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Abstract: This paper investigates the local linear model tree (LOLIMOT) with optimized struc-
ture. The performance of the LOLIMOT model depends on how the neurons are constructed. In
the typical LOLIMOT model, the number of neurons is initially set as one and starts to increase
by repeatedly splitting an existing neuron into two equal ones until the required performance is
achieved. Because the equal split of a neuron is not optimal, a large model size is often necessary
for required performance, leading to high complexity and strong overfitting. In this paper, we
propose a gradient-decent-search-based algorithm to optimally split an existing neuron into two
new ones. Based on both numerical data and simulated engine data, through the evaluation of
optimized structure, the effectiveness of proposed method has been verified.
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1. INTRODUCTION

The system modelling is crucial in many applications such
as automation factory, vehicular engineering, aeroplane
and telecommunications (Lee and Ouyang, 2003). While
linear modelling is widely used due to its simplicity,
most practical systems are non-linear (Kukolj and Levi,
2004). Various nonlinear modelling approaches have been
proposed including the Volterra kernel (Kashiwagi and
Rong, 2002), neural networks (Li et al., 2018) and Bayesian
networks (Pan et al., 2015).

Of particular interest to this paper is the neural fuzzy
modelling which brings the low-level learning and com-
putational power of neural networks into fuzzy systems
(Yeh and Su, 2017; Juang and Lin, 1998).The fuzzy set
theory is originally used to deal with uncertain information
(Takagi and Sugeno, 1985), which is achieved by formu-
lating implicit knowledge of the underlying process into
a set of linguistic variables and fuzzy rules or extracting
the fuzzy rules from data(Jamab and Araabi, 2006). A
number of neural fuzzy models have been proposed in-
cluding the interval type-2 radial basis function neural
network (Rubio-Solis and Panoutsos, 2015), four layers
network featured Takagi-Sugeno-Kang architecture with
Gaussian kernel (Pratama et al., 2013) and recurrent fuzzy
neural network (Lin et al., 2013). In a typical neural fuzzy
modelling, both the learning parameter and the modelling
structure need to be identified. A non appropriately struc-
tured neural fuzzy model can have very large model size
(Lee and Ouyang, 2003). In (Jamab and Araabi, 2006), the
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neural fuzzy model can be self structured through merging
and splitting neurons.

In this paper, we focus on a popular neural fuzzy model,
the local linear model tree (LOLIMOT) (Nelles and Iser-
mann, 1996; Nelles, 2006). The LOLIMOT model consists
of a number of neurons, where each neuron includes a
Gaussian kernel and a local linear structure. The neurons
are constructed in a growing manner that the model starts
with a single neuron and repeatedly generates new neurons
by splitting a previous node into two equal nodes until the
performance is satisfied. While an equal split of an existing
neuron provides a simple solution to generate new neurons,
it may not match the input data statistics. As a result,
many neurons are required to satisfy the performance. This
leads to large model size, which results in overfitting and
high complexity.

In this paper, we propose a new gradient decent search
algorithm to optimally split an existing neuron. Compared
to the traditional LOLIMOT algorithm, the proposed
scheme is able to achieve superior performance with small
model size, making it attractive in practice.

The rest of the paper is organized as follows: Section 2
introduces the LOLIMOT model; Section 3 proposes the
gradient decent search algorithm to optimally split an
neuron; Section 4 verifies the proposed algorithm with
both numerical data and simulated engine data, and finally
Section 5 concludes the paper.

2. LOCAL LINEAR MODEL TREES

The structure of LOLIMOT with K neurons is shown in
Fig. 1.
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Fig. 1. The LOLIMOT structure with K neurons

Each neuron consists of a local linear model ‘LLMk’ and
a Gaussian kernel. The data input vector at time n is
u(n) = {u1(n), · · · , up(n)}T, where p is the dimension.
The output of the ’k-th’ Gaussian kernel, i.e. the validity
function is

φk(n) =
µk(u(n))∑K
j=1 µj(u(n))

(1)

with

µk(u) =exp

(
−1

2
· (u1(n)− ck1)2

σ2
k1

)
· ...

· exp

(
−1

2
· (up(n)− ckp)2

σ2
kp

) (2)

where ckp and σkp is the center and standard deviation of
’k-th’ Gaussian kernel in the ’p-th’ dimension respectively.

The output of the local linear model LLM is given by:

ŷk(n) = ωk0+ωk1 ·u1(n)+ωk2 ·u2(n)+...+ωkp ·up(n) (3)

The output of the overall LOLIMOT system is the sum
from all neurons:

ŷ(n) =

K∑
k=1

ŷk(n) · φk(n) (4)

Assuming there are N snapshots of the input, then ωk
indicates the local linear parameters for the k-th node
which is obtained by the weighted least square (WLS) as:

ωk = (UT
k QkUk)−1UT

k Qky (5)

where

Uk =


1 u1(1) u2(1) . . . up(1)
1 u2(2) u2(2) . . . up(2)
...

...
...

...
1 u1(N) u2(N) ... up(N)

 (6)

and

Qk =


φk(1) 0 . . . 0

0 φk(2) . . . 0
...

...
. . .

...
0 0 . . . φk(N)

 (7)

and y = [y(1), y(2), ..., y(N)]T is the vector of measured
model output.

The input space is split into multiple hyper rectangle
partitions, and each partition corresponds to one neuron.

The global loss function G is introduced to show the
modelling performance of the overall system as:

G =

N∑
n=1

[y(n)− ŷ(n)]2 (8)

On the other hand, the local loss function ek shows the
modelling performance of the k-th neuron as :

ek =

N∑
n=1

[y(n)− ŷ(n)]2φk(u(n)) (9)

The LOLIMOT starts with a single neuron and grows the
number of neurons by splitting an existing neuron into two
parts until the global loss function G is below a certain
threshold. The partition of a neuron is split according to
the following rules:

(1) Choose the partition for the neuron with the largest
local loss function ek. This neuron is called the ‘worst’
neuron.

(2) Calculate the global loss function for every possible
splitting dimension (along which the partition for the
selected neuron is equally split), respectively.

(3) Split the chosen neuron into two neurons along the
dimensions with the best would-be performance after
the splitting.

(4) Repeat the above procedures until the maximum
model size (i.e. the number of neurons) is reached or
the global loss function G is below a certain threshold.

3. GRADIENT DESCENT SEARCH ALGORITHM

3.1 Split an existing partition

Equally splitting the ‘worst’ existing neuron into two in the
LOLIMOT is often not optimal, leads to a large model size
(i.e. large number of neurons). We propose to optimally
split the neuron using the gradient decent search approach.

Fig. 2. On the j-th dimension of hyper rectangle with point
coordinates

For illustration, Fig. 2 shows the the hyper rectangle
partition of a neuron on j-th dimension, where Aj and
Bj are the corner coordinates of the partition which are
given by

Aj = (a1, ..., aj , ..., ap)

Bj = (b1, ..., bj , ..., bp)
(10)

respectively. We assume that the split dimension is along
the dotted line connecting Aji and Bji with coordinates
as:
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Aji = (a1, ..., [(bj − aj) ·X + aj ], ..., ap)

Bji = (b1, ..., [(bj − aj) ·X + aj ], ..., bp)
(11)

respectively, whereX is the split ratio parameter to control
how the existing partitions is split into two parts. The
original LOLIMOT simply sets X = 0.5 so that an existing
partition is equally split into two.

Assume the new partitions after the split are M1 and
M2, which corresponds to two new Gaussian kernels,
respectively. The centers and standard deviations of the
two new Gaussian kernels are given by:

c1 = (Aj +Bji) · 0.5
c2 = (Aji +Bj) · 0.5
σ1 = (Bji −Aj) · η
σ2 = (Bj −Aji) · η

(12)

where the index ‘1’ and ‘2’ indicate the parameters for M1

and M2 respectively, η is the smoothness parameter. In
the following, the procedure of optimizing X is given to
achieve the best splitting performance.

3.2 The optimal partition with the gradient decent search

Based on the gradient descent search rule, the split ratio
X can be updated as:

Xt+1 = Xt − β · ∇J(Xt) (13)

where Xt is the split ratio at time t, β is the step size
parameter, and ∇J(Xt) is gradient of the model global
loss function value with respective to Xt :

∇J(Xt) =
∂(G)

∂Xt

=2 ·
N∑
n=1

·(y(n)− ŷ(n)) · ∂[y(n)− ŷ(n)]

∂Xt

(14)

For better expression, the time index n is omitted in the
rest of this subsection. First we have:

∂(y − ŷ)

∂Xt
=
∂(y − ŷ1 − ŷ2 − ...− ŷm1 − ŷm2 − ...− ŷK)

∂Xt

=− ∂ŷm1

∂Xt
− ∂ŷm2

∂Xt

=− ∂φm1

∂Xt
· LLMm1

− ∂φm2

∂Xt
· LLMm2

(15)

where LLMm1 and LLMm2 are the local linear parts,
φm1 and φm2 are normalized Gaussian kernals, ŷm1 and
ŷm2 are the new nodes output for partition M1 and M2,
respectively. From (12), we have

cm1
= (Aj +Bji) · 0.5

=
(bj − aj) ·Xt + 2aj

2
σm1

= (Bji −Aj) · η
= (bj − aj) ·Xt · η

cm2
= (Aji +Bj) · 0.5

=
(bj − aj) ·Xt + aj + bj

2
σm2

= (Bj −Aji) · η
= [bj − (bj − aj) ·Xt − aj ] · η

(16)

Then we have:

Fm1 =
∂φm1

∂Xt
=
∂
µm1

µsum

∂Xt

=

∂µm1

∂Xt
· (µsum)− µm1

· ∂(µm1
+µm2

)

∂Xt

(µsum)2

=

∂µm1

∂Xt
· (µsum)− µm1

· ∂(µm1
)

∂Xt
− µm1

· ∂(µm2
)

∂Xt

(µsum)2

(17)

Fm2
=
∂φm2

∂Xt
=
∂
µm2

µsum

∂Xt

=

∂µm2

∂Xt
· (µsum)− µm2

· ∂(µm1
+µm2

)

∂Xt

(µsum)2

=

∂µm2

∂Xt
· (µsum)− µm2

· ∂(µm1
)

∂Xt
− µm2

· ∂(µm2
)

∂Xt

(µsum)2

(18)

µsum = µ1 + µ2 + ...+ µm1 + µm2 + ...+ µK (19)

where µm1 and µm2 are the Gaussian kernel outputs for
M1 and M2 respectively. From (2), we have

Pm1 =
∂µm1

∂Xt

= µm1
· (1/η)2·

(aj − uj) · [aj + 0.5Xt · (bj − aj)− uj ]
(bj − aj)2 ·X3

t

Pm2
=
∂µm2

∂Xt

=
1

2
µm2
· (1/η)2·

(aj − bj)(bj − uj)[aj + bj − 2uj − (aj − bj)Xt]

[bj − aj − (bj − aj)Xt]3

(20)

The algorithm is listed in Algorithm 1, where Gth is the
threshold for the global error, and Kmax is the maximum
model size.
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Algorithm 1 Gradient Descent Search Based on
LOLIMOT Algorithm

Initialization;
Generate the first neuron;
Calculate the global error for 1st neuron: G
while G > Gth or K < Kmax do

Select the worst neuron with the largest ek as in (9);
Obtain the hyper rectangle coordinates as in (10);
for every input dimension (j = 1 : p) do

Set initial split ratio X(0) = 0.5;
for every gradient search iteration (i = 1 : Z) do

Calculate new coordinates Aji and Bji as in
(11);
Calculate new Gaussian kernel parameters cm1,
cm2, σm1, σm2 as in (16);
Determine the validity for two new LLMs φm1

and φm2 as in (1) and (2);
Calculate the new LLMs parameters ωm1 and
ωm2 as in (5);
Calculate Gj(i), ekj(i) as in (8) and (9);
Determine the gradient ∇Jj(i) of Gj(i) using
(14) - (20);
Update the split ratio X at i = i+1 using (13);

end
end
Split the neuron along the dimension with the best
would-be performance from above;

end

4. SIMULATION AND ANALYSIS

In this section, the proposed algorithm is verified with the
numerical data and simulated engine data. The modelling
performance is measured by the normalized root mean
squared error (NRMSE) which is given by:

NRMSE =
‖ y − ŷ ‖
‖ y − E(y) ‖

(21)

where y = [y(1), y(2), ..., y(N)], ŷ = [ŷ(1), ŷ(2), ..., ŷ(N)],
‖ . ‖ is the 2-norm and E(.) is the expectation.

In the proposed gradient decent search scheme, the step
size is 0.003 and the iteration time is 150. After trying
different step size and iteration time, they are chosen with
showing better result performance.

Case 1: Numerical data example

In this case, the output of an non-linear system is given
by:

y(t) = 0.72y(t− 1) + sin[y(t− 2)u(t− 2)]

+ cos[u(t− 3)]2 + 0.2sin[u(t− 2)]3

+ atan[2u(t− 1) + 3u(t− 3)]

(22)

where the system input u(t) is the amplitude modulated
pseudo random binary signal (AMPRBS). There are 1000
input data x(t) are generated, among which the first 750
data are used for training and the rest are used for testing.
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Fig. 3. Case 1 - Numerical data: The NRMSE performance
for the training data
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Fig. 4. Case 1 - Numerical data: The NRMSE performance
for the testing data
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Fig. 5. Case 1 - Numerical data: Learning curve of the split
ratio factor X
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Fig. 6. Case 1 - Numerical data: Learning curve of the
NRMSE

Fig. 3 compares the NRMSE performance based on the
training data for the traditional LOLIMOT and proposed
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gradient decent search based LOLIMOT (denoted as GS-
based LOLIMOT in the figure). The proposed scheme
achieves a better modelling performance than the tradi-
tional LOLIMOT.

Fig. 4 shows the NRMSE performance for the testing data
(i.e. the model coefficients are fixed at those obtained
at the training stage), which also shows the performance
improvement from the proposed scheme. Particularly, with
the same model size, the proposed scheme has significantly
lower NRMSE than the original LOLIMOT counterpart,
making it more robust against over-fitting.

Fig. 5 and Fig. 6 show the learning curves of the split ratio
factor X and the corresponding NRMSE for one neuron
partition splitting process, respectively. It shows that with
the split ratio factor converged from the initial value of
0.5 to about 0.34, the NRMSE converges to the optimum.
This also verifies that the split ratio of 0.5 used in the
LOLIMOT is not optimal.

Case 2: Physical engine model example

In the second case, the high fidelity engine data generated
from the Ford 3-cylinder 1.4L gasoline engine model de-
veloped in the WAVERT software are used. The system
model has three inputs: fuel injection duration, waste gate
diameter and best-fit Wiebe burn duration. The system
output is the engine torque. We use 4000 data for training
the model and 2000 data for validation.
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Fig. 7. Case 2 - simulated engine data: The NRMSE
performance for the training data
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Fig. 8. Case 2: Simulated engine data: The NRMSE
performance for the testing data

Fig. 7 and Fig. 8 show the NRMSE performance for the
training and testing data, respectively. The comparison
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Fig. 9. Case 2: Simulated engine data: Learning curve of
the split ratio factor X
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Fig. 10. Case 2: Learning curve of the NRMSE

of the traditional LOLIMOT and the proposed scheme is
similar to that in Fig. 3 and Fig. 4. In both Fig. 7 and Fig.
8, the proposed scheme is well superior to the traditional
LOLIMOT. Particularly, we can observe in Fig. 8 that
when the model size = 4, the proposed scheme has sig-
nificantly lower NRMSE than the traditional LOLIMOT,
which is also lower than the LOLIMOT with model size
at 14. This shows that the proposed can achieve better
performance with smaller model size.

Fig. 9 and Fig. 10 show the learning curves of the split ratio
factor X and the corresponding NRMSE for a splitting
processes, respectively. Similar to that in Case 1 using the
numerical data, both the split ratio factor and NRMSE
can converge to the optimal values.
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Fig. 11. Training results with different SNR at the last
iteration step

Fig. 11 and Fig. 12 show the NRMSE vs SNR performance
for the training and testing data when the model outputs
are corrupted with noise, respectively. In both figures,
the LOLIMOT and GS-LOLIMOT have 15 neurons. It is
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Fig. 12. Testing results of SNR on 15-th split

shown that in Fig. 11 and 12, the proposed GS-LOLIMOT
has better modelling performance than the traditional
LOLIMOT, indicating its superiority in the robustness
against noise.

5. CONCLUSION

In this paper, we described a new LOLIMOT with op-
timized split ratio to divide the input partitions. The
proposed scheme is able to achieve better modelling per-
formance than the traditional LOLIMOT. Particularly the
proposed scheme only uses a smaller model size to achieve
acceptable performance, which is not only more robust to
overfitting but also leads to fast implementation. Because
the gradient decent search is used to find the optimum
split ratio, the involved complexity is also low. Based on
the numerical and simulated engine data, the effectiveness
of the proposed scheme has been verified.
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Pan, W., Yuan, Y., Gonçalves, J., and Stan, G.B. (2015).
A sparse bayesian approach to the identification of
nonlinear state-space systems. IEEE Transactions on
Automatic Control, 61(1), 182–187.

Pratama, M., Er, M.J., Li, X., Oentaryo, R.J.,
Lughofer, E., and Arifin, I. (2013). Data driven
modeling based on dynamic parsimonious fuzzy
neural network. Neurocomputing, 110, 18–28. URL
http://dx.doi.org/10.1016/j.neucom.2012.11.013.

Rubio-Solis, A. and Panoutsos, G. (2015). Interval Type-
2 Radial Basis Function Neural Network: A Modeling
Framework. IEEE Transactions on Fuzzy Systems,
23(2), 457–473.

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of
systems and its applications to modeling and control.
IEEE transactions on systems, man, and cybernetics,
(1), 116–132.

Yeh, J.W. and Su, S.F. (2017). Efficient Approach for RLS
Type Learning in TSK Neural Fuzzy Systems. IEEE
Transactions on Cybernetics, 47(9), 2343–2352.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1190


