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Abstract: For feedback control designs, one of the fundamental problems is to handle the unknown 

system dynamics. In this paper, an alternative unknown system dynamics estimator (USDE) with low-

pass filter operations is presented based on an invariant manifold method, in which we only need to set a 

scalar, the filter parameter. The convergence performance and robustness of this USDE are analysed in 

both the time-domain and frequency-domain. To circumvent the sensitiveness to the measurement noise, 

a further enhanced USDE (EUSDE) with two-layer of low-pass filters is constructed. With the proposed 

estimators, all time-varying components, such as unmodeled dynamics, nonlinearities and external 

disturbances, can be viewed as a lumped unknown system dynamics term and then effectively estimated 

even in the presence to fair measurement noise. The function of these estimators is the same as the well-

known disturbance observer (DOB) and extended state observer (ESO). Hence, they can be easily 

incorporated into control schemes. Numerical simulation results are presented to show the effectiveness 

of the proposed estimation schemes. 

Keywords: Unknown system dynamics estimator, nonlinear uncertain systems, measurement noise, filter 

operation, robustness. 

 

1. INTRODUCTION 

Unknown system dynamics are one of main factors that affect 

the stability and control performance of the closed-loop 

control systems. Specifically, the mathematical model used in 

the control designs usually cannot accurately describe the 

actual system behaviour due to the modelling uncertainties, 

external disturbances, and other environment variations. 

Hence, how to effectively address these unknown dynamics 

is a critical issue, which help to enhance the performance of 

feedback control schemes (Gao, 2014; Xie & Guo, 2000).  

To handle the influence of these unknown system dynamics, 

many advanced control schemes have been developed. One 

well-known strategy is adaptive control (Ioannou & Sun, 

1996), in which the parametric uncertainties can be estimated 

and directly compensated online. However, only linearly 

parameterized systems can be handled via adaptive control, 

while neural networks or fuzzy logic systems need to be used 

to address nonlinear uncertainties. On the other hand, robust 

control (X. Li, Soh, & Xie, 2017) was derived to address the 

worst case control designs, while its nominal performance is 

sacrificed to derive better robustness. Hence, the upper 

bounds of system unknown dynamics should be known.  

In practice, the unknown nonlinearities, external disturbances, 

and other uncertainties can be lumped into a uniform term. 

Hence, if such unknown system dynamics can be precisely 

estimated, a feedforward control can be used to eliminate 

their effects on the control response (Chen, Yang, Guo, & Li, 

2015). Hence, another notable strategy to handle these 

unknown dynamics is to estimate the lumped dynamics. This 

idea motivates a variety of estimation and compensation 

methods, such as disturbance observer (DOB) (S. Li, Yang, 

Chen, & Chen, 2016), extended state observer (ESO) (Han, 

2009), unknown input observer (UIO) (Johnson, 1968), and 

equivalent input disturbance based estimator (EID) (She, 

Fang, Ohyama, Hashimoto, & Wu, 2008), etc. These methods 

have been well-recognized and widely applied in different 

applications during the past decades. However, an observer 

usually needs to be synthesized in these estimators, and thus 

the parameter tuning is not a trivial task in general. Moreover, 

although the convergence of ESO has been solved in the 

recent literature, the robustness of these estimators against 

measurement noise deserves further investigations.  

With the wish to develop a simple, fast and robust estimator 

of unknown dynamics for generic systems, we will provide a 

new unknown system dynamics estimator (USDE) by further 

tailoring our previous work (Na, Chen, Herrmann, Burke, & 

Brace, 2018; Na, Herrmann, Burke, & Brace, 2015). In this 

framework, filter operations are applied on the measurable 

variables, and then an ideal invariant manifold is constructed 

to design the estimator. Moreover, we design an enhanced 

unknown system dynamics estimator (EUSDE) to improve its 

robustness against measurement noise, where two-layer low-

pass filters are introduced. The first layer low-pass filter is 

used to obtain the derivative of the measurable variables, and 
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the second layer low-pass filter is utilized to design the 

estimator based on an ideal invariant manifold. Simulation 

results show the effectiveness of the proposed USDE and 

EUSDE, which also indicate their satisfactory estimation 

performance even in presence of large measurement noise.  

2. UNKNOWN SYSTEM DYNAMICS ESTIMATOR 

2.1 Problem formulation 

Consider an uncertain system as 

 ( ) ( ) ( ) ( , ), (0) 0,x t Ax t Bu t F x t x= + + =   (1) 

where  1( ) , ,
T n

nx t x x=   is the system state, (0)x  is the 

initial state; ( ) mu t   is the control input; ,n nA   
n mB  are the known system matrix and control input 

matrix; ( , ) mF x t  is the lumped unknown system dynamics 

to be estimated. 

To estimate the system uncertainties ( , )F x t , it is shown in (1) 

that ( , )F x t  can be written as 

 ( , ) ( ) ( ) ( ),F x t x t Ax t Bu t= − −   (2) 

which means that ( , )F x t  can be derived by the system state 

( )x t , its derivative ( )x t , and control signal ( )u t . However, 

we cannot directly apply this estimator in the practice since 

the derivative signal x  is usually not measurable (S. Li et al., 

2016). To address the above issue, we will provide a novel 

estimation method for the unknown system dynamics ( , )F x t  

in system (1) even in the presence of measurement noise.  

2.2 Unknown system dynamics estimator 

In this section, we will present a new USDE to online 

estimate ( , )F x t  in (1). For this purpose, the following 

assumptions are made: 

Assumption 1: The state variables ( )x t  and control signal 

( )u t  in (1)  are measurable.  

Assumption 2: The unknown dynamics ( , )F x t  and their 

derivative are bounded, i.e., 
0sup || ( , ) ||t F x t   holds for a 

positive constant 0 . 

Before introducing the estimator, we define the following 

filtered variables  ,f fx u  of  ,x u  as 

  
,   (0) 0,

,   (0) 0,

f f f

f f f

x x x x

u u u u





+ = =


+ = =

 (3) 

where 0   is a positive constant. 

Then, an ideal invariant manifold (Astolfi & Ortega, 2003)  

can be constructed to inspire the design of estimator. Hence, 

we give the following lemma: 

Lemma 1. Consider system (1) and filtered variables in (3), 

the variable 

 (( ) / ),f f fF x x Ax Bu = − − − −   (4) 

is ultimately bounded for any finite 0  , and exponentially 

converges to a small residual set. Moreover, the fact 

0
lim{lim[ (( ) / )]} 0,f f f

t
F x x Ax Bu




→ →
− − − − =      (5) 

is true, so that (( ) / ) 0f f fF x x Ax Bu− − − − =  is an 

invariant manifold for any finite 0  . 

Proof. Considering system (1) and definitions in (3)-(5), the 

time derivative of   is given by 

 
1

( ) .
f

f f

x x
F Ax Bu F 

 

−
= − − − = − +   (6) 

Select a Lyapunov function as / 2TV  = , and apply 

Young’s inequality on its derivative V ,  it follows that  

 21 1
.

2

T TV F V 


  

 
= − +  − +   (7) 

This result indicates that / 2 2( ) (0) / 2tV t e V

  − +  holds 

and thus   will exponentially converge to a small compact 

set defined by / 2 2|| ( ) || 2 (0)tt e V

 − + , which follows 

that lim || ( ) ||
t

t 
→

= . Consequently, for 0 →  and/or 0= , 

the fact 
0

limlim || ( ) || 0
t

t



→ →

=  holds.   

According to the invariant manifold (4), a feasible unknown 

system dynamics estimator of ( , )F x t  is given as 

 ˆ .
f

f f

x x
F Ax Bu



−
= − −   (8) 

Then, we write the system (1) in the Laplace domain as 

 ( ) ( ) ( ) ( ),F s sI A X s BU s= − −   (9) 

where s  is the Laplace operator and I  is the unit matrix, 

( ), ( ), ( )F s X s U s  are the Laplace transform of variables ( ),F t   

( ), ( )x t u t , respectively. Then, Eq.(8)  can be further written as 

 
1ˆ ( ) [( ) ( ) ( )].

1
F s sI A X s BU s

s
= − −

+
  (10) 

Substituting (9) into (10), we have 

 
1

1ˆ ( ) ( ) ( ),  
1

ˆ ( ) { ( )} ( ),

f

s f f

F s F s F s
s

F t L F s F t


−

= =
+

= =

  (11) 

where 1{}sL−   defines the inverse Laplace transform, and 

( )fF t  denotes the low-pass filtered version of ( )F t  given by 

, (0) 0f f fF F F F + = = . This means that the estimated 

dynamics F̂ are the filtered version of the unknown system 

dynamics F , i.e., ˆ fF F= . Consequently, the estimation 

error F  is obtained by 

 
1ˆ 1 [ ].

1 1

s
F F F F F

s s



 

 
= − = − = 

+ + 
  (12) 
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 From the above equation, the estimation error can be 

minimized by setting the filter coefficient   sufficiently 

small and it can also be vanishing for constant unknown 

dynamics, i.e., 0F = . Hence, the convergence property of 

the estimation error can be summarized by:  

Theorem 1. For system (1) with unknown system dynamics 

estimator (8), the estimation error F  converges to a compact 

set defined by / 2 2|| ( ) || 2 (0)t

F
F t e V − + , which shows 

that ˆlim ( ) ( )
t

F t F t
→

=  as 0 → and/or 0→ . 

Proof. Based on (12), the estimation error dynamics are 

given in the time-domain as 

 
1ˆ .F F F F F


= − = − +   (13) 

We first select a Lyapunov function as / 2T

F
V F F= , then 

calculate its derivative as 

 21 1
,

2

T T

F F
V F F F F V



 
= − +  − +   (14) 

which follows that / 2 2|| ( ) || 2 (0)t

F
F t e V − + , and thus 

lim || ( ) || 0
t

F t
→

=  as  0 →  and/or 0→ .   

Moreover, to further reveal the mechanism behind this 

proposed estimator, we present the frequency response of 

estimator error (12) under different filter parameters, which is 

given in Fig.1.  

 

Fig. 1. Bode diagram of estimation error dynamics. 

From Fig.1, we can clearly see that the bandwidth can be 

increased when the filter parameter is set sufficiently small, 

i.e., 
1 2 3 4      . Therefore, a larger bandwidth can be 

used to eliminate the uncertain dynamics by setting a smaller 

filter parameter. Hence, a small filter parameter can be used 

to rapidly diminish the estimation error.  

2.3 Robustness Analysis 

This subsection will analyse the robustness of this proposed 

USDE against to bounded noise, which is crucial for practical 

applications. Denote   as the measurement noise perturbing 

the state x  (note the control signal u  in (1) is calculated by 

the controller, and thus is free of measurement noise). Then 

the measured variable x  used for the estimator design is  

 , .nx x  = +    (15) 

It is assumed that the noise signal is bounded by 
1|| ||  , 

2|| ||   for constants 
1 2, 0 . Owing to the existence of 

noise signal  , the filter operations given in (3) can be 

modified as 

 
,   (0) 0,

,   (0) 0,

f f f

f f f

x x x x

u u u u





+ = =

+ = =
  (16) 

such that the designed estimator (8) can be presented as 

 ˆ .
f

f f

x x
F Ax Bu



−
= − −   (17) 

Consider (8) and (15), then (17) can be further written as 

 ˆ ,f f f f fF x Ax Bu A = − − + −   (18) 

where 
f  and 

f  are the filtered version of   and   in 

terms of 1/ ( 1)s + . Then the estimation error F  subject to 

measurement noise is given in the frequency-domain as 

 
1

( ) [ ] [ ] [ ],
1 s+1 s+1

s s
F s F A

s


 

  
= + −

+
  (19) 

which can be rewritten in the time-domain as 

 
1 1

( ).F F F A 
 

= − + + −   (20) 

In this case, to simplify the analysis and show the robustness 

of this estimator, we will carry out further analysis on (20). 

For the ease of analysis in terms of Bode diagram, we assume 

0F =  here (Since we focus on the effect of noise in this 

analysis, the term F  does not change the conclusions). 

Moreover, the system matrix A  is set as a constant 

, 0 −   to make system (1) stable. Then, the transfer 

function from the noise   to the estimation error F  can be 

given as 

 
( )

( ) ,
( ) 1

F s s
G s

s s



 

+
= = −

+
  (21) 

where the estimation error F  is the output and the noise 

signal   is the input, such that we can use Bode diagram to 

show the effects induced by the measurement noise   on the 

estimation under different filter parameter  . The results can 

be shown in Fig.2. From Fig.2, we can see that the amplitude 

of estimation error will be significantly increased as the filter 

parameter is set very small; this means that the designed 

estimator (17) is sensitive to the measurement noise when we 

choose a small filter parameter. Hence, we need to make a 

trade-off between the robustness and the convergence 

performance when setting the filter parameter  .  
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Fig. 2. Bode plots of transfer function (21) with different  . 

3. ENHANCED UNKNOWN SYSTEM DYNAMICS 

ESTIMATOR 

In this section, we will present an EUSDE based on two-layer 

low-pass filters to enhance the robustness performance.  

3.1 Preliminaries and inspiration 

Although the low-pass filter  1/ ( 1)s +  leads to a phase lag, 

it can store the history data of the input signal. According to 

(Han, 2009), the following fact holds 

 ( ( ) ( )) / ,x x t x t   − −   (22) 

However, we cannot directly use the above formulation to 

calculate the derivative x  to design the estimator (Youcef-

Toumi & Reddy, 1992), since the following issues should be 

considered: 

i) The state ( )x t  is usually measured by using sensors, and 

the measurement noise is unavoidable, thus ( )x t −  may not 

represent the actual signal ( )x t  at t −  moment; 

ii) For a sufficiently small coefficient  , the measurement 

noise perturbing the measurement ( )x t  can be amplified 

significantly as shown in (20), so as to deteriorate the 

estimation performance;  

iii)Low-pass filter can eliminate high-frequency measurement 

noise. However, it will lead to a small phase lag. 

According to (Han, 2009), we can define two low-pass filters 

, (0) 0f f fx x x x + = = , and 
1 1 1 1, (0) 0f f fx x x x + = =  with 

two different filter parameters   and 
1 , and then have 

 
1 1( ) ( ),  ( ) ( ),f fx t x t x t x t  −  −   (23) 

In this respect, we can use ( )fx t ,
1( )fx t  to replace ( )x t − , 

1( )x t −  to calculate the derivative and design the estimator. 

To clearly show the above fact, a schematic diagram is used 

to describe the mechanism of low-pass filter, which is given 

in Fig.3. Considering the above analysis, we use the filtered 

version of the measured signal ( )x t  to design the estimator 

instead of using ( )x t − , such that the above problems 

related to the measurement noise can be addressed.  

 

Fig. 3. Schematic diagram of low-pass filter. 

3.2 Enhanced Unknown System Dynamics Estimator 

In this subsection, we will propose an enhanced unknown 

systems dynamics estimator (EUSDE) by using two-layer 

low-pass filters. The first-layer low-pass filter is used to 

obtain the derivatives of measurable states, and the second-

layer low-pass filter is utilized to design the estimator. 

Similar to the design of (8), we define the following filtered 

variables 
1,f fx x  of x   as 

 
1 1 1 1

,     (0) 0,

,   (0) 0,

f f f

f f f

x x x x

x x x x





+ = =


+ = =

  (24) 

where 
1 0    are filter parameters. Since 

1  , 
1( )fx t  

will be close to ( )fx t  in comparison to ( )x t  from Fig.3. 

Thus, the measured signal ( )x t  in the first equation of (24) 

can be replaced by 
1( )fx t  to calculate the derivative of  

1( )fx t . Then, we have 

 
1

1

( ) ( )
( ) ,

f f

f

x t x t
x t

 

−
=

−
  (25) 

which can be true for a sufficiently small 
1 − . In (25), 

since only the filtered variables of ( )x t  are used to calculate 

the derivative of ( )fx t , the effect of the measurement noise 

  can be diminished.  

Moreover, to compensate the phase lag induced by the low-

pass filter 
f fx x x + = , we adopt the following operation  

 
1

1

( ) ( )
ˆ( ) ( ) ,

f f

f

x t x t
x t x t 

 

−
= +

−
  (26) 

where 0   is a constant parameter and ˆ( )x t  denotes the 

reconstructed state variable. As shown in Fig.3, we have the 

fact 0x →  for 0 → , which implies that we can use the 

reconstructed state x̂  to arbitrarily approximate x  at t  

moment. Moreover, for a sufficiently small 
1 − , we have 

1 1( ) ( ( ) ( )) / ( )f f fx t x t x t  = − − , such that we can write (26) 

in the Laplace-domain as 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

575



 

 

     

 

 
1ˆ ( ) ( ) ( ),

1 1

s
X s X s X s

s s



 
= +

+ +
  (27) 

which implies that ˆ ( ) ( )X s X s=  for 1 = . Hence, the 

problem of the phase lag can also be solved.  

Then we can use the reconstructed state ˆ( )x t  to replace the 

measured state ( )x t  to design the EUSDE. For this purpose, 

the second-layer low-pass filter as used in the design of 

USDE is given as 

 1 1 1 1

ˆ ˆ ˆ ˆ,     (0) 0,

ˆ ˆ ˆ,   (0) 0,

,      (0) 0.

f f f

f f f

f f f

x x x x

x x x x

u u u u







 + = =


+ = =


+ = =

  (28) 

According to the invariant manifold shown in Lemma 1, the 

EUSDE is given as 

 
1

1

ˆ ˆ
ˆ ˆ .

f f

f f

x x
F Ax Bu

 

−
= − −

−
  (29) 

Consider (9), (27) and (28), then (29) can be presented as 

 
1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),

1
f f fF s sX s AX s BU s F s

s
= − − =

+
  (30) 

which also implies that the estimated dynamics F̂  represent 

the filtered version of the unknown system dynamics F , i.e., 
ˆ

fF F= . Therefore, the convergence performance of this 

EUSDE is similar to that given in Theorem 1, whose proof is 

omitted here. Therefore, the objective of the second-layer low 

pass filter has been achieved as well.  

4. NUMERICAL VALIDATION 

To illustrate the efficiency of the proposed USDE and 

EUSDE, we consider the following system 

 
1 1

2 2

( ) ( )0.2 1 0 0

( ) ( )1.2 0.5 1 ( , )

x t x t
u

x t x t f x t

        
= + +        

− −        
  (31) 

where 
1x  and 

2x  are the system states; u  is the control 

signal; 2

1 2 1 2 1( , ) 0.2( ) 0.5 1.3sin( )f x t x x x x x= − + + −  is a nonlinear 

function, which is used to simulate the lumped unknown 

system dynamics. In this case, we set the filter coefficient   

used in the USDE as 0.01 , and the filter coefficients 
1,   

used in the EUSDE as 0.12  and 0.1 . Moreover, a white 

noise   with power 0.0001 and sample time 0.01 is inserted 

to both the position and velocity measurements as (15), 

which can be achieved by using Band-Limited White Noise in 

Matlab/Simulink. This indicates that the Signal to Noise 

Rations (SNR) of 1x  and 2x  are 27.73dB and 35.21dB, 

respectively.  

Fig.4 shows the desired trajectories of state 
1 2,x x  and the 

contaminated measurement of state 
1 2,x x . From Fig.5, it is 

shown that both of the proposed USDE (8) and EUSDE (29) 

obtain satisfactory estimation performance when there is no 

measurement noise. We further test the robustness of the 

proposed USDE (8) against the added noise. Simulation 

results given in Fig.6 show that the USDE cannot guarantee 

satisfactory estimation convergence when there exists a fairly 

large noise  , and a smaller filter parameter 0.001 =  may 

further deteriorate the estimation. This result clarifies the 

statements discussed in subsection 2.3, that is the amplitude 

of estimation error can be increased by using a small filter 

parameter. 

To eliminate the effect of sensor noise, we cannot directly use 

the contaminated measurement of state 
1 2,x x to implement 

the estimator. Instead, the reconstructed state variables based 

on the measured state 
1 2,x x  are calculated and then used in 

the EUSDE (26), which can be seen from Fig.7. It is shown 

that there are a slight phase lag and oscillations in the 

reconstructed states 
1 2
ˆ ˆ,x x . With these reconstructed states, 

the performance of EUSDE is tested and given in Fig.8. From 

Fig.8, it is found that compared to the estimation result of 

USDE shown in Fig.6, the EUSDE shows better estimation 

performance even when the measurements are subjected to 

noise. 

From these above simulations, it is evident that both the 

proposed USDE and EUSDE can effectively estimate the 

unknown system dynamics, and the EUSDE can maintain 

satisfactory estimation performance even in the presence of 

fair larger measurement noise. 

5. CONCLUSIONS 

In this paper, we provide an unknown system dynamics 

estimator (USDE) to online estimate the unknown system 

nonlinearities, external disturbances, or other modelling 

uncertainties in the control systems. To address the effects of 

measurement noise, we further design an enhanced USDE 

(EUSDE) by introducing two-layer low-pass filters. The 

convergence performance and robustness of the USDE and 

EUSDE are rigorously analysed in both the time-domain and 

frequency-domain. Numerical simulation results show their 

attractive estimation responses, where the EUSDE can 

maintain better estimation response than USDE in the 

presence of measurement noise. The proposed estimators can 

serve as an alternative solution to DOB, ESO or EID schemes, 

while having a simpler parameter tuning procedure. Hence, 

these estimators can be easily incorporated into feedback 

control schemes to enhance the performance of nonlinear 

uncertain control systems.  
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Fig. 4. Profiles of state trajectories with/without noise  . 

 

Fig. 5. Estimation of uncertain dynamics ( )f t  by using 

USDE (8) and EUSDE (29) without noise. 

 
Fig. 6. Estimation of uncertain dynamics ( )f t  by using 

USDE (8) under noise  . 

 
Fig. 7. Reconstructed state 1 2

ˆ ˆ,x x  via (26) under noise  . 

 
Fig. 8. Estimated uncertain dynamics ( )f t  by using EUSDE 

under  .  
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