.2 Engine-Based Input-Output Linearization for TCSs

Using the method of input-output linearization by Isidori (1989), cf. also Byrnes and Isidori (1989), differentiating the system output \( y \) twice in

\[
y = \frac{1}{i_G J_r} \left( \frac{1}{\tau_m} u - x_1 \right) - \frac{2}{i_G} \left( k_c \dot{x}_2 + d_c \frac{x_3}{i_G} - x_4 \right)
\]

Since the system input \( u \) appears in (3), it can be solved for the linearizing input by defining \( \dot{y} = v \) as input to the linearized substitute system. This control input is

\[
u = x_1 + \tau_m \left[ v i_G J_r + \frac{2}{i_G} \left( k_c \dot{x}_2 + d_c \frac{x_3}{i_G} - x_4 \right) \right].
\]

The state transformation \( \phi : \mathbb{R}^5 \mapsto \mathbb{R}^5 \), mapping from \( x \) to \( \xi \)-coordinates, with \( \xi^T = [\xi_1 \ \xi_2 \ \xi_3 \ \xi_4 \ \xi_5] \) and

\[
\xi = \phi(x) = \begin{bmatrix}
\phi_1(x) \\
\phi_2(x) \\
\phi_3(x) \\
\phi_4(x) \\
\phi_5(x)
\end{bmatrix} = \begin{bmatrix}
x_1/i_G \\
(i_G x_1 - 2 T_r)/(J_r i_G^2) \\
x_2 \\
x_4 \\
x_5
\end{bmatrix}
\]

which can be used, together with the inverse transformation,

\[
x = \phi^{-1}(\xi) = \begin{bmatrix}
\phi_1^{-1}(\xi) \\
\phi_2^{-1}(\xi) \\
\phi_3^{-1}(\xi) \\
\phi_4^{-1}(\xi) \\
\phi_5^{-1}(\xi)
\end{bmatrix} = \begin{bmatrix}
x_1/i_G \\
\xi_3 \\
x_2 \\
\xi_4 \\
\xi_5
\end{bmatrix},
\]

to obtain the system in Byrnes-Isidori normal form. To derive the resulting zero dynamics, set \( \xi_1 = \xi_2 = v = 0 \) and insert the expression for \( u \) from (4). Note that \( T_r \) in (6) is expressed as \( T_r = k_c \xi_3 + d_c (\xi_1 - \xi_4) \) in \( \xi \)-coordinates.

Define \( z^T = [z_1 \ z_2 \ z_3] = [\xi_4 \ \xi_5] \) to get

\[
\dot{z} = \begin{bmatrix}
-\frac{2}{i_G} \\
(2 k_c z_1 - d_c z_2 - r_c F_3)/J_r \\
(F_x - F_w)/m
\end{bmatrix}.
\]

2.3 Problem Statement

Overall, there are three open research questions that this paper aims to address:

1. Are the zero dynamics (7) exponentially stable?
2. How compares (4) to traditional DCU-based TCSs?
3. How compares (4) to other ECU-based TCSs?

Item 1 is of interest for safety critical systems like TCSs, as exponential stability not only guarantees that the system trajectories are stable and decay to zero eventually, but also decay to zero “fast”. Also, stability for time-varying road adhesion coefficients has not been proved formally yet, which is of interest for realistic road conditions.

Items 2 and 3 are of practical interest. While item 3 was evaluated in our previous work using sensitivity functions and simulation, experimental validation is still missing. Hence, this work closes these gaps.
3. METHODS

3.1 Passivity and Absolute Stability Considerations

One interesting fact about the zero dynamics (7) is, that they can be expressed as a Lur’e system, as introduced by Lur’e and Postnikov (1944), by \( z = A \dot{z} + B u, \ y = C \dot{z}, \ y^T = [y_1, y_2], u^T = [u_1, u_2], \) with \( u = -\dot{\psi}(y) \) and

\[
\dot{z} = \begin{bmatrix}
2 k_c J_c & -2 d_c J_c \\
0 & 0
\end{bmatrix} z
+ \begin{bmatrix}
r_c/J_c & 0 \\
0 & 0
\end{bmatrix} u \quad (8a)
\]

\[
y = \begin{bmatrix}
0 & r_c \\
0 & 0
\end{bmatrix} z, \ \dot{\psi}(y) = \begin{bmatrix}
\psi_1(y_1, y_2, t) \\
\psi_2(y_2)
\end{bmatrix} = \begin{bmatrix}
F_x \\
F_w
\end{bmatrix} \quad (8b)
\]

Assuming \( 0 < \mu_{\text{min}} \leq \mu(t) \leq \mu_{\text{max}} < \infty \forall t \in \mathbb{R}^+ \), (8a) and (8b) describe a linear time-invariant (LTI) system in negative feedback with a sector-bounded, time-varying, 2-dimensional nonlinearity. The longitudinal slip stiffness of the tire is \( c_x = \mu F_c B_c C_c \) and \( \lambda_s \in (-2, 2) \). The bounds for \( F_c \) are \( c_x = (1/2) \mu_{\text{min}} F_c \sin(C_c \arctan(2 B_c)) \), \( c_x = \mu_{\text{max}} F_c B_c C_c \), with \( (F_c - \epsilon_x \lambda_2) (F_c - \epsilon_x \lambda_{2x}) \leq 0 \).

It can be noted that the Kalman conjecture does not apply here. While it is known due to Barabanov (1988) that the conjecture is true for systems of order \( n = 3 \) (and false due to Fitts (1966) for \( n \geq 4 \)), it requires a single-input, single-output LTI system in feedback with a monotone, scalar nonlinearity, which is not the case for (8a)-(8b).

A common way to analyze systems like (8a)-(8b) is the Kaldan-Yakubovich-Popov Lemma, cf. Khalil (1996), which states that if \( \exists P = P^T > 0 \) such that

\[
AP + PA \leq 0 \text{ and } PB = CT \quad (9)
\]

then the corresponding linear system is positive real (passive), denoting with \( \prec, \preceq, \succeq, \succ \) positive/negative (semi) definiteness. Here, the linear part is not passive, because \( PB = CT \) results in contradicting conditions.

Choosing a slightly different, less obvious formulation with

\[
y = \begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \begin{bmatrix}
0 & r_c & -1 \\
0 & 0 & 1
\end{bmatrix} z \quad (10)
\]

and \( v_n \) a function of \( (y_1 + y_2, y_2) \) instead of \( (y_1, y_2) \), so that \( \lambda_x = y_1/v_n \) and \( \lambda_y = (y_1 - y_2)/v_n \), gives an LTI system for which (9) admits the unique solution

\[
P = \text{diag}(2 k_c, J_c, m). \quad (11)
\]

This is not sufficient to show exponential stability of (7), as will be shown in the following. The next step is usually to apply loop transformations to the Lur’e system in order to compensate shortage of passivity in one channel with excess of passivity in another channel, cf. Khalil (1996).

Here, only \( y_1 \) can be used for output feedback of the LTI part, since \( \lim_{z_1 \to 0} \partial F_w/\partial z_3 = 0 \). This results, with \( k_1 > 0 \) in the following passivity condition

\[
(r_c z_2 - z_3) F_w - k_1 (r_c z_2 - z_3)^2 + z_3 F_w \geq 0. \quad (12)
\]

However, no such \( k_1 \) can exist if global stability is of interest and \( (z_2, z_3) \) can get arbitrarily large. Limiting \( (z_2, z_3) \) to practical ranges, cf. Adamy (2014), makes decay rates depend on these ranges, which is undesirable. Input-feedback on the other hand introduces a feed-through term in (10), which complicates symbolic analyses.

Therefore, we propose a different approach that combines these new passivity-based findings with our previous work.

3.2 Stability Analysis of Wheel-Slip Zero Dynamics

Considering the parametric Lyapunov function candidate

\[
V_s(z) = \frac{1}{2} z^T P z = \frac{1}{2} (2 k_c z_1^2 + J_c z_2^2 + m z_3^2) \quad (13)
\]

obtained from (11). Calculation of its time derivative gives

\[
\dot{V}_s(z, t) = -2 d_c z_2 z_3 - z_2 F_w - (r_c z_2 - z_3) F_x \quad (14a)
\]

and since \( \lambda_x F_x \geq 0 \Rightarrow \dot{V}_s(z, t) \leq 0 \), so the zero dynamics are Lyapunov stable. Asymptotic stability was shown by Reichenspörl et al. (2018) using a more complicated, parametric Lyapunov function which included a mixed term for \( z_1 \) and \( z_2 \). Asymptotic stability can also be shown by LaSalle’s invariance principle, when assuming that \( \mu \) is constant, as then \( \dot{V}_s(z, t) = V_s(z) = 0 \iff z_2 = z_3 = 0 \), but then also \( z_2 = (2 k_c/J_c) z_1 \neq 0 \) for \( z_1 \neq 0 \), so \( V_s(z) = 0 \) can only be maintained by the zero solution.

However, the question if the zero dynamics are also exponentially stable has not been considered yet. We show in the following that the zero dynamics are globally exponentially stable for bounded, time-varying \( \mu(t) \), arbitrary vehicle parameters and arbitrary sector bounded tire force nonlinearities. This provides stronger stability and robustness guarantees than previous work.

In order to show exponential stability, we combine the herein proposed Lyapunov function (13) with the Lyapunov function we previously proposed, given by

\[
V_c(z) = p_{11} z_1^2 + p_{22} z_2^2 + p_{33} z_3^2 - z_1 z_2 \quad (15)
\]

with parameter dependent coefficients defined as

\[
p_{11} = \sqrt{\frac{\epsilon_x d_c r_c^2 + 48 J_c k_c \sqrt{\tau} + 12 d_c^2 \sqrt{\tau}}{12 J_c d_c^2 \sqrt{\tau}}} \quad (16a)
\]

\[
p_{22} = \frac{\epsilon_x d_c r_c^2 + 48 J_c k_c \sqrt{\tau}}{24 d_c^2 \sqrt{\tau}} \quad (16b)
\]

\[
p_{33} = (m/J_c) p_{22}. \quad (16c)
\]

It was shown by Reichenspörl et al. (2018) that (15) is positive definite for all vehicle parameters and that its time derivative, given by

\[
\dot{V}_c(z, t) = \dot{V}_{c1}(z) + \dot{V}_{c2}(z, t) \quad (17a)
\]

\[
\dot{V}_{c1}(z) = -q_1 z_1^2 - q_2 z_2^2 - q_3 z_3^2 |z_3| \quad (17b)
\]

\[
\dot{V}_{c2}(z, t) = -q_4 v_n \lambda_x F_x + q_5 z_1 F_x \quad (17c)
\]

with the coefficients of \( \dot{V}_{c1} \) and \( \dot{V}_{c2} \) defined as

\[
q_1 = 2 k_c/J_c, \quad q_2 = 7 + (d_c r_c^2)/(6 k_c J_c \sqrt{\tau}),
\]

\[
q_3 = \rho_c w/2(A_s (\epsilon_x d_c r_c^2 + 48 J_c k_c \sqrt{\tau})/(24 k_c d_c J_c \sqrt{\tau})) \quad (18a)
\]

\[
q_4 = 4/d_c + \epsilon_x r_c^2/(12 J_c k_c \sqrt{\tau}), \quad q_5 = r_c/J_c, \quad (18b)
\]

is negative definite. Two difficulties arise when trying to strengthen the results from asymptotic stability and constant \( \mu \) to exponential stability with time-varying \( \mu \). First, (14b) does not contain a \( z_1 \) term, neither exponential, nor asymptotic stability can be concluded using \( V_s \). Also, both LaSalle’s invariance principle and Barbalat’s Lemma cannot be applied, since \( \mu \) is time-varying and might not be uniformly continuous. Second, as the \( z_3^2 |z_3| \) term is effectively cubic in \( z_3 \), its exponent does not match the exponents of \( V_s, V_c \), which are both quadratic. Therefore, exponential stability cannot be concluded directly.
While $\dot{V}_c$ does contain the quadratic term $-q_1 z_1^2$, it cannot be used directly for constructing an upper bound, as the original proof uses this term to partially compensate the indefinite $q_5 z_1 F_x$ term in (17c). Hence, we first resolve this by a slight modification of the original proof.

**Theorem 1.** The zero dynamics are globally asymptotically stable for all vehicle parameters and bounded positive time-varying road adhesion coefficients $\mu(t)$.

**Proof.** Define the parametric scaling factor $\eta$ by

$$
\eta = \frac{\dot{c}_2 d r_3^2}{\dot{c}_2 d r_3^2 + 6 J c v} \in (0, 1) \tag{18}
$$

and redefine (17a) to $V_c(z, t) = \dot{V}_{ca}(z) + \dot{V}_{cd}(z, t)$ with

$$
\dot{V}_{ca}(z) = -q_1 (1 - \eta) z_1^2 - q_2 z_2^2 - q_3 z_3^2 |z_3| \tag{19a}
$$

$$
\dot{V}_{cd}(z, t) = -q_4 v_n \lambda_x F_x + q_5 z_1 F_x - q_n z_1^2. \tag{19b}
$$

The rest follows analogously to the original proof: $\dot{V}_{cd}(z, t) = 0$ is a quadratic equation in $z_1$ with discriminant $d_{z_1}$

$$
d_{z_1} = -\frac{32 k_c}{d_{J,F} + \frac{2 c_{z_1}^2}{L_{z_2}^2}} v_n \lambda_x F_x + \frac{r_3^2}{L_{z_2}^2} F_x \tag{20a}
$$

and $\eta_1 \neq 0 
\Rightarrow F_x \neq 0,
\text{ if } (20b) < 0
\text{ then } \lambda_x F_x
\text{ can be canceled out from (20b).}

Furthermore, $V_c(z, t) \leq \dot{V}_{ca}(z) < 0$ and since $V_c(z) > 0$ does not depend on time explicitly, global asymptotic stability for all parameters and time-varying $\mu$ follows.

**Remark 1.** The original proof used $\eta = 1$, which gives also a time invariant $V_{ca}$ as in (19a), however without the $z_1^2$ term, which is required for exponential stability and for time-varying adhesion coefficients. Theorem 1 solves this by shifting only a large enough portion of the $-q_1 z_1^2$ term from $V_{ca}$ to $V_{cd}$ in order to construct $\dot{V}_{ca}$ and $\dot{V}_{cd}$.

However, this still does not resolve the problem that the $-q_3 z_3^2 |z_3|$ term in $\dot{V}_{ca}$ is not quadratic. In order to address this, we define the new Lyapunov function

$$
V(z) = V_a(z) + V_c(z), \tag{21}
$$

which is positive definite since $V_a$ and $V_c$ are positive definite. After some rearrangements, its time-derivative is derived as

$$
\dot{V}(z, t) = \dot{V}_a(z, t) + \dot{V}_c(z, t) \tag{22a}
$$

$$
\dot{V}_a(z, t) = -q_1 z_1^2 - q_2 z_2^2 - \bar{q}_3 z_3^2 |z_3| - v_n \lambda_x F_x \tag{22b}
$$

$$
\dot{V}_c(z, t) = -q_4 v_n \lambda_x F_x + q_5 z_1 F_x - q_n z_1^2 \tag{22c}
$$

with $\bar{q}_1 = q_1(1 - \eta), \quad q_2 = 2 d$, and $\bar{q}_3 = (1/2) \rho c_w A_{st}$. Since $\dot{V}_a(z, t) \leq 0$, it would suffice for exponential stability to show that $\dot{V}_c(z, t) \leq -W(z) < 0$ for some positive definite quadratic form $W(z)$.

**Remark 2.** Since $z_3 \to 0$, the $-\bar{q}_3 z_3^2 |z_3|$ term vanishes faster than any quadratic, no such $W$ can exist if only the first three terms in (22b) would be considered. In the following, it is shown how the $-v_n \lambda_x F_x$ term can be used to guarantee exponential stability nevertheless.

We can now state the main stability result of this work.

**Theorem 2.** The zero dynamics are globally exponentially stable for all vehicle parameters and bounded positive time-varying road adhesion coefficients $\mu(t)$.

**Proof.** Since $\eta \leq |F_x|$, so $\dot{V}_a(z) \leq -\dot{V}_a(z)$ with $\dot{V}_a(z) = q_1 z_1^2 + q_2 z_2^2 + q_3 z_3^2 |z_3| + \bar{q}_4 (r_3 - z_3)^2 / v_n$. (23) Because $\eta$ is constant, compare section 3.1, the function $\dot{U}_a(z)$ does not depend on time explicitly and it remains to show that

$$
\dot{U}_a(z) \geq W(z) \tag{24}
$$

with $W(z) = \alpha_1 z_1^2 + \alpha_2 z_2^2 + \alpha_3 z_3^2$ for $\alpha_3 \leq q_3$, where $\alpha_1 \leq \bar{q}_1$ and $\alpha_2 \leq \bar{q}_2$. First, that $z_3 \in (-1, 1)$ if $|z_3| \geq 1 \Rightarrow \bar{q}_3 z_3^2 |z_3| \geq \alpha_3 z_3^2$ with $\alpha_3 \leq \bar{q}_3$. If $|z_3| < 1$ and $|z_2| \geq 1$ then it is required that

$$
\bar{q}_2 z_2^2 + \bar{q}_3 z_3^2 |z_3| \geq \alpha_2 z_2^2 + \alpha_3 z_3^2 \tag{25a}
$$

$$
\Rightarrow \bar{q}_2 z_2^2 + \bar{q}_3 z_3^2 |z_3| \geq \alpha_2 z_2^2 + \alpha_3 z_3^2 \tag{25b}
$$

$$
\Rightarrow (q_2 - \alpha_2) z_2^2 \geq \alpha_2 z_2^2 \tag{25c}
$$

$$
\Rightarrow (q_2 - \alpha_2) \geq \alpha_2. \tag{25d}
$$

Inequality (25b) must hold since the $\bar{q}_2 z_2^2 + \bar{q}_3 z_3^2 |z_3|$ term vanishes faster than the quadratic terms. Inequality (25d) follows by minimizing over $|z_3| \geq 1$ and maximizing over $|z_3| \leq 1$ to ensure the inequality holds in the “worst case” when $|z_3| = |z_3| = 1$. Thus, (24) holds for $z_3 \in R$ and $(z_2, z_3) \in \mathbb{R}^2 \setminus (-1, 1)^2$. Within this domain, $v_n$ can be bounded by a constant like $v_n \geq \bar{v}_n$ with

$$
\bar{v}_n = \max ((r|e|, 1 e). \tag{26}
$$

Now, with $\bar{q}_4 = \eta \bar{v}_n > 0$ and $(z_2, z_3) \in [-1, 1]^2$, (24) can be bounded by $\dot{U}_a(z) \geq \bar{U}_a(z)$ with

$$
\dot{U}_a(z) = \bar{q}_1 z_1^2 + \bar{q}_2 z_2^2 + \bar{q}_3 z_3^2 |z_3| + \bar{q}_4 (r_3 - z_3)^2 \tag{27}
$$

so if $\dot{U}_a(z) \geq W(z)$ then also (24) holds. Expand the last term in (27) and rewrite $\dot{U}_a(z) = \bar{U}_a(z)$ as

$$
\dot{U}_a(z) = (q_1 - \alpha_1) z_1^2 + [z_2, z_3] Q z_2^2 + \bar{q}_2 z_3^2 |z_3| \tag{28a}
$$

$$
Q = \bar{q}_4 r_3^2 - \bar{q}_2 \bar{q}_3 \alpha_1 - \bar{q}_2 \alpha_3. \tag{28b}
$$

Now the problem reduces to finding conditions on $\alpha_2, \alpha_3$ such that $Q > 0$ and for which also the previous derived necessary inequalities still hold. These conditions can be obtained by the two principal minors of $Q$, given by

$$
\Delta_1 = \bar{q}_4 r_3^2 - \bar{q}_2 \alpha_3 > 0 \tag{29a}
$$

$$
\Delta_2 = \bar{q}_4 \bar{q}_3 + \alpha_2 \alpha_3 - \bar{q}_2 \alpha_2 - \bar{q}_2 \alpha_3 - \bar{q}_4 r_3^2 \alpha_3 > 0. \tag{29b}
$$

Condition (29a) can be ensured by taking $\alpha_2 \leq \bar{q}_2$, which is already implicitly required by (25d). For condition (29b), it is clear that by making $\alpha_2$ and $\alpha_3$ small enough that $\Delta_2 \approx \bar{q}_4 \bar{q}_3 > 0$ can be enforced with arbitrary accuracy. Therefore, there always exist $\alpha_1, \alpha_2, \alpha_3 > 0$ such that $Q > 0$ and additionally $\alpha_1 \leq \bar{q}_1, \alpha_2 + \alpha_3 \leq \bar{q}_2$ and $\alpha_3 \leq \bar{q}_3$. Hence, the origin is globally exponentially stable for all vehicle parameters and for bounded positive time-varying road adhesion coefficients.

Combining the passivity based $V_a$ with $V_c$ in (21) enabled us to proof Theorem 2, while keeping coefficients simple, thus solving item 1 from section 2.3. We proceed with an additional experimental evaluation of the proposed TCS.
4. EXPERIMENTS

Experimental validation is done in a test vehicle, where the ECU-based controllers are implemented prototypical on an embedded real-time system, bypassing the commands of the standard, DCU-based TCS with a sample time of 10 ms. The proposed controller (4) is implemented as by Reichenspörl et al. (2018), where the \( x_3/iC - x_4 \) term can be interpreted as differential speed, damped by a PD controller with proportional gain \( 2\tau_{m}k_c/iC \) and derivative gain \( 2\tau_{nde}/iC \) and filter time constant of 20 ms. The target speed generation is out of the scope of this work and assumed to be provided by a higher level controller. By default, the controller is turned off (the driver is the controller then) and only if the actual engine speed exceeds the target speed, the TCS is activated. The input \( v \) in (4) is generated by the reference model

\[
v = -(1/\tau_m)\dot{y} + i_Gw/(\tau_mJ_r)
\]

(30)

where \( \dot{y} \) is also estimated using a derivative filter of the measured \( y \) signal and \( w \) is the reference model input generated by a PID controller, taking the deviation between target and actual engine speed as input. The PID controller was tuned in experiments using the Ziegler-Nichols tuning rules and included an anti-windup mechanism to account for actuator saturation.

This control design is compared to a standard DCU-based TCS and also to a benchmark implementation of an ECU-based TCS. The benchmark is an ECU-based PI controller, combined with a fine-tuned disturbance observer that is used for feedforward control. The considered maneuver is a longitudinal acceleration from almost standstill, with an abrupt change in the road adhesion coefficient changing from dry asphalt (\( \mu \approx 1 \)) to a watered metal plate (\( \mu \approx 0.1 \)), which at the end changes back again to dry asphalt.

The results of the three considered TCSs on this maneuver are depicted in figure 1, where the approximate start and end points of the watered metal plate are indicated with vertical, black, dashed lines. Figure 1a shows the results of the DCU-based TCS, where around \( t \approx 2 \) s the road adhesion coefficient drops to \( \mu \approx 0.1 \) and at around \( t \approx 12 \) s raises back to \( \mu \approx 1 \) again. The DCU-based TCS is able to stabilize the longitudinal dynamics but shows a large overshoot after the initial change in \( \mu \) and oscillates during driving on the low friction underground.

Figure 1b shows the results of the ECU-based benchmark controller. Due to higher bandwidth of this architecture, the over shot at \( t \approx 2 \) s is significantly lower than for the DCU-based TCS. However, this design requires approximately one additional second to track the target speed with a small error only after \( t \approx 4 \) s. Also, at \( t \approx 10 \) s, the engine speed starts to oscillate such that the maneuver is interrupted at \( t \approx 12 \) s, indicating a lack of robustness to varying \( \mu \). Finally, figure 1c shows the results of the ECU-based TCS using input-output linearization. The overshoot at \( t \approx 3 \) s is 21% smaller than for the benchmark and the controller almost immediately tracks the target speed without visible oscillations. Also, the acceleration at \( t \approx 11 \) s on \( \mu \approx 1 \) shows no oscillations, despite the highly nonlinear disturbance.

These results show that ECU-based traction control offers substantial advantages compared to classical DCU-based TCSs. Performance can be improved further by an analytic control design based on input-output linearization.

---

1 The target speed was estimated and drawn manually for reference in figure 1a, as the DCU-based TCS was available as blackbox only in the considered prototypical test vehicle.
5. CONCLUSION

We proposed a novel stability and passivity analysis of the zero dynamics of TCSs resulting from the input-output linearization of a 5-state longitudinal vehicle model including torsional dynamics of the drivetrain. This led to the first proof of global, exponential, parameter independent stability assuming a time-varying road adhesion coefficient. Furthermore, the ECU-based TCS was evaluated in a test vehicle and compared to both a DCU-based and an ECU-based benchmark TCS. The novel experimental validation showed, that the ECU-based TCS based on input-output linearization outperforms the other approaches in terms of tracking performance, disturbance attenuation and damping of drivetrain oscillations. This confirmed the robustness of the TCS with respect to parameter variations, as for example tires, vehicle load and environmental conditions were different to our previous work.

It can further be noted that the herein presented stability results can also directly be extended to the case of a 4WD drivetrain with on-demand torque bias systems, as proposed by Reichensdörfer et al. (2019). Therefore, the proposed method shows global, exponential stability for such vehicles as well. Also, it is interesting that exponential stability for time-varying road adhesion coefficients required only the mild assumption that the adhesion coefficient is bounded from below by a strictly positive value, while asymptotic stability required it only to be non-negative. However, this lower bound can be chosen arbitrarily close to zero and even for $\mu = 0$, at least asymptotic stability of the zero dynamics can still be guaranteed.

Future work could focus on more complex design models for the input-output linearization, including additional dynamics or on the reference speed generation for the ECU-based controller. Also, different control approaches for the linearized substitute system could be further investigated, as well as different reference models.

REFERENCES


