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Abstract: Our departure point is the evolution equation of a Markov process. It describes the
changes in the transition probability as time passes. We compare the transition probability for a
priori model with the actual transition probability of the observed process to detect a mismatch
between the expected and the measured data. To translate this idea into an algorithm, we
characterise the involved measures by their moments. Specifically, a linear dynamic system is
put forward that describes the evolution of moments. As the last result, we define a moment
divergence as the means of computing the distance between two sequences of moments. We
see the work as a step towards merging model-driven and data-driven concepts in control
engineering. To elucidate the concepts introduced, we have incorporated several simple examples.

1. INTRODUCTION

Fault detection has a rich history (see Hwang et al.
[2010], and the references therein). Model-based methods
make use of a model (often deterministic) to generate
a residual that reflects the deviation between estimated
and measured signal. In this work, we strive to merge
the model-based with the data-driven fault detection. We
limit ourselves to detecting the discrepancy between the
distributions of observations and the expected distribution
from the model, and call this problem anomaly detection.
This work is motivated by the study of anomaly detection
in Pauwels and Lasserre [2016], where the measurements
were compared with anticipated moments. To this end,
the authors used the moment matrix known from the
generalised moment method Lasserre [2001] used among
others for the polynomial optimisation. The method of
Pauwels and Lasserre [2016] applies to random variables
and classifies as a data-driven method. This paper aims to
extend it by including prior knowledge of the model of the
Markov process to-be-examined.

The idea of this paper is to approximate the moments
from the data at time t0 and propagate them with the
help of the evolution equation to compute the future
moments at time t. The distance between the propagated
moments and the moments computed from the data are
first established. Subsequently, they used to determine
if there is a discrepancy between the observation and
the estimation. This distance indicates whether anomalies
such as faults or cyber-attacks took place on the system.

The evolution equation as the means for computing the
moments has been used before, for example, in the study
of hitting probability in Cho and Stockbridge [2002].

? This work was supported in part by Poul Due Jensen Foundation.

We try to keep the exposition on a level that does not
require excessive notions from the probability theory.
We use many examples to illustrate introduced notions.
However, we also add several remarks which have a more
technical character.

The paper is organised as follows. We introduce prelim-
inary concepts and notations in Section 2. The primary
object of the study, the evolution equation, is introduced in
Section 3. The evolution equation is linear but infinite di-
mensional. Subsequently, it is approximated by a finite di-
mensional linear differential equation in Section 4. To this
end, we use moments (in monomial basis). In Section 5, we
introduce a moment divergence, which corresponds to the
distance between two sequences of moments. A variant of
the moment divergence will be used in Section 6 to detect
anomalies between the moments computed from the ob-
served data and the moments computed from the evolution
equation. We will illustrate the method in an example of
a one dimensional diffusion process in Section 6.

2. NOTATION AND PRELIMINARY CONCEPTS

This section aims to put forward the notation and the
preliminary concepts used throughout the paper. In our
effort to make the paper accessible by a broader audience
in the control society, we will keep the formal definitions
to the minimum. However, when referring to a subset of a
Euclidean space X , we will mean a Borel measurable set
(i.e., it belongs to the Borel sigma algebra on X denoted
by B(X )). Along the same lines, functions X → R will
be assumed measurable with respect to B(X ) and B(R).
We assume that the continuous-time processes of concern
are Markov. We regard a situation when a Markov process
(Xt) at time 0 has an initial distribution µ0. For a set A,
the probability P[X0 ∈ A] that X0 ∈ A is equal to µ0(A).
Specifically, for Dirac measure δx, µ0 = δx amounts to
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X0 = x (x ∈ X ). For a set A, the function IA(x) = 1 if
x ∈ A, and 0 otherwise, is called the indicator function of
A. In this work, the set of natural numbers N is with 0.
For α ∈ Nn, |α| = α1 + . . . + αn, and

(
n
α

)
= n!

α1!...αn!
. We

refer to α as a multi-index. We use multi-indexes to index
the entries of matrices. We use lexicographic order, i.e.,
α < β (α, β ∈ Nn) if and only if |α| < |β| else αi < βi for
the first i, where αi and βi differ. For a matrix M , tr(M)
stands for its trace.

3. EVOLUTION EQUATION

At the outset, we introduce the main object of study,
the evolution equation. It describes how the transition
probability (entrance law) evolves in time. For a set A, the
transition probability µt(A) tells what is the probability
that Xt, with the initial distribution µ0, is in A. In
particular, it is given by

µt(A) ≡ EIA(Xt) = P[Xt ∈ A], (1)

where E is the expected value with respect to the prob-
ability P, and IA is the indicator function of the subset
A ⊂ X . If the initial probability is µ0 = δx, we will denote
this specific occupation measure by µxt .

Having defined the measure µt, we can integrate a mea-
surable bounded function h with respect to this measure.
We call this integral the action of the measure µt on the
function h

µth ≡
∫
X
h(x)µt(dx).

To define the evolution equation, we will use the notion
of infinitesimal operator. Its generalisation, an extended
generator, will be discussed in the following after the Ex-
ample 1. Following Arnold [1974], the (weak) infinitesimal
generator L of a process (Xt) is defined by

Lh(x) = lim
t↘0

µxt h− h(x)

t
,

where the limit is point-wise for each x. We gather the
functions for which the limit above is defined in the set
D(L); this is the domain of L.

Remark 1. We introduce the so-called extended generator
Davis [1993] of the considered Markov process (Xt), which
is a generalisation of the infinitesimal generator. It plays an
important role when dealing with more general processes
than diffusions, for example: switched diffusion processes,
piecewise-deterministic Markov processes, jump diffusion
processes, or stochastic hybrid systems. Let D(L) be the
set of measurable functions h : (Y,B(Y)) → (R,B(R))
having the property that there is a measurable function
g : (X ,B(X )) → (R,B(R)) such that the function t 7→
g(Xt) is almost surely (a.s.) integrable for each y ∈ Y ,
and the process Cht given by

Cht ≡ h(Xt)− h(X0)−
∫ t

0

g(Xs)ds (2)

is a local martingale. We write Lh = g and call (D(L),L),
or even L, an extended generator. Notice that the extended
generator L is possibly multi-valued. Nonetheless, if g1 and
g2 are two values of the extended generator corresponding
to h, then g1(x) 6= g2(x) only on a subset A where

∫∞
0
IA(Xt)dt = 0 a.s. for y ∈ Y, i.e., the process (Xt)

spends no time in A.

We are ready to define the evolution equation. For any
function h in the domain D(L) of the infinitesimal (or
extended) generator L, the following equation holds∫
X
h(x)µt(dx)−

∫
X
h(x)µ0(dx) =

∫ t

0

∫
X
Lh(x)µτ (dx)dτ.

(3)

Remark 2. The relation (3) follows from (2), hence

E[h(Xt)] = E[h(X0)] + E

[∫ t

0

Lh(Xs)

]
ds. (4)

Taking the limit of t going to 0 in relation (3), we formulate
the following differential equation

d

dt

∫
X
h(x)µt(dx) =

∫
X
Lh(x)µt(dx). (5)

Note that (5) is a differential form on the space of
probability distributions, which is infinite dimensional.
From now on, we suppose that X is a bounded subset
of Rn and use monomials xα, where α ∈ Zn, as the test
functions h, h(x) = xα. Alternatively, the test function
might be chosen arbitrary basis functions spanning a space
dense in the domain of the generator L.

Example 1. Consider the following stochastic differential
equation on Rn

dXt = f(Xt)dt+ σ(Xt)dBt, (6)

where (Bt) is the Brownian motion with values in a
Euclidean space Rl. The infinitesimal generator L is given
as follows: For any differentiable function h : Rn → R

Lh =
∂h

∂x
f +

1

2
tr
(
σσTD2h

)
,

where tr() stands for the trace, ∂h
∂xf =

∑
∂h
∂xi

fi and

D2h = [ ∂2h
∂xi∂xj

] is the Hessian of h(t, ·).

Example 2. A switched diffusion process (SDP) consists of
a family of diffusion processes and a switched mechanism,
which allows spontaneous change among them. An SDP is
a two component process (qt, Xt) with values in Z ≡ Q×X
(Q is a finite set of discrete modes) that satisfies stochastic
differential equation (7) and the stochastic integral (8)

dXt = f(qt, Xt)dt+ σ(qt, Xt)dBt, (7)

where the probability of switch from the mode i to j is

P[qt+δ = j| qt = i, Xs, qs, s ≤ t] = λij(Xt)δ + o(δ) (8)

for i 6= j, and for intensity functions λij .

By Baran et al. [2013], the generator is characterised as
follows. For any function h : Z → R with h(i, ·) ∈ C2(Rn),
i ∈ Q, the generator L is defined by

Lh(i, x) =
∂h(i, x)

∂x
f(i, x) +

1

2
tr(σ(i, x)σT(i, x)D2h(i, x))

(9)

+
∑

j∈Q,j 6=i

λij(x)(h(j, x)− h(i, x)).
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4. FINITE DIMENSIONAL APPROXIMATION

In this section, we will develop finite dimensional approxi-
mation of (5). To this end, we will assume that polynomi-
als are dense in the domain of the considered generator L,
and represent h =

∑
α aαx

α in monomial basis. Motivated
by Examples 1 and 2, we also suppose that L is a variant
of a differential operator. Since a differential operator is a
linear one that satisfies the Leibniz rule, L acting on xα is
of the form

Lxα =
∑
β

l(α, β)xβ . (10)

In Example 3, we will show the specific form of (10) for a
diffusion process, and in Example 4 for an SDP.

We shall denote

mα(t) =

∫
Y
xαµt(dx).

Throughout the work, we suppose that mα are finite.

From (5), we have the following differential moment equa-
tion

d

dt
mα(t) =

∑
β

l(α, β)mβ(t).

We define matrix L = [l(α, β)] with entries l(α, β), then
the time evolution of m(t) = [mα(t)] is governed by

ṁ(t) = Lm(t). (11)

As a result, the probability distribution evolution equation
is transformed into a moment evolution equation.

Example 3. Consider a simple diffusion on the real line
given by the following stochastic differential equation

dXt = aXtdt+ bdBt, (12)

for some nonzero reals a, b. Specifically, for j ≥ 2

Lxj = jaxj + j(j − 1)
1

2
b2xj−2.

The equation for the evolution of moments are

ṁj = jamj + j(j − 1)
1

2
b2mk−2 for j ≥ 2,

and ṁ1 = am1. Taking the vector m = (m0,m1,m2), we
compute

ṁ(t) =

 0 0 0
0 a 0
b2 0 2a

m(t). (13)

As a result, m0(t) = 1, m1(t) = m1(0)eat, and m2(t) =

(m2(0) + b2

2a )e2at − b2

2a .

Example 4. Consider an SDP

dXt = aiXtdt+ bidBt, i ∈ {1, 2}
with λ12(x) = λ1, and λ21(x) = λ2.

The generator is of the form

L(h1, h2) (14)

=

∂h1(x)

∂x
a1x+

1

2
b21
∂2h1
∂x2

+ λ1(h2(x)− h1(x))

∂h2(x)

∂x
a2x+

1

2
b22
∂2h2
∂x2

+ λ1(h1(x)− h2(x))

 .

The moments are defined by the family of pairs[
mα

mβ

]
=


∫
X
xαµt(1, dx)∫

X
xβµt(2, dx)

 ,
where µt({i}, A) = P[(qt, Xt) ∈ {i} ×A].

To illustrate an instance of moments, we compute the
evolution of the pair (m2,m1) of moments applying h(x) =
(x2, x) in (14),

d

dt

[
m2

m1

]
=

[
2am2 + b21 + λ1(m1 −m2)
am1 + λ2(m2 −m1)

]
.

4.1 Observations

We will model the observations as a stationary Markov
process (Yt) on a bounded subset Y of the Euclidean space
Rl. We define its conditional distribution PY (dy, x), where
PY (A, x) is the probability that Yt ∈ A provided that
Xt = x.

We let PY act on a polynomial f ∈ R[Y ]

PY (f, x) ≡
∫
Y
f(y)PY (dy, x)

and

PY (f, t) ≡
∫
X

∫
Y
f(y)PY (dy, x)µt(dx).

Specifically P[Yt ∈ A] = PY (IA, t).

Suppose that there exists a probability density function
c(x, y) of PY (dy, x) with respect to the Lebesgue measure
dy, i.e.,

PY (dy, x) = c(x, y)dy.

As a consequence

PY (f, t) =

∫
X

∫
Y
f(y)c(x, y)dyµt(dx). (15)

We approximate the distribution c by a polynomial c ∈
R[X,Y ] on X × Y.

Firstly, consider the integral
∫
X c(x, y)µt(dx) with c(x, y) =∑

(α,β) c(α,β)x
αyβ∫

X
c(x, y)µt(dx) =

∑
(α,β)

c(α,β)mα(t)yβ .

We denote the moments of the observation process Yt by
wβ(t) ≡ PY (yβ , t). From (5), the moment wβ(t) is

wβ(t) =
∑
α

c(α,β)mα(t).

Hence, for w(t) ≡ [wβ(t)], and C ≡ [cα,β ]

w(t) = Cm(t). (16)

In conclusion, the measurements of the observation process
are governed by the linear system

ṁ(t) = Lm(t) (17)

w(t) = Cm(t).

Example 5. Consider the diffusion equation in Example 1
with the measurement governed by a linear map D :
Rn → Rl, x 7→ y = Dx. Suppose K ∈ Nl×n. We denote
the ith raw of K by K(i, :), i.e., the vector K(i, :) ≡
[K(i, 1), . . . ,K(i, l)].
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We use the notation(
n

K

)
≡
(

n

K(1, :)

)
. . .

(
n

K(l, :)

)
,

DK =
∏

(i,j)∈{1,...,l}×{1,...,n}

D(i, j)K(i,j).

Then

wβ =
∑

|K(1, :)| = β1
. . .

|K(l, :)| = βl

(
n

K

)
DKm(t)K(1,:)+...+K(l,:).

Remark 3. Using the standard linear control theory, we
can estimate m(t) provided that the pair (L,C) is observ-
able. For example, defining standard observer dynamics

d

dt
m(t) = Lm(t) +K(w(t)− Cm(t)), (18)

we strive to optimize∫ ∞
0

(m(t)−m(t))TQ(m(t)−m(t))

+ (w(t)− Cm(t))TR(w(t)− Cm(t))dt.

subject to K satisfying the relation in (18).

The solution is given by K = PCTR−1, where P is the
solution of the following Riccati equation

−PAT −AP + PCTR−1CP −Q = 0.

Remark 4. Not each sequence m corresponds to a moment
vector of a measure. In fact, by Riesz-Haviland theorem,
for a closed X , there exists a finite Borel measure µ on X
such that

∫
X x

αµ(dx) = mα if and only if
∑
α pαmα for

all non-negative real polynomials
∑
α pαx

α. An equivalent
formulation in terms of moment- and localizing-matrices
in given in Theorem 3.8 in Lasserre [2010].

5. MOMENT DIVERGENCE

In this section, we will establish the means of computing
the distance between two sequences of moments. For this
reason, we introduce the concept of a moment matrix.

5.1 Moment Matrix

Let m ≡ (mα) be the moments of a measure µ on a space
X ≡ Rn. Let Nnd ≡ {γ ∈ Nn| |α| ≤ d}. The moment
matrix MX ,d(m) of order d is defined by

MX ,d(m)(α, β) = mα+β ∀α, β ∈ Nnd .

It is s(k, d)×s(k, d) real matrix with s(k, d) =
(
k+d
k

)
. From

the definition, the moments matrices are symmetric.

Example 6. For the measure µ defined on R2, the moment
matrix MX ,2(m) is

m00 m01 m10 m02 m11 m20

m01 m02 m11 m03 m12 m21

m10 m11 m20 m13 m21 m30

m02 m03 m12 m04 m13 m22

m11 m12 m21 m13 m22 m31

m20 m21 m30 m22 m31 m40

 .

Example 7. We continue with Example 3. The moment
matrix MX ,2(m(t)) is[
m0(t) m1(t)
m1(t) m2(t)

]
=

 1 m1(0)eat

m1(0)eat
(
m2(0) +

b2

2a

)
e2at − b2

2a

 .

Important for the next section is that the moment matrix
is positive semi-definite Lasserre [2010].

In the sequel, we will explore the moment matrix corre-
sponding to the observation process on a subspace Y ≡ Rl.
For now, we consider a vector m ∈ Rs(k,2d) of moments
up to degree 2d of a random variable defined on X and
the vector of moments w ∈ Rs(l,2d′) (up to degree 2d′) of
another random variable defined on Y. We suppose that
w and m are related as in (16) by w = Cm. We have the
following commutative diagram

Rs(k,2d)
MX ,d //

C
��

Rs(k,d) ×Rs(k,d)

C′

��
Rs(l,2d

′)
MY,d′

//Rs(l,d
′) ×Rs(l,d′)

The maps MX ,d and MY,d′ are bijections, and the induced
linear operator C ′ takes MX ,d(m) to C ′MX ,d(m) defined
by

C ′MX ,d(m) = MY,d′(Cm).

5.2 Moment Divergence

In this section, we establish the means of computing the
distance between two measures on a space Y, both with
finite moments. Suppose that there are two measures µA
with the moment matrix MA and µB with the moment
matrix MB . We use the property of the moment matrix of
being positive semidefinite. Symmetric matrices constitute
a finite dimensional Hilbert space with scalar product
given by

〈MA,MB〉 = tr(MAMB).

Since MA and MB are the moment matrices, the product
〈MA,MB〉 is non-negative. To show it, we define a vector
of monomials up to degree d by

vd(y) ≡ (yα)|α|≤d =
[
1, yn, . . . , y1, y

2
n, ynyn−1, . . . , y

d
1

]T
.

(19)

Notice that the monomial in (19) are ordered in the
lexicographic order. Nonetheless, any other order can be
applied and consistently used in the numbering the entries
of the moment matrix. It follows that

〈MA,MB〉 =

∫
Y
〈MAvd(y)vd(y)T 〉µB(dy)

=

∫
Y
vd(y)TMAvd(y)µB(dy) ≥ 0.

We will define two moment divergences: the first for a non-
singular moment matrix MA, and the second without this
assumption. It will be shown in the next section that the
former is particularly useful for anomaly detection.
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We define a moment divergence by

π(MA,MB) ≡ log2 〈MA,MB〉
||MA||2

. (20)

Since π(MA;MA) = 0, π is a proximity of the distance of
µB from µA. The moment divergence π can be interpreted
as the projection of the moments of measure µB on the
moments of µA.

We suppose now that MA is non-singular, subsequently we
define another moment divergence ρ by

ρ(MA,MB) ≡ log2 〈M−1A ,MB〉
s(l, d)

, (21)

where l = dimY, and d is the order of the moment matrices
MA and MB .

Example 8. Specifically, the moment divergence π between
M ≡MX ,2(m(t)) and M ′ ≡MX ,2(m′(t)) is

π(M,M ′) = log2 1 + 2m1(t)m′1(t) +m2(t)m′2(t)

1 + 2m2
1(t) +m2

2(t)
.

Whereas, ρ is given by

ρ(M,M ′)

= log2

(
m0(t)m′2(t)− 2m1(t)m′1(t) +m2(t)m′0(t)

2(m0(t)m2(t)−m2
1(t))

)
.

6. ANOMALY DETECTION

The moment matrix will be used in this section for
evaluating probability that the process (Xt) is a subject
to change of its characteristics. To this end, we strive to
define a function r : Y → R defined on the observation
space and to evaluate the probability that the anomaly
takes place. We denote the observation process predicted
from the model (17) by Y t, and its moments by w(t).
Suppose that the initial distribution is the same for both
Y0 and Y 0. At time t, the moments of the two processes
are MY,d(w(t)) and MY,d(w(t)):

MY,d(w(0)) �
t //

�
t

TTTTTTT

))TTTTTTT

MY,d(w(t))

MY,d(w(t)).

The discrepancy between the modelled and observed mo-
ment matrices is captured by the moment divergences
π and ρ. Specifically in the section, we assume that
MY,d(w(t)) is non-singular for t ≥ 0 and focus on “re-
scaled” ρ

〈MY,d(w(t))−1,MY,d(w(t)〉

Specifically, we study a quadratic form r : Rs(l,2d
′) → R

defined by
r : v 7→ vTMY,d(w(t))−1v.

The quadratic form r is positive definite, since MY,d(w(t))
has been assumed to be a positive definite matrix.

Proposition 1. Suppose that MY,d(w(t)) is non-singular.

P[r(vd(Yt)) ≥ ε] ≤
1

ε
〈MY,d(w(t))−1,MY,d(w(t))〉.

Example 9.

Fig. 1. The diffusion process with the drift x 7→ −0.2x and
diffusion x 7→ 0.3 . At the time instance 48 sec, the
diffusion increases from 0.3 to 0.8.

Before we prove the proposition, we will discuss its impor-
tance. Indeed, the proposition demonstrates that

rt ≡ r(vd(Yt))
is a residual applicable for anomaly detection. If there is
no anomaly, MY,d(w(t)) = MY,d(w(t)), then

P[rt ≥ ε] ≤
s(l, d)

ε
.

Specifically, we pick a number p, the probability that

rt ≥ κ ≡
s(l, d)

p
.

Whenever we observe that rt ≥ κ, we declare that the
anomaly takes place.

Proof. By Markov inequality, we have

P[r(vd(Yt)) ≥ ε] ≤
1

ε
E[r(vd(Yt)]. (22)

We compute the expected value of rt ≡ r(vd(Xt))

E[rt] =

∫
Y
r(vd(y))νt(dy), (23)

where νt(dy) =
∫
X PY (dy, x)µt(dx) is the distribution of

Yt.

Let v ≡ vd(y), M ≡ MY,d(w(t)), and M ≡ MY,d(w(t)).
From (23),

E[rt] =

∫
Y
vTM

−1
vdνt = tr

∫
Y
M
−1
vvT dνt = 〈M−1,M〉.

2

Remark 5. Suppose that the moments m in (17) are esti-
mated from the moments of the observation w as in Re-
mark 3. We denote this estimate by m. By the continuity
of the map M , and assuming a sufficiently small estimation
error e ≡ m−m, if MY,d(Cm) > 0, then MY,d(Cm) > 0.

We consider the diffusion process in Example 3. The
specific stochastic differential equation is given by

dXt = −0.2Xt + 0.3dBt.
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Fig. 2. The residual process rt indicates if an anomaly
takes place. If there is no anomaly, the values of rt
being above 20 have probability below 0.1.

The observation process Yt = Xt.

During the first 10 sec, the moments are computed. Sub-
sequently, the vector m(t) of moments is propagated ac-
cording to (13). At the time instance 48 sec, the anomaly
is generated, which is the increase of the diffusion term
from 0.3 to 0.8. A realization of the diffusion process is
shown in Figure 1. The process rt is shown in Figure 2. To
illustrate, in the case of no anomaly, the probability that
rt ≥ 20 is less or equal to 0.1. The values of rt above this
level indicate the occurrence of an anomaly.

7. CONCLUSIONS

In the paper, we developed a method for detecting anoma-
lies in Markov processes. To this end, we used the time
evolution of moments, and we introduced a moment di-
vergence that allows comparing the expected distribution
of the process with the actual observed data. We see the
future of this work as verification of the method on a
concrete industrial use-case.
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