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Abstract: In this paper, an analytical method of computing the admittance matrix is
introduced that facilitates the stability analysis of DC micro-grid systems, in presence of
constant power loads (CPLs). Due to their nonlinear behaviour, CPLs can yield instability
in DC micro-grids; an effect referred to as ’negative impedance instability’. The proposed
method is particularly useful when a typical controller (droop control, voltage regulation) is
designed to control the DC bus voltage of the micro-grid, as it allows the factorisation of the
admittance matrix separating singular matrices. In doing so, the closed-loop stability proof can
be more easily approached by isolating the singularities and, then employing straightforward
linear algebra tools to arrive at the stability conditions. In order to validate the proposed
approach, compute the admittance matrix and test the stability conditions, a DC micro-grid
with n DC/DC power converters connected to a CPL is considered. Simulation results are
also displayed to demonstrate the desired operation of the DC micro-grid control and design
framework.
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1. INTRODUCTION

Seen as a capable technology to provide an efficient
coupling between renewable energy sources (RES), en-
ergy storage systems and DC loads, DC micro-grids have
recorded a significant increase in focus and interest. Com-
pared to conventional AC frameworks, DC systems provide
a higher efficiency and reliability, a simpler control struc-
ture and expandability, as well as a natural interface to the
increased numbers of DC renewable generations, storage
systems and electronic loads (Rashad et al., 2018).

In recent years, due to the widespread use of renew-
ables as distributed generation units, the motivation for
design and operation of DC micro-grids has significantly
increased. Various applications (e.g. electronic devices,
batteries or photovoltaic panels) can be directly connected
to the DC network, mitigating energy conversion losses by
reducing the multi AC/DC conversion stages and insta-
bility issues raised by the frequency and reactive power
control. Their upsides have been confirmed in a wide
range of industry applications, i.e. electric ships (Cairoli
and Dougal, 2013), vehicles (Bosich et al., 2014), trains
(Yoshida et al., 2017), and aircrafts (Magne et al., 2013).
Apart from the development of industrial, commercial
or residential DC distribution networks, several different
promising DC framework applications can be found in EV
charging stations or smart buildings (Zhang et al., 2015).

Control schemes in DC micro-grids are mainly de-
signed to guarantee voltage regulation and accurate load
power distribution, while maintaining system stability.
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However, the challenge of ensuring the stability of the
system remains, as it is not always a straightforward
problem. Therefore, most times stability is not rigorously
addressed, mainly due to the complex dynamics that the
system components and the nonlinear loads introduce.
Constant power loads (CPLs), for instance, exhibit a neg-
ative impedance behaviour which makes the stabilisation
problem much more complex.

The remaining of this section includes a brief litera-
ture review on CPLs previous studies, some state-of-the-
art methods of computing admittance matrices and their
present impact on the stability analysis in presence of
nonlinear loads, followed by a list of the main contributions
of this work and revisiting some common notations and
preliminaries used throughout the paper. In Section 2, a
standard configuration of a DC micro-grid is proposed for
investigation, along with its corresponding admittance ma-
trix in Section 3. Stability analysis is conducted in Section
4, for the closed-loop system with a droop controller, while
simulations are displayed in Section 5. Finally, conclusions
are drawn in Section 6.

1.1 Literature review

A widely employed strategy to guarantee voltage reg-
ulation and effective current (or power) sharing, without
using communication, is to introduce a virtual resistance
at the output of each converter, a method referred to as
the droop control method, as in Karlsson and Svensson
(2003); Mahmoodi et al. (2006); Huang et al. (2015). To
address its shortcomings in terms of voltage regulation
and power sharing accuracy trade-off, the droop control
has been proposed in many forms, i.e. nonlinear droop
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(Cingoz et al., 2017), quadratic droop (Simpson-Porco
et al., 2017), robust droop (Shuai et al., 2016). However,
in order to ensure system stability with CPLs, in small-
signal analysis, the impedance inequality criteria must be
satisfied.

Passive damping methods are one type of approach
to reshape the output impedance of the input filter by
adding an extra physical resistance (Cespedes et al., 2011),
but this creates additional power losses. Active damping
methods, based on cascaded systems without input filters
between two stage converters, were proposed to tackle this
issue. Even though this approach is popular in small-scale
micro-grids, for instance in electric vehicles (Magne et al.,
2012), it is not applicable in relatively large DC micro-
grids. Aside from these strategies, a significant deal of
research articles has looked into the stability and stabi-
lization methods of droop-controlled DC micro-grids with
a single (Kwasinski and Onwuchekwa, 2011; Marx et al.,
2012; Zhao et al., 2014), or multiple converter (Liu et al.,
2011; Sulligoi et al., 2012; Anand and Fernandes, 2013;
Tahim et al., 2015; Cupelli et al., 2015; Su et al., 2018)
architecture feeding constant power loads. Due to the CPL
negative impedance characteristic, the system tends to be
unstable if traditional decentralized or distributed control
is implemented independently.

In Anand and Fernandes (2013) and Tahim et al. (2015),
the dynamics of the DC/DC power converters and the
transient process are ignored, when the reduced order
linearised model is derived. In Anand and Fernandes
(2013), the stable ranges of the droop coefficients are
obtained for the reduced-order model of a low-voltage
DC micro-grid. Equivalently in Tahim et al. (2015), the
safe operating regions are obtained for the simplified two-
order RLC model system. Hence, these research works
conclude that only if the droop coefficient is larger than
the equivalent negative impedance CPL, the system would
be stable. A wider stability region is obtained in (Su et al.,
2018) considering a DC micro-grid described by the linear
dynamics of the buck converters, but the method is only
applicable to the conventional static droop control, which
introduces the well-known limitations (inaccurate power
sharing, significant load voltage drop).

Despite the many efforts to address this problem, prov-
ing closed-loop stability in the presence of CPLs contin-
ues to remain a non-trivial challenge, especially when a
dynamic droop controller is applied at each unit of the
micro-grid.

1.2 Main contributions

The main contributions of this paper are listed below:

(1) Admittance matrix: A new analytic method for com-
puting and suitably factorising the admittance matrix
of a DC micro-grid consisting of n sources and a CPL
is presented, to provide the key tool for proving the
system’s stability.

(2) Closed-loop system model: Opposed to the typical
static droop control concept, here a dynamic droop
control architecture is considered for each one of the
n units, which also includes the common DC bus
voltage measurement that further complicates the
analysis.

(3) Stability analysis: By employing the quadratic eigen-
value problem (QEP) theory to the closed-loop sys-
tem and utilising the factorisation of the admittance
matrix, analytic stability conditions are obtained to
guide the control design.

(4) Validation: The proposed approach is then verified
through simulation testing for a DC micro-grid with
5 DC/DC buck converters connected to common DC
bus and feeding a CPL.

1.3 Notation and preliminaries

(1) Vectors and matrices
Let 1n ∈ Rn, 0n ∈ Rn and 1n×n ∈ Rn×n, 0n×n ∈

Rn×n be the n-dimensional vectors and square ma-
trices with all elements equal to one and zero, re-
spectively. Given an n-tuple sequence (x1, . . . , xn), let
x ∈ Rn be the associated vector and [x] ∈ Rn×n

the diagonal matrix whose diagonal terms are the
elements of the x. The identity matrix of size n is
denoted by In.

(2) Linear matrix analysis

Lemma 1. Let λ1 ≤ λ2 ≤ · · · ≤ λn represent the
eigenvalues of a Hermitian matrix A, and β1 ≤ β2 ≤
· · · ≤ βn the eigenvalues of a Hermitian matrix B.
Then, it holds that

λi + β1 ≤ ηi ≤ λi + βn
where η1 ≤ η2 ≤ · · · ≤ ηn are the eigenvalues of the
Hermitian matrix A+B.

Proof. Presented in Chapter 7, in Meyer (2000). 2

Lemma 2. Let A be a positive-semidefinite Hermitian
matrix, and D a positive-definite Hermitian matrix.
Then
(a) Matrix product AD (or DA) is diagonalizable.
(b) If A,D ∈ Rn×n, the eigenvalues of AD (or DA)

have only real part, and the product AD (or
DA) has the same number of negative (zero, or
positive) eigenvalues as matrix A.

Proof. By polar decomposition AD (or DA) is
of the form AD = UP , where U is unitary and

P =
√

(AD)
∗
AD is a positive-semidefinite Hermi-

tian matrix. Define Q unitary to meet Q2 = U . Note
that M = Q−1 (AD)Q = QPQ is Hermitian, and by
spectral decomposition M = V ΛV −1, with V unitary
and Λ diagonal with the eigenvalues of M (and same
index of inertia as AD) on the main diagonal. It can

be inferred that (QV )
−1
AD (QV ) = Λ, with QV

unitary. Statement (a) is proved.

The similarity transformation D
1
2 (AD)D− 1

2 =

D
1
2AD

1
2 is congruent to A; thus, according to

Sylvester’s law of inertia, AD has the same index of
inertia as matrix A. The proof of conclusion (b) is
presented in Chapter 7, in Meyer (2000). 2

2. DC MICRO-GRID MODEL

The system under consideration is a typical DC micro-
grid, depicted in Figure 1, consisting of n power converters
connected in parallel to a common DC bus that feeds an
equivalent constant power load.

By applying Kirchhoff’s laws, the governing dynamic
equations of the of the capacitor voltages, in matrix form,
are the following
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Fig. 1. Typical architecture of a DC micro-grid

CV̇ = iin − i (1)

where C = diag{Ci}, V = [V1 . . . Vn]
T

represents the state

vector capacitor voltages, i = [i1 . . . in]
T

is the output

current vector, and iin = [iin1 . . . iinn]
T

is the control input
vector representing the current of each converter.

For constant power loads, the power balance equation
should be satisfied, i.e.

Vo

n∑
i=1

ii = P (2)

where Vo represents the voltage of the DC bus, P is the
power of the load, and ii is defined as

ii =
Vi − Vo
Ri

(3)

with Ri being the resistance of the line/cable. Now,
consider the following assumption:

Assumption 1. Let the following inequality hold(
n∑

i=1

Vi
Ri

)2

> 4P

n∑
i=1

1

Ri
. (4)

with P > 0 and Vi > 0, ∀i = 1, 2 . . . n.

Thus, substituting the output current ii from equation
(3) into equation (2), one can obtain the following expres-
sion for the load voltage given by the real solutions of the
second order polynomial

Vo =

∑n
i=1

Vi

Ri
±
√(∑n

i=1
Vi

Ri

)2
− 4P

∑n
i=1

1
Ri

2
∑n

i=1
1
Ri

(5)

The load voltage has two solutions, a high voltage and a
low voltage, with the high voltage representing the feasible
solution. This fact is also reported in Simpson-Porco et al.
(2017) and Su et al. (2018). Therefore, the voltage of the
load can be described as

Vo =

∑n
i=1

Vi

Ri
+

√(∑n
i=1

Vi

Ri

)2
− 4P

∑n
i=1

1
Ri

2
∑n

i=1
1
Ri

. (6)

Remark 1. System (1) represents a generic model of n-
sourced units that could be integrated with the micro-
grid via different power converter configurations (buck,

boost, buck-boost, AC/DC) in the given DC micro-grid
framework.

3. ADMITTANCE MATRIX

By taking the partial derivative of the output current
ii from (3) with respect to the capacitor voltage Vi, we
obtain the admittance matrix

Y=
∂ii
∂Vi

=



1

R1

(
1−∂Vo
∂V1

)
− 1

R1

∂Vo
∂V2

. . . − 1

R1

∂Vo
∂Vn

− 1

R2

∂Vo
∂V1

1

R2

(
1−∂Vo
∂V2

)
. . . − 1

R2

∂Vo
∂Vn

...
...

. . .
...

− 1

Rn

∂Vo
∂V1

− 1

Rn

∂Vo
∂V2

. . .
1

Rn

(
1−∂Vo
∂Vn

)



=



1

R1
0 . . . 0

0
1

R2
. . . 0

...
...

. . .
...

0 0 . . .
1

Rn




In −



∂Vo
∂V1

∂Vo
∂V1

. . .
∂Vo
∂V1

∂Vo
∂V2

∂Vo
∂V2

. . .
∂Vo
∂V2

...
...

. . .
...

∂Vo
∂Vn

∂Vo
∂Vn

. . .
∂Vo
∂Vn





=



1

R1
0 . . . 0

0
1

R2
. . . 0

...
...

. . .
...

0 0 . . .
1

Rn




In − 1n×n



∂Vo
∂V1

0 . . . 0

0
∂Vo
∂V2

. . . 0

...
...

. . .
...

0 0 . . .
∂Vo
∂Vn




= R−1 (In − 1n×nD) (7)

where R = diag{Ri} and D = diag{∂Vo

∂Vi
} with the

following expression

D =


∂Vo
∂V1

. . . 0

...
. . .

...

0 . . .
∂Vo
∂Vn

 =

=
1

2
∑n

i=1
1
Ri

R−1+

∑n
i=1

Vi

Ri√(∑n
i=1

Vi

Ri

)2
−4P

∑n
i=1

1
Ri


1

R1
. . . 0

...
. . .

...

0 . . .
1

Rn




=
1

2
∑n

i=1
1
Ri

R−1 +

∑n
i=1

Vi

Ri√(∑n
i=1

Vi

Ri

)2
− 4P

∑n
i=1

1
Ri

R−1


where

√(∑n
i=1

Vi

Ri

)2
− 4P

∑n
i=1

1
Rk

> 0 according to

Assumption 1. Since R is a diagonal and positive-definite
matrix, then it is clear that matrix D is a positive-definite
diagonal matrix, with eigenvalues of the form

λDi =
1

2
∑n

i=1
1
Ri

 1

Ri
+

∑n
i=1

Vi

Ri√(∑n
i=1

Vi

Ri

)2
−4P

∑n
i=1

1
Ri

1

Ri

,
with i = 1, . . . , n.
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Remark 2. In Su et al. (2018) and Liu et al. (2018), the
power balance equation is linearized and then an expres-
sion for Vo is obtained with respect to its steady-state
equilibrium, Voe. This new expression of Vo is substituted
in equation (3) and used to, finally, compute the admit-
tance matrix as a function of the equilibrium point, Voe,
of the load voltage. On the contrary, here the proposed
method considers the instantaneous nonlinear expressions
of the output currents, ii from (3), and the load voltage,
Vo from (6), to compute the admittance matrix for every
Vi. When the admittance matrix is required at a particular
equilibrium point, then it can be calculated with Vi = Vie,
where Vie is the value of the capacitor voltage at each node,
i, at the equilibrium point.

4. STABILITY OF DROOP CONTROLLED
MICRO-GRIDS

In the DC micro-grid under consideration, the main task
is to achieve load voltage regulation close to a desired
reference value and share the load proportionally to the
sources capacities. This can be achieved through droop
control operation as explained below.

4.1 Droop control design

Conventional droop controllers introduce a static struc-
ture and regulate the sources output voltage, which leads
to significant load voltage drop and inaccurate power shar-
ing. To improve the load voltage regulation and power
sharing, a dynamic droop controller is introduced with the
following expression

V̇ = V ∗1n − Vo −mi, (8)

with V ∗ being the reference voltage, and m = diag{mi}
the droop coefficients. At the steady-state there is

Vo = V ∗ −miii, (9)

which ensures accurate power sharing

m1i1 = m2i2 = · · · = mnin (10)

proportionally to the sources capacities with suitable
choice of mi. The droop controller is implemented using
a proportional integral (PI) controller, in matrix form, as
follows,

iin = −kPV + σ (11)

σ̇ = kI (V ∗1n − Vo −mi) , (12)

where kP = diag{kPi} and kI = diag{kIi} are the propor-
tional and integral gains of the PI controller, respectively,
and for which

mi < Ri, ∀ i ∈ {1 . . . n} (13)

By replacing the controller dynamics (11)-(12) into the
open-loop system (1), the closed-loop system becomes

CV̇ = −kPV + σ − i (14)

σ̇ = kI (V ∗1n − Vo −mi) (15)

where i is linked to V through the impedance matrix.

4.2 Stability analysis

Consider an equilibrium point (Ve, σe) of the closed-
loop system (14)-(15), (3) and (6), satisfying Assumption
1. Then the following Theorem can be formulated that
guarantees stability of the entire droop-controlled DC
micro-grid with a CPL.

Theorem 1. The equilibrium point (Ve, σe) is asymptoti-
cally stable if the following conditions holds

kPi >
nλDi − 1

Ri
, ∀ i ∈ {1 . . . n}. (16)

Proof. The Jacobian matrix corresponding to system (14)-
(15) takes the following form

J =

[
−C−1kP − C−1Y C−1

−kI1n×nD − kImY 0n×n

]
.

Replacing the admittance matrix with its expression from
(7), it yields

J =

[
−C−1kP − C−1R−1 (In − 1n×nD) C−1

−kI1n×nD − kImR−1 (In − 1n×nD) 0n×n

]
.

The characteristic polynomial of the system can be written
as

|λI2n − J | = |λ2In + Cλ+ K| = 0 (17)

with
C = C−1kP + C−1R−1 (In − 1n×nD)

K = C−1
(
kImR

−1 + kI
(
In −mR−1

)
1n×nD

)
By right multiplying (17) with |D|−1 > 0, the obtained
determinant is

|λ2D−1 + Cλ+ K| = 0 (18)

with

C = C−1kPD
−1 + C−1R−1

(
D−1 − 1n×n

)
K = C−1

(
kImR

−1D−1 + kI
(
In −mR−1

)
1n×n

)
By left multiplying (18) with |RC| > 0, one obtains

|λ2RCD−1 + C̃λ+ K̃| = 0 (19)

with
C̃ = RkPD

−1 +D−1 − 1n×n

being a symmetrical matrix and, following factorization,

K̃=RkI
(
In−mR−1

)((
In−mR−1

)−1
R−1mD−1+1n×n

)
being a diagonalizable matrix whose eigenvalues are all
real, according to Lemma 2. Hence, as K̃ is represented
by a product between a positive-definite diagonal and a
symmetric matrix, there is K̃ = PΛP−1, where P is
unitary and Λ is diagonal. The characteristic polynomial
becomes

|λ2RCD−1 + C̃λ+ PΛP−1| = 0 (20)

and, by left and right multiplication with |P−1| and |P |,
respectively, it becomes

|λ2P−1RCD−1P + P−1C̃Pλ+ Λ| = 0 (21)

Note that Λ is a diagonal matrix having the same in-
dex of inertia as K̃ and the similarity transformations
P−1RCD−1P and P−1C̃P are symmetrical, as P is uni-
tary (orthogonal in Rn×n, P−1 = PT ), and they share

the same eigenvalues as RCD−1, and C̃, respectively. If
RCD−1, C̃ and Λ are positive-definite, then Re{λ} < 0,
which means that matrix J is Hurwitz.

As RCD−1 is already positive-definite, it would suffice
to show that C̃ > 0, and Λ > 0, or equivalently that K̃
has positive eigenvalues.

(1) Condition C̃ > 0:

C̃ = RkPD
−1 +D−1 − 1n×n > 0 (22)
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Since C̃ is a sum of symmetric matrices, then accord-
ing to Lemma 1, condition (22) can be rewritten in
scalar form as

RikPi + 1

λDi
− n > 0, ∀ i ∈ {1 . . . n}

which is always true, provided that (16) is satisfied.

(2) Condition Λ > 0, or K̃ has positive eigenvalues:
According to (13), the first matrix in the multiplica-

tion inside K̃ is positive-definite, i.e.

RkI
(
In−mR−1

)
>0.

Hence, according to Lemma 2, one can investigate
only the remaining (symmetrical) matrix in the prod-
uct. This matrix

R−1
(
In −mR−1

)−1
mD−1 + 1n×n > 0 (23)

is positive-definite since it is a sum between a positive-
definite diagonal matrix and a positive semi-definite
symmetrical matrix.

Hence, when (16) is satisfied, J is Hurwitz, and the
equilibrium point (Ve, σe) is asymptotically stable. This
completes the proof of Theorem 1. 2

5. SIMULATION RESULTS

A DC micro-grid consisting of 5 parallel-operated buck
converters, as depicted in Figure 2, with the parameters
given in Table 1, and connected to a common DC bus with
a CPL, has been simulated in Matlab/Simulink for 2 s.

Each converter is equipped with the droop controller
considered in Section 4, and the task is to regulate the
load voltage to the rated value, V ∗ = 100V , and share
their output power in a 1 : 2 : 3 : 4 : 5 ratio.

At t = 0 s, the load power is P = 500W , and as one
can see in Figure 3a, the load voltage is accurately fixed
at Vo = 99.9V . The output currents satisfy their control

Vo

R3

C3 V3

i3

R2

C2

R4

C4

R5

C5

i2

i4

i5

R1

C1

i1iin1

iin2

iin3

iin4

iin5

V4

V5

V2

V1

Fig. 2. DC micro-grid considered for testing

(a) Capacitor and load voltages

(b) Output currents

Fig. 3. Simulation results of the DC micro-grid system with
PI controller

imposed ratios, having i = [1.67 1.34 0.99 0.67 0.34]A
(Figure 3b).

After one second, at t = 1 s, the load power changes
to 2P = 1 kW . The load voltage regulation is still fairly
accurate, Vo = 99.7V (Figure 3a), and, according to
Figure 3b, the output currents respect their assigned
proportions, having i = [3.34 2.67 2.02 1.34 0.66]A.

6. CONCLUSION

A novel approach to compute the admittance matrix has
been proposed that facilitates the stability analysis, espe-
cially in the case where the controller aims to regulate the
converter output voltage. Following the proposed strategy,
after several factorisations, the isolation of singularities
is possible, and henceforth, by employing straightforward
linear algebra tools, the stability conditions can be com-
fortably acquired. A DC micro-grid consisting of 5 parallel-
operated DC/DC buck converters feeding a common CPL
has been used for testing and validating the proposed
analysis. The results confirm that the presented strategy
ensures normal operation of the DC network and guaran-
tees an elementary path in ensuring closed-loop stability.

Table 1. System and control parameters

System Parameters Values System Parameters Values

C1 110µF R1 1Ω
C2 150µF R2 1.1Ω
C3 100µF R3 1.05Ω
C4 420µF R4 1.12Ω
C5 200µF R5 1.15Ω

Control Parameters Values Control Parameters Values

m1 0.42 m5 0.084
m2 0.21 kP1...5 0.01
m3 0.14 kI1...5 2×103

m4 0.105 V ∗ 100
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