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Abstract: This paper introduces a novel methodology for the identification of switching
dynamics for switched autoregressive linear models. Switching behavior is assumed to follow a
Markov model. The system’s outputs are contaminated by possibly large values of measurement
noise. Although the procedure provided can handle other noise distributions, for simplicity, it
is assumed that the distribution is Normal with unknown variance. Given noisy input-output
data, we aim at identifying switched system coefficients, parameters of the noise distribution,
dynamics of switching and probability transition matrix of Markovian model. System dynamics
are estimated using previous results which exploit algebraic constraints that system trajectories
have to satisfy. Switching dynamics are computed with solving a maximum likelihood estimation
problem. The efficiency of proposed approach is shown with several academic examples.
Although the noise to output ratio can be high, the method is shown to be effective in the
situations where a large number of measurements is available.
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1. INTRODUCTION

While identification of linear time invariant systems is by
now a well understood problem, identification of switched
and hybrid systems is considerably less developed, even
in the piecewise affine case. Existing methods exploit a
number of algebraic, optimization-based technique to find
subsystem dynamics and switching surfaces; see Paoletti
et al. (2007). A common feature is the computational
complexity entailed in dealing with noisy measurements:
in this case algebraic procedures lead to nonconvex op-
timization problems, while optimization methods lead to
mixed integer/linear programming; see Roll et al. (2004);
Ansaripour et al. (2016).

Similarly, methods relying on probabilistic priors lead
to combinatorial problems; see Juloski et al. (2005) .
This can be avoided by using clustering-based methods
as in Nakada et al. (2005); Ferrari-Trecate et al. (2003).
However, these require “fair sampling” of each cluster,
which constrains the data that can be used. In Ozay
et al. (2012, 2015); Bako (2011), some sparsification based-
techniques for identification of affine switched models have
been developed that allow for several types of noise.

This paper develops effective methods for identifying
switching dynamics from large noisy data sets, for a broad
class of systems described by switching autoregressive
models. These systems can be considered a generalization
of piecewise linear models, and breach the gap between lin-
ear and nonlinear models, retaining many of the tractabil-
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ity properties of the former, while providing descriptions
that more accurately capture the features of practical
problems over broader scenarios.

In identifying the parameters of switched models, the dy-
namics of switching play an important role. The interest in
Markovian jump systems, switched system with switching
dynamics based on a Markov chain, has been growing
since they have a broad range of application in different
areas and real world problems such as economic systems,
power systems, networked control systems, neuroscience,
and health care; see Shi and Li (2015); Hojjatinia and
Lagoa (2019); Hojjatinia et al. (2020a). An example for
application of Markovian jump systems in health care is m-
health interventions for increasing light physical activity;
see Lagoa et al. (2017). More precisely, the availability of
activity tracking devices allows gathering of large amount
of data such as individual’s physical activity which is a
dynamic behavior, so it can be modeled as a dynamical
system. Furthermore, its characteristics may remarkably
change based on the time in a day, weekdays or weekends,
location, etc; which, motivated the approach of modeling
it as a Markovian jump system; see Conroy et al. (2019);
Hojjatinia et al. (2020c).

In comparison to the large amount of literature on analysis
and control of Markovian jump systems, the identification
problem seems to have received very little attention. In
Hojjatinia et al. (2017) a new method for the identification
of parameters of Markovian jump system is provided. The
probability transition matrix is estimated using a suitable
convex optimization problem. However, due to computa-
tional complexity, the number of measurement that the
proposed approach is able to handle is limited and only
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process noise was considered. In this paper, we focus on
cases involving a very large number of measurements, pos-
sibly affected by large values of noise. In this case, polyno-
mial/moments based approaches become ineffective, and
different methodologies need to be devised. The approach
we propose builds upon the same premises as Hojjatinia
et al. (2019, 2020b).

More precisely we start by assuming that the output mea-
surements are corrupted by random Normal measurement
noise with unknown variance. Then, we exploit the avail-
ability of a large number of measurements and the results
in Hojjatinia et al. (2019) to determine high confidence
estimates of the systems parameters and the variance
of the measurement noise. Finally, by using a maximum
likelihood approach, we estimate the probability transition
matrix and dynamics of switching. The approach can be
easily extended to other noise distributions, as long as
the number of unknown parameters of the distribution is
“low.”

1.1 Paper Organization

The paper is structured as follows: after this introduction,
problem statement is defined in Section 2. Identification
of system coefficients and noise parameters are reviewed
in Section 3. In Section 4, the method for identification
of probability transition matrix is described. Numerical
results are shown in Section 5. Finally, Section 6 concludes
the paper highlighting some possible future research direc-
tions.

2. PROBLEM STATEMENT

A precise description of the problem addressed is provided
in this section. Assumptions needed to solve the problem
are also introduced.

2.1 System Model

We consider switched autoregressive (SAR) linear models
of the form

xk =

na∑
j=1

ajδk xk−j +

nc∑
j=1

cjδk uk−j (1)

where xk ∈ R is the output at time k and uk ∈ R is input
at time k. The variable δk ∈ {1, ..., n} denotes the sub-
system active at time k, where n is the total number of
sub-systems. Furthermore, ajδk and cjδk denote unknown
coefficients corresponding to mode δk. Time k takes values
over the non-negative integers. The latent discrete state
δk evolves according to a Markov chain with transition
probability matrix P , whose ij entry is

Pij = P{δk+1 = j | δk = i} (2)

Output is assumed to be contaminated by (possibly large)
noise; i.e. observations are of the form:

yk = xk + ηk (3)

where ηk, denotes measurement noise.

The following assumptions are made on the system model
and noise.

Assumption 1. Throughout this paper it is assumed that:

• Model orders na and nc are available.
• Number of sub-systems n is available.
• Switching sequence is based on a Markov process.
• Each subsystem is “visited” infinitely often. More pre-

cisely, the Markov chain is assumed to be irreducible
so it is possible to go to any state from any state; see
e.g., Grimmett et al. (2001).

• Measurement noise ηk has zero mean Normal distri-
bution with unknown variance.

• Noise ηk is independent from ηl for k 6= l, and
identically distributed.

• Input sequence uk applied to the system is known and
bounded.

• There exists a finite constant L so that |xk| ≤ L for
all positive integers k.

Note that, the approach in this paper can be extended for
any noise distribution as long as the number of unknown
distribution parameters is “small.”

2.2 Problem Definition

The main objective of this paper is to develop algorithms
to identify the parameters of SAR systems, noise param-
eters, and dynamics of switching from noisy observations.
More precisely, we aim at solving the following problem:

Problem 1. Given Assumption 1, an input sequence uk,
k = −nc + 1, . . . , N − 1 and noisy output measurements
yk, k = −na + 1, . . . , N , determine

(1) Coefficients of the SAR model ai,j , i = 1, 2, . . . , na,
j = 1, 2, . . . , n, ci,j , i = 1, 2, . . . , nc, j = 1, 2, . . . , n,

(2) Noise distribution parameters,
(3) Switching sequence δk , k = 1, 2, . . . , n which is based

on a Markov process.

3. REVIEW: IDENTIFICATION OF SYSTEM
COEFFICIENTS AND NOISE PARAMETERS

To identify the coefficients of SAR system with measure-
ment noise from large amount of data, we adopt the
approach developed in Hojjatinia et al. (2019). For the
sake of completeness, we briefly summarize the approach
in this section. We refer the reader to Hojjatinia et al.
(2019) for more details.

First, we review earlier results on an algebraic reformula-
tion of the SAR identification problem for the case where
no noise is present. Details on the algebraic approach to
switched system identification can be found in Vidal et al.
(2003).

The equation (1) is equivalent to

bTδk rk = 0 (4)

where

rk = [xk, xk−1, · · · , xk−na
, uk−1, · · · , uk−nc

]T

is the known regressor at time k, and

bδk = [−1, a1δk , · · · , anaδk , c1δk , · · · , cncδk ]T .

is the vector of unknown coefficients at time k. Hence,
independently of which of the n submodels is active at
time k, we have
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Υn(rk) =

n∏
i=1

bTi rk = cTnνn(rk) = 0, (5)

where the vector of parameters corresponding to the i-
th submodel is denoted by bi ∈ Rna+nc+1, and νn(·) is
Veronese map of degree n Harris (2013)

νn([x1, · · · , xs]T ) = [· · · , xn1
1 xn2

2 · · ·xns
s , · · · ]T

which contains all monomials of order n in lexicographical
order, and cn is a vector whose entries are polynomial
functions of unknown parameters bi (see Vidal et al. (2005)
for explicit definition). The Veronese map above is also
known as polynomial embedding in machine learning Vidal
et al. (2005). Veronese matrix Vn is of the form

Vn(r) =
[
νn(r1)>, · · · , νn(rN )>

]>
(6)

where r, without subscript, denotes the set of all regressor
vectors. Note that the number of rows of the Veronese
matrix Vn is equal to the number of measurements avail-
able for the regressor N . Therefore, a reformulation of the
previous results to address the problem of identification
from very large data sets is as follows Hojjatinia et al.
(2019).

For the noiseless case, a reformulation of the hybrid
decoupling constraint shows identifying the coefficients of
the sub-models is equivalent to finding the singular vector
cn associated with the minimum singular value of the
matrix

MN =
1

N

N∑
k=1

νn(rk)νTn (rk)
.
=

1

N

N∑
k=1

Mk (7)

where, matrices are of size
(
n+na+nc

n

)
, and size does

not depend on the number of measurements, which is
especially important in the case of very large data sets.

Identifying the parameters of the SAR model is equivalent
to finding a vector in the null space of the matrix MN .
Under mild conditions, the null space of the matrix above
has dimension one if and only if the data is compatible
with the assumed model Ozay et al. (2015). However,
when output is corrupted by noise, xk is not known
and, therefore, this matrix cannot be computed. However,
we can use available information on the statistics of
the noise and the measurements collected to compute
approximations of the matrix MN and, consequently,
approximations of vectors in its null space.

We start by noting that although xk are unknown, the
following holds

E[xhk ] = E[(yk − ηk)h] = E[yhk ]−
h∑
d=1

(
h

d

)
E[xh−dk ]E[ηdk]

= E[yhk ]−
h∑
d=1

(
h

d

)
E[xh−dk ]md

∀k = 1, 2, · · · , N. (8)

where E(·) denotes expectation and md is the dth moment
of noise.

Hence, assuming that distribution of the noise, and the
input signal are given and fixed, there exists an affine
function M(·) so that

Mk = E{M [monn(yk, . . . , yk−na , uk−1, . . . , uk−nb
)]}

= M{E[monn(yk, . . . , yk−na
, uk−1, . . . , uk−nb

)]}.
wheremonn(·) denote a function that returns a vector with
all monomials up to order n of its argument Hojjatinia
et al. (2019).

This can be exploited to identify the parameters of the
SAR system. The only thing needed is an estimation of
the matrix MN in (7). It turns out that this can be done
using the available noisy measurements. More precisely, we
can construct the matrix

M̂N
.
=

1

N

N∑
k=1

M [monn(yk, . . . , yk−na , uk−1, . . . , uk−nb
)]

and it is shown in Hojjatinia et al. (2019) that this matrix
converges to MN in (7) as N →∞ almost surely. Hence,
for large number of measurements N , the null space of the

matrix M̂N can be used to determine the coefficients of
the subsystems.

The above assumes knowledge of the moments of the
noise. However, this does not need to be the case. In this
paper, measurement noise is assumed to have a Normal
distribution with zero mean and unknown variance σ2.
Since the moments are known functions of the variance,
MN is a known function of σ and estimation of variance
can be performed by minimizing the minimum singular
value of matrix above over the allowable values of σ.
More precisely, the parameters of the submodels and the
variance of the noise can be identified using the following
algorithm: Let na, nc, n, some parameters of the noise and
σmax be given.

Step 1. Compute matrix M̂N as a function of the un-
known noise parameter σ.

Step 2. Find the value σ∗ ∈ [0, σmax] that minimizes the

minimum singular value of M̂N .
Step 3. Let cn be associated singular vector.
Step 4. Determine the coefficients of the subsystems from

the vector cn.

In order to perform Step 3 in Algorithm, we adopt poly-
nomial differention algorithm for mixtures of hyperplanes,
introduced by Vidal (Vidal and Sastry, 2003, pp. 69–70).
In practice for sufficiently large N , the above algorithm
provides both a good estimate of the systems coefficients
and noise parameters, especially if we take σ∗ to be the
smallest value of σ for which the minimum singular value

of M̂N is below a given threshold ε. Previous work can-
not address the identification of switching dynamics and
estimating the probability transition matrix of Markov
jump models, this problem is explicitly addressed in the
following section.

4. IDENTIFICATION OF PROBABILITY
TRANSITION MATRIX

In Section 3, the algorithms and procedure of identifying
noise parameters and system coefficients have been pre-
sented. In this section the switching behavior and dynam-
ics of switching are considered. This is done in two steps:
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The first step is to identify switches that have the highest
probability of occurrence. Then, in the second step, by
considering these switches as a good estimate of switching
sequence, we estimate the transition probabilities.

4.1 Maximum likelihood switch sequence

Assume that the noise variance and system coefficients
have been identified. To do the first step in identification
of switching dynamics, i.e., determine the switches with
highest probability, we start by building the following
sequence based on available data and identified coefficients
and parameters. Considering equations (1) and (3):

xk =

na∑
j=1

ajδk xk−j +

nc∑
j=1

cjδk uk−j

yk = xk + ηk

Since xk = yk − ηk. we have

ηk−
na∑
j=1

ajδk ηk−j =

yk −
na∑
j=1

ajδk yk−j −
nc∑
j=1

cjδk uk−j

(9)

Since we have identified the coefficients ajδk and cjδk , and
input output (u, y) are available, we are able to determine
the realization of the random variable in the right hand
side of equation (9) for the all possible values of the
switching sequence δk. Define

zk(δk) = yk −
na∑
j=1

ajδk yk−j −
nc∑
j=1

cjδk uk−j (10)

To identify the most probable realization of the switches,
we can use the values of zk(δk) for each possible active
system at time k (δk = {1, · · · , n}), and determine the
sequence δk, k = 1, 2, . . . , N of maximum likelihood. How-
ever, for a fixed switching sequence, zk(δk) is a sequence
of correlated random variables. Even though the measure-
ment noise is iid, zk(δk) depends on ηk−l , l = 0, 1, . . . , na
leading to a sequence of correlated random variables.
Therefore, determining the values of δk , k = 1, 2, . . . , N
that lead to the highest likelihood is a complex combina-
torial problem.

To circumvent this, we start by noting that zk(δk) is
independent of zl(δl) if l > k + na. Therefore, if enough
data is available, we can use only independent “snippets”
of data of low enough length for which: i) maximum
likelihood sequence can be easily computed and ii) given
that they are independent, likelihood can be computed
individually for each snippet.

Hence, in the identification procedure proposed in this
paper, we only consider snippets of data of the length nl
that are separated in time by at least na sample periods.
More precisely, we consider snippets of data of length nl,
compute its joint distribution as a function of the switching
sequence, determine the maximum likelihood switches for
this snippet, skip the next na data points, and repeat the
process until we run out of data.

We now elaborate on this. Take snippets of data of length
nl, denoted as a vector Zk defined as:

Zk =[zk(δk), · · · , zk+nl−1(δk+nl−1)]T

∀ k = (na + 1) + (na + nl)× l,

∀ l = 0, 1, 2, · · · , int(
N

na + nl
)− (na + nl + 1)

(11)

where int(·) refers to integer part (round towards zero) of
its argument. In this way, each snippet Zk is independent
from other snippets and each of these has a mutltivariable
Normal distribution whose covariance matrix is a function
of the switching sequence. As a reminder, an nl dimension
multivariate Normal distribution has density function

f(x) =
1

(2π)nl/2|Σ|1/2
exp{−1

2
(x)T |Σ|−1(x)}

where Σ is the covariance matrix of dimension nl × nl.
Note that, at each time k, there are nnl possible switching
sequences for the snippet Zk, since δk ∈

{
1, · · · , n

}
.

Therefore, if nl is small enough, we can compute the
likelihood value for each of the nnl choices and take the
most likely sequence of subsystems as the one leading to
the highest likelihood. Hence, given the independence of
Zk, estimating the most likely switching sequence in the
used snippets can be done by solving the following problem

max
Zk,δk

∑
k

log[f(Zk)]

s.t. Zk = [zk(δk), · · · , zk+nl−1(δk+nl−1)]T

δk ∈
{

1, · · · , n
}

∀ k = (na + 1) + (na + nl)× l,

∀ l = 0, 1, 2, · · · , int(
N

na + nl
)− (na + nl + 1)

(12)

whose optimization can be done separately for each term
of the sum. Therefore, its complexity is exponential in nl
but linear in the number of snippets and can be efficiently
solved if nl is “not too large.” Note that this optimization
problem is a convex quadratic one that can be solved
efficiently in many ways.

Remark 1. As previously mentioned, in the above formu-
lation, we do not use all available data when computing
high likelihood switchings. More precisely, we only use
nl/(nl +na) of the data. Hence, any choice of nl is a com-
promise between computational complexity and fraction
of the data used and the “right” choice should be done by
taking into account how many measurements are available.

Solving Problem (12), allows us to determine how many
times a specific “jump” occurs in this high likelihood
sequence of switches. This can be done in the following
way:

Step 1. Solve problem (12). Recall that this can be done
by solving the problem separately for each k.

Step 2. For each k, let n
(k)
ij be the number of times the

transition from system i to system j occurs in the
maximum likelihood switch sequence for snippet
k.

Step 3. Compute the total number of transitions from
system i to system j observed in all snippets

nij =
∑
k

n
(k)
ij
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Given this high likelihood estimate of how often a transi-
tion occurs in the snippets, we can estimate the probability
transition matrix. This can be done by computing the
frequency of transitions as

Pij =
nij∑n
j=1 nij

i = 1, · · · , n j = 1, · · · , n (13)

To be able to have convergence of the estimates, the
following assumption is made

Assumption 2. Let mk be the number of subsystems com-
patible with the information at time k when there is no
measurement noise. More precisely

mk = cardinality

δ : xk =

na∑
j=1

ajδ xk−j +

nc∑
j=1

cjδ uk−j


and define

Nk = cardinality {l : 0 ≤ l ≤ k and ml > 1} .
Then

lim
k→∞

Nk
k

= 0

The assumption above implies that the number of am-
biguous transitions is much smaller than the number of
measurements and these ambiguities will have little impact
on the outcome of the identification algorithm for large
number of measurements. With this assumption, as the
number of observations goes to infinity, the solution of
this problem converges to the true probability transition
matrix. More precisely, we have the following result

Theorem 1. Let P̂N represent the estimated transition
probability matrix of N measurements of switched au-
toregressive processes, obtained from (13), and Ptrue be
the true transition probability matrix. Assume that the
Markov model for switching is aperiodic and Assumptions
1 and 2 hold. Then,

lim
N→∞

lim
σ2→0

||P̂N − Ptrue|| → 0 (14)

where σ2 is the variance of the measurement noise.

Sketch of proof: We start by noting that under Assump-
tion 2, the results in Hojjatinia et al. (2019) imply that as
σ2 → 0 and for N sufficiently large, the estimate of the
coefficients of the subsystems provided by the algorithm
in Section 3 converges to the true ones.

Hence, and again using the fact that σ2 → 0, the optimiza-
tion problem (12) identifies the true active system except
for the times k where mk (defined in Assumption 2) is
strictly greater than one. Therefore, for most k, the right
transitions are identified.

Finally, the assumption on aperiodicity of the underlying
Markov chain implies that the probability of a transition
occurring in a snippet is equal to the probability of
occurring anywhere in the sequence of measurements.
Therefore, and by the Law of Large Numbers Grimmett
et al. (2001), the frequency of a transition occurring in the
snippets converges to its probability. In other words, as
the variance of the noise converges to zero, the estimated
probability transition matrix of the switching sequence
converges to the true one.

4.2 An Example

To better illustrate the approach, we provide an example
of how to do the maximum likelihood estimation of proba-
bilities required for identification of probability transition
matrix. Therefore, consider the problem of identifying
switching dynamics for SAR system with n = 2 subsys-
tems of the form

subsystem 1 : xk = a1 xk−1 + b1 uk−1
subsystem 2 : xk = a2 xk−1 + b2 uk−1

(15)

and noisy measurements

yk = xk + ηk (16)

where ηk has zero mean Normal distribution, and na = 1.
We consider snippets of data of length nl = 2, and skip
na = 1 sample measurement in between the snippets of
data, i.e. two snippets of data for subsystem 1 are like:{

ηk − a1ηk−1 = yk − (a1yk−1 + b1uk−1)

ηk+1 − a1ηk = yk+1 − (a1yk + b1uk){
ηk+3 − a1ηk+2 = yk+3 − (a1yk+2 + b1uk+2)

ηk+4 − a1ηk+3 = yk+4 − (a1yk+3 + b1uk+3)

and we have skipped this one:

ηk+2 − a1ηk+1 = yk+2 − (a1yk+1 + b1uk+1)

For this example

Zk =[zk(δk), zk+1(δk+1)]T

∀ k = 2 + 3× l,

∀ l = 0, 1, 2, · · · , int(
N

3
)− 4

and,

zk(δk) ∈
{
zk(δk = 1), zk(δk = 2)

}
Therefore, the set of possible active sequences can be:

Zk =


[zk(δk = 1), zk+1(δk+1 = 1)]T

[zk(δk = 1), zk+1(δk+1 = 2)]T

[zk(δk = 2), zk+1(δk+1 = 1)]T

[zk(δk = 2), zk+1(δk+1 = 2)]T

∀ k = 2 + 3× l,

∀ l = 0, 1, 2, · · · , int(
N

3
)− 4

(17)

At each time k, there are nnl = 4 possible Zk cases. For
system shown in equation (15), Zk cases are as follows:{

ηk − a1ηk−1 = yk − (a1yk−1 + b1uk−1)

ηk+1 − a1ηk = yk+1 − (a1yk + b1uk){
ηk − a1ηk−1 = yk − (a1yk−1 + b1uk−1)

ηk+1 − a2ηk = yk+1 − (a2yk + b2uk){
ηk − a2ηk−1 = yk − (a2yk−1 + b2uk−1)

ηk+1 − a1ηk = yk+1 − (a1yk + b1uk){
ηk − a2ηk−1 = yk − (a2yk−1 + b2uk−1)

ηk+1 − a2ηk = yk+1 − (a2yk + b2uk)

The value of probability density function for the Multivari-
ate Normal distribution at each of nnl sequences Zk will
be computed, and the one which has the maximum value
of the likelihood will be considered as the set of active
subsystems at that point.
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5. NUMERICAL RESULTS

In this section, we will address the problem of identifying
switching dynamics in Markovian jump systems. The
values of true coefficients in this example has taken from
the example in Hojjatinia et al. (2019), which are a1 =
0.3, b1 = 1, a2 = −0.5, and b2 = −1. Measurement noise
is assumed to have zero-mean Normal distribution. So, AR
system with n = 2 subsystems, na = 1, and nc = 1 in this
example are as follows:

subsystem 1 : xk = 0.3xk−1 + 1uk−1
subsystem 2 : xk = −0.5xk−1 − 1uk−1
noisy output : yk = xk + ηk

(18)

Total number of N = 106 input-output data is available.
Output is corrupted with random measurement noise
which is Normal with zero mean and different values of
variance. The proposed algorithm is coded and run in
Python.

Noise to output ratio (γ) is defined as

γ =
max |η|
max |y|

(19)

Simulation results for several experiments are shown in
Table 1. For each experiment, a random probability transi-
tion matrix has been generated, which is shown in column
2 of the table. By using the algorithms mentioned in the
paper, for each experiment probability transition matrix
has been estimated from noisy measurements, which is
shown in column 3 of the table. The normalized Frobenius
norm between true and estimated values of probability
transition matrix has been computed and shown in column

4 of the table (
∥∥∥P̂ − Ptrue∥∥∥

F
/ ‖Ptrue‖F ).

For each experiment noise to output ratio and variance
of noise are shown in columns 5 and 6 of the table. As
we see in this table, the value of entries in probability
transition matrix are very close to the true values, even
when the noise variance is high with noise magnitude in
average around 30% of the signal magnitude.

For example, in experiment 6 the value of γ = 0.5223
shows that noise to output ratio of approximately 52%;
even with this very large value of corruption with mea-
surement noise, the proposed method works well and the
normalized Frobenius norm between true and estimated
values of probability transition matrix is only 0.1153. As
expected and in the Table 1 is shown, for smaller values of
noise to output ratio (γ), the estimated values for proba-
bility transition matrix are closer to the true probability
transition matrix and normalized Frobenius norm of their
difference has smaller values. However, with the prposed
approach even for large values of noise to output ratio, the
difference in Frobenius norm is still low.

Figure 1 demonstrates the convergence of probability
transition matrix as number of measurements grows. This
figure is based on a random experiment, for the values
of coefficients in equation (18), fixed variance of noise
σ2 = 0.03 and noise to output ratio γ = 0.15. As we
see in this figure the values of normalized Frobenius norm
between true and estimated probability transition matrix
decreases, when number of measurement increases. As

we observe in Figure 1, the value of difference between
true and estimated probability transition matrix decreases
from 0.2419 at k = 100 to 0.0659 at k = 106. It
shows even for the case of having 15% noise to output
ratio, the approximated switching dynamics and transition
probability matrix are close to the true ones.

Fig. 1. Convergence of estimated probability transition
matrix

6. CONCLUSION AND FUTURE WORK

In this paper we have proposed a methodology for iden-
tification of switching dynamics in Markovian jump SAR
models. Given large noisy input-output data, by using pre-
viously developed procedures for identification of switched
system from large noisy data sets, we estimate the param-
eters of the noise, and then, identify the coefficients of each
submodel. Then, by using the novel procedure presented in
this paper for estimation of probability transition matrix,
we identify the switching dynamics and computed the
probability transition matrix of Markov chain. Even for
large values of measurement noise, numerical simulations
show a low estimation error. The Frobenius norm between
estimated and true probability transition matrix is small
even in the case of large noise to output ratio. For future
work, we can consider the problem of identifying switched
ARX models and switching dynamics form large noisy data
sets, but with the process noise. We will also test the
effectiveness of the proposed approaches in “real” appli-
cations with emphasis on estimating individual response
to treatments aimed at improving light physical activity.
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