
     

Research on Decision Support Method for Charge Batch Planning of 

Steelmaking-Continuous Casting under Lagrangian Framework 

Liangliang Sun*. Yaqian Yu*. Congxin Li*. Duncan Stephen Cloete*. Song Bai*    

* School of Information and Control Engineering, Shenyang Jianzhu University, 

Shenyang, China, (e-mail: swinburnsun@163.com)   

 

 

Abstract: Charge batch planning is the bottleneck of production management planning in iron and 

steelmaking enterprises. The optimization of the charge batch planning process will directly influence the 
iron and steelmaking cost, production and energy consumption. In this paper, an effective mathematical 

model based on multi-objective weighting method is built up to describe the multi-performance indexes 

and the multi-constraints; an efficiency adaptive search algorithm based on linear augmented Lagrangian 

relaxation framework is proposed to alleviate the problem of sawtooth oscillation when the traditional 

Lagrangian algorithm searches within the feasible domain. The strategy proposed in this paper is verified 

based on the background of the actual steelmaking and continuous casting management process in China 
steelmaking plant. The optimization results guarantee the solution quality and speed of charge batch 

planning of steelmaking-continuous casting. 

Keywords: charge batch planning; steelmaking and continuous casting production; Lagrangian relaxation 

algorithm; adaptive search algorithm 

1. INTRODUCTION 

The production operation control system of iron and steel 

enterprises becomes more and more complex with the 

increase of production scale. Steelmaking-continuous casting 

(SCC) charge batch planning is the bottleneck of Computer 

integrated manufacturing system (CIMS) of iron and 

steelmaking enterprises. The slab tends to be more and more 

personalized, and its function is more and more targeted, 

which leads to the high intensity and complexity of the 

combined slab, so that the optimization efficiency and the 

quality of the optimization results cannot be met at the same 

time. In addition, it is difficult to optimize the artificial 

composite slab from the global point of view, that is, it is 

easy to make the optimization results fall into local 

optimization, which makes it difficult to fully meet the 

important optimization indexes such as delivery time, flow 

direction, residual material quantity and so on. As a result, 

the executive manufacturing system is greatly affected, which 

in turn affects the production efficiency and production cost 

of the whole production process. It is of great significance for 

iron and steel enterprises to study how to ensure the slab 

production efficiency and the optimization quality of the 

algorithm, to meet the needs of customers and to meet the 

internal production operation mode at the same time, and to 

improve the comprehensiveness of the optimization index for 

iron and steel enterprises. In order to optimize the mode of 

production management and solve the problems caused by 

the constraints of production rules, how to establish a 

mathematical model to qualitatively describe the production 

process to quickly solve the optimization problem of charge 

batch planning is of great significance for iron and 

steelmaking enterprises to realize modern intelligent 

management system. 

2. LITERATURE REVIEW 

2.1 SCC process batch planning mathematical model  

Li et al. (2009) used the distributed interactive simulation 

high-level architecture HLA to simulate the steelmaking 

process. Azadeh et al. (2010) established a simulation model 

for the main equipment and operation of the steel plant, 

integrated the output of the simulation model with the 

experimental design, and optimized the experimental 

parameters by emergency search algorithm. In the actual 

production process, the production process is complex and 

there are many coupling factors, so the established problem 

model is difficult to fully reflect the complexity of the actual 

production process or the problem needs to be idealized. 

Models for reducing waste and reducing flow balance have 

been proposed by Zhou (2014) to reduce the amount of waste. 

Based on a harmony search algorithm and a prediction model, 

Lin et al. (2015) proposed a comprehensive planning 

framework. The approach uses a rough predictive model to 

estimate the hot rolling plan (HRP) problem performance in 

the optimization of the steelmaking-continuous casting plan 

(SCP) problem, and the solution of HRP problem is obtained 

by using the knowledge-based simulation models. Lin et al. 

(2016) took the early/delay ratio, non-thermal loading ratio 

and capacity utilization imbalance ratio corresponding to 

SCC factory and HR factory as objective functions and a new 

concept called "order set" is introduced for modeling. A 

multi-objective integer programming model with known 

charge numbers is proposed by Hu et al. (2017) considering 

the combination of charging time constraints and capacity 

utilization and order properties differences. However, the 

model has some shortcomings, such as the formal description 

is too complex. 
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2.2 SCC process batch planning algorithm optimization 

Huang et al. (2009) established two mathematical models for 

the charge batching problem, which are to minimize the 

amount of remaining material and replace the cost with a 

tapping mark, and to form the slab according to the dynamic 

programming method in order to obtain the optimal solution 

of the original problem. This method can significantly reduce 

the residual material of the charge batching problem and 

improve the production efficiency. Tang et al. (2009) 

established a mathematical model for the SCC batch planning 

and solved it by the integer programming method. For the 

SCC batch planning, Dong et al. (2010) established a 

mathematical model of multi-objective optimization, in 

which the objective function is to minimize the number of 

charges, the minimum cost and the maximum production 

capacity, and the guided variable neighborhood algorithm 

and simulation are used. The annealing method is combined 

with the variable neighborhood algorithm to solve it. 

Considering the relationship between the remaining capacity 

of the charge and the plate, flexible modeling based on the 

slab width, Ma et al. (2013) proposed the Variable 

Neighborhood Search Algorithm (VNS) as a local search 

hybrid algorithm in the Iterative Local Search Algorithm 

(ILS). Liu (2015) combines particle swarm optimization 

(PSO) with fast convergence and genetic algorithm (GA) to 

optimize the global optimization ability. A hybrid 

optimization algorithm combining PSO with GA, PSO-GA 

hybrid algorithm, is proposed. The linear programming 

model is established to solve the possible operational 

conflicts in the process, optimize the processing sequence of 

each charge, minimize the waiting time between processes, 

and obtain the final optimized production plan Gantt chart. 

3. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

3.1 problem description  

Charge is the smallest production unit in the steelmaking-

continuous casting production process, we need to reasonably 

integrate the slab and the charge, in the combination process, 

every slab has its own index mandate, including priority, 

flow direction, pouring width range, steel grade, delivery date, 

specification, whether the same hot roll and so on. Therefore, 

in the process of modeling, because of the different physical 

properties of each slab the slab combination will produce the 

penalty factor. To reduce the penalty coefficient caused by 

the attributes, we should optimize the main goal, in addition, 

from the customer satisfaction to make the first production of 

the charge with high priority; from the point of view of 

energy saving of the production process, we should improve 

the utilization rate of furnace capacity. These three aspects 

are taken as optimization objectives. The related 

requirements for the slab combination should be considered 

(Tang et al. 2008). 

3.2 Parameters definition 

During the preparation of charge planning, N is the total 

number of contracts to be prepared, = 1,2,...,N n  ; T is 

the furnace capacity; 
jb is the cost of using the charge j . 

The weight of the i-th slab is ig , the Priority of the i-th slab is 

ih , the upper and lower limits of the casting width of the i-th 

slab are 
H

id and
L

id ( i N  ).
jp represents the penalty 

value resulting from insufficient utilization of the charge 

j ( j N  ); allowing the width of the casting width to be 

adjusted is maxw ; the sum of the penalty cost factors for slabs 

due to attribute differences is 
ijC , ,i j N  , 

ijC = 1

ijC +  
2 3 4 5 6

ij ij ij ij ijC C C C C+ + + + ; The steel-level increase cost 

factor of contract i merged into contract j is 
1

ijC ; width 

penalty cost factor between contract i and contract j is 
2

ijC ; 
3

ijC is the contract delivery time difference cost factor for 

contract i and contract j ; 
4

ijC is the contract i and contract j 

flow differential cost coefficient (when the contracts i and 

j have the same flow direction, 
4 0ijC = , otherwise, 

4

ijC = + .); the difference cost factor caused by whether 

contract i and contract j are the same warm-up materials is 
5

ijC  ( when the contract i and j are both warm-up materials 

or the same non-warm-up materials, 
5 0ijC = , otherwise, 

5

ijC = + .); the difference between the contract i and the 

contract j component cost factor is 
6

ijC  (when the contract 

i and j are the same, 
6 0ijC = , otherwise, 

6

ijC = + ). 

3.3 Decision variables 

1) 
1,  for the -th contract belongs to the -th charge

=
0,  otherwise

ij

i j
X





, 

2) 
1,  for  the -th contract is chosen as the charge center

=
0,  otherwise

jj

j
X





, 

, ,i j N i j   . 

3.3 model 

According to the production requirements of steelmaking-

continuous casting, the optimization objectives are as follows:  

with 1 2 3 4 Min ( + +Z J J J J= + ）  (1) 

1) Minimize the cost of charge generation 

1

1

= min  
N

j jj

j

J b X
=

   (2) 

2) Minimize the remaining capacity of the charge 

2

1 1

= min  ( )
N N

j jj j ij

j j

J p X T g X
= =

− 
  (3) 

3) Try to improve customer satisfaction, priority customers 

give priority to production (This reference Tang 2008) 

3

1 1

= min  (1 )
N N

i jj ij

i j

J h X X
= =

−   (4) 

4) Minimize the difference in physical properties of slabs in 

the same charge 

1 2 3 4 5 6

4

1 1

= min  ( )
N N

ij ij ij ij ij ij ij

i j

J C C C C C C X
= =

+ + + + +   (5) 

It should be noted here that according to the principle of 

minimizing the objective function, two contracts of 
x

ijC = +  are not allowed to be programmed into the same 

charge (x=1, 2,…,5.). 
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The objective functions (2) (3) refer to Yang et al. (2014). 

According to the process specificity and mechanical 

equipment capacity in the actual production process of 

steelmaking-continuous casting, the following constraints are 

formulated: 

1) Due to the constraints of the production process, they are 

not selected or can only be combined into one charge, and 

cannot be combined into two or more charges at the same 

time. 

1

1,
N

ij

j

X i N
=

      (6) 

2) Slab width constraint in the same charge, slab charge 

generation in the production process, the slab width jump 

times and amplitude must meet the production regulations. 

(min( , ) max( ))H H L L

max i j i j ij maxw d d d d X w−  − −    (7) 

1

1 1

min( ,1) 1, , ,
N N

i j i

i j N i j
−

= = +

      (8) 

1 1

max(0, (min( , ) max( )) )
N N

H H L L

i j i j ij

i j

d d d d X
= =

= − −   (9) 

3) The weight of the slab in the charge is restrained, and the 

furnace capacity is higher than the total weight of the slab in 

the same charge.  

i 1

,
N

i ij jjg X T X j N
=

       (10) 

4) Decision variable constraints, decision variables can only 

take 0 or 1. 

{0,1}, ,ijX i j N      (11) 

{0,1},jjX j N    (12) 

4.  SOLUTION METHODOLOGY 

4.1 Lagrangian relaxation algorithm  

In the process of solving the original problem, we introduce a 

set of Lagrange multiplier relaxation constraints (7), and then 

decompose the original problem into a sub-problem 

represented by "the optimal value of each Charge". Use a set 

of Lagrange multipliers to relax the "only one Charge per 

slab group" constraint. The objective of the relaxed 

optimization problem is to minimize the Lagrange function. 

1) The original problem is transformed into a dual problem 

by relaxing Coupling constraints. 

, ( ) 1 1 2 2 3 3 4 4max min ( ( ) ( ) ( ) ( ))
jd ui X Y XZ a f X a f X a f X a f X=  + + +

1 1
(1 )

N N

i iji j
u x

= =
+ −    (13) 

2) Simplify dual problems: 
*

, ( ) 1 1
max min ( )

j

N N

d ui X Y X ij j i i ii j
Z C p g h u X

= =
=  −  − −    

1 1 1
( )

N N N

j j i ij i i
T p Y X h u

= = =
+   + +    (14) 

3) Parameter quantization:  

Let *

ij j i i ijC p g h q−  − = , 1,2, ,i N= , 1,2, ,j N= , 

traverse I, j construct order cluster penalty value 

distribution matrix Q, calculate original When the optimal 

value of the problem is considered, each slab is considered 

as the charge centre, that is, 1jjX = , 1,2, ,j N= , and the 

known parameters unrelated to the decision variable X are 

not considered, and the following results are obtained: 

1 1 1
max min ( )

i ij

N N NDil

X i ij ii j i
Z Q u X u = = =

=  − +    (15) 

4) According to formula (7) and formula (15), we can get: 

,   for 0
=

0,       otherwise.

jj i

ij

X Q u
X

− 



，
  (16) 

5) Treat each slab as the charge centre, the model in step (3) 

is transformed into a sub-model function only related to 

Lagrange multiplier, and the optimal value of the original 

problem is solved by solving the optimal value of the sub-

model. 

1 Z ( ) min(0, )Dil

i i

j N

max Q u u


= − +  (17) 

4.2 Model reference adaptive search algorithm 

The combination of orders with different attributes will 

produce a penalty value. The combination of n orders will 

result in an order clustering penalty value distribution matrix 

due to the different attributes of the order. Different from the 

traditional Lagrangian search algorithm, it is necessary to 

find the subgradient direction for Lagrangian multiplier 

iteration. The search algorithm finds the optimal Lagrangian 

multiplier in the order clustering penalty value distribution 

matrix to optimize the optimal target value. The optimization 

process is divided into three steps: (1) firstly, the order 

clustering penalty value distribution matrix is constructed 

based on the different attributes between orders; (2) then the 

Lagrange multiplier sample space is constructed according to 

the data structure characteristics of the order clustering 

penalty value distribution matrix. (3) in the Lagrange 

multiplier space, the Lagrange multiplier is iterated based on 

the model reference adaptive search algorithm to find the 

Lagrangian multiplier which optimizes the objective value of 

the objective function. 

The probability mass function ( : )kf u T of Lagrangian 

multiplier is given by: 

[ ]1 1
( : ) ( , )

i ij

n n

k k u ui j
f u T T i j I == =

=   (18) 

Where, if i iju U= , then [ ] 1
i iju UI = = ; otherwise [ ] 0

i iju UI = = . 

By constructing the Lagrange multiplier, the space of the 

dual function is maximized, and the search space of the 

Lagrange multiplier is greatly reduced. Then, we use a 

random search method to search in *U to find the 

Lagrangian multiplier that minimizes the target function. 

We describe the following methods for combining the MRAS 

method with the Lagrangian search method to find the 

optimal value of the objective function as follows: 

Set 0K = , 0T  is evenly distributed over *U . 

Step 1: Properly transform the order cluster penalty value 

distribution matrix Q to ensure that each column has the 

fewest elements relative to a row. 
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Step 2: For each row i, design an index '

iJ  of the column 

containing the smallest multiplier element. 

Step 3: Design a search space for Lagrangian multipliers that 

may take values,  ( )0

1. . . . .{ [ ; ; ] | { , }i iJ N

m i i iU u u u u u u


= =  . u 

is a Lagrangian multiplier matrix. 

Step 4: Construct a probability matrix 
kT  and randomly 

generate N Lagrangian multiplier matrices 1 2, ,..., nu u u  from 

the probability matrix 
kT . For each i, the Lagrangian 

multiplier of the ( , )i j -th multiplier element at *U  is 

sampled with probability ( , )kT i j . 

Step 5: Calculate all target values ( )iZ u for i and sort them 

from small to large, [1] [ ]... nZ Z  , set [[ ]]k pnZ = , P is the 

sample quantile of the target value and [0,1]P . 

Step 6: Update the probability of the ( , )i j -th element of 

the probability matrix in the k-th iteration by: 

1 [ ( ) ] [ ]1

1 [ ( ) ]1

( ( )) / ( ; ) )
( , )

( ( )) / ( ; )

n n
k i ij

n
k

N n k n

k h u v u Tn

k kN n u

k h u vn

S h u f u F I I
F i j

S h u f u F I

−  =

− =

=



(19), 

update 1: (1 ) ,0 1k k kF F F  −= + −    at the same time. 

Step 7: If the stop condition is not met, set 1k k= + , return 

to step 4, and jump to step 8 if the stop condition is met. 

Step 8: Implement a random search algorithm to find a 

Lagrangian multiplier that produces an optimal solution to 

the original problem. 

The Lagrangian relaxation algorithm is embedded in the 

engineering background process. After introducing a set of 

Lange multipliers to relax the "Each contract can only be 

classified as a charge" constraint, the optimal solution is 

solved independently due to all sub-problems. The optimum 

value for each charge, usually does not meet the relaxation 

constraints. By establishing a coordination mechanism, the 

optimal solution of all sub-problems is coordinated to satisfy 

these constraints to solve such problems (Shen et al. 2015). 

The Lagrangian multiplier in the sub-question is equivalent to 

the price, and the constraints are not When satisfied, the 

objective function of the subproblem is penalized. By solving 

the dual problem, the Lagrangian multiplier is updated, and 

the updated Lagrangian multiplier is substituted and 

iteratively solved the sub-problem, which can realize the 

coordination of the sub-problems. Converting the original 

problem into a dual problem, 

, ( ) 1 1 2 2 3 3 4 4max min ( ( ) ( ) ( ) ( ))
jd ui X Y XZ a f X a f X a f X a f X=  + + +  

1 1
(1 )

N N

i iji j
u x

= =
+ −    (20) 

The dual function in equation (20) is a concave function 

and consists of multiple concave surfaces. Each concave 

surface corresponds to a batch scheme of a slack problem. 

Due to the combined nature of discrete optimization, the 

various possible implementations of uncertainties further 

exacerbate this characteristic, and the number of possible 

batch schemes increases dramatically as the size of the 

problem increases. So, for practical problems, the number 

of concavities is very large, and the dual function is close 

to the smoothing function, especially when it is close to 

the optimal value. The smoothing property of this dual 

function can be solved iteratively by improving the proxy 

subgradient method. For a given set of Lagrangian 

multipliers, the optimal subproblem solution is obtained, 

and then the iterative process is repeated based on the 

improved proxy subgradient update until some stopping 

criteria are met. 

A feasible solution is constructed based on the center of 

the furnace that is sought after the problem of relaxation. 

Based on the Lagrangian relaxation problem, the heuristic 

rule is designed to adjust the original problem coupling 

constraint. ( 1, . 1, , )k

ijx i N j N= = represents the parcel 

decision variable of the kth iteration, and *

ijC represents the 

sum of the difference penalty fees between contract i and 

contract j. Let i=1, k=0, the heuristic steps are as follows: 

Step 1: Determine whether 
1

N

ijj
x

=  is not greater than 1, 

( 1,2, ,i N= ). If the condition is met, jump to step 3, 

otherwise go to step 2. 

Step 2: Calculate 
* * *

, min{ | 1, 0}i j ij jj ijC C x C= =  , let ,x 1i j = , 

,x 0,( 1, , . )i j j N i j= =  . For a solution that does not 

satisfy the constraint, calculate a contract that produces a 

minimum difference penalty cost value with the charge 

center contract. 

Step 3: 1i i= + , if i N , jump to step 1, otherwise stop. 

4.3 Subproblem solving algorithm based on charge 

decomposition strategy 

The original problem is decomposed into N independent 

subproblems, equation (17), each subproblem mean the 

optimal value of a charge, and ijx  is the only variable in the 

equation. Now we suppose that every contract is a cluster 

centre, 1,2, ,jjx N= , because of different physical factors 

and other contracts, every contract will have different penalty 

values, and then the sub-problem will change. For the boxing 

combination problem. In this section, backward dynamic 

planning is used to solve subproblems (Bertsekas 2013). 

The 0-1 knapsack problem is described as: there are N items 

and a backpack with a capacity of V. The weight of the i-th 

item is [ ]w i , and the value is [ ]v i , which items can be loaded 

into the backpack to make these items. The capacity of the 

backpack is higher than the total of the weights, and the 

largest is the sum of the values. 

The state transition equation is: 

[ ][ ] max{ [ 1][ ], [ 1][ [ ] [ ]]}f i v f i v f i v w i v i= − − − +  (21) 

[ ][ ]f i v  represents the total value of the items in the 

backpack after the item is placed. The equation indicates 

that when the i-th item is not placed, the first i-1 item is 

put into the backpack, and the total value is [ 1][ ]f i v− . 

When the i-th item is placed, the first i-1 item is placed in 
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the backpack of the capacity [ ]v w i− , and the maximum 

value is [ 1][ [ ]]f i v w i− −  plus the i-th item value. 

The problem described in this section is to make the 

working converter as full as possible and to ensure that the 

sum of the penalty values generated by the charge center 

contract and other contracts is optimal, without exceeding 

the constraints of the furnace capacity, but the difference 

with the traditional knapsack problem is that the optimal 

value is not the "maximum value", but the total penalty 

value is the smallest. Further, it is determined that the 

contract is the match of the charge in the charge center, 

that is, the value of the variable ijx ,then find the optimal 

value of the subproblem. 

In this paper, the experiment is carried out by taking the 

contract 1 as the center of the furnace. The optimization 

process of the state transition matrix is performed in order 

from bottom to top and from left to right. Let the contract 

number be { | 1,2, , }n n N= , the contract weight is 

{ | 1,2, , }nw n N= , and each contract and contract 1 will 

generate a penalty value and the parameter is 

{ | 1,2, , }nv n N= . The furnace capacity is 

{ | 1,2, , }kT k K= . The state transition matrix is a 2 *n k  

order matrix D, and ( , )D a b  represents the value of the 

matrix a row b column, and the odd row of the matrix 

represents the sum of the optimal quantized parameters of  

converter does not exceed the furnace capacity, even rows 

Indicates the contract number corresponding to the 

optimal quantization parameter installed in the converter. 

1 2 3( , , )OPSM v v v  indicates the sum of the optimal values of 

the contracted quantitative parameters of the converter 

under the condition of the furnace capacity. For example, 

the furnace capacity is 20, the contracts 1, 2, and 3 are all 

10, and the quantitative parameters are respectively 3, 4, 5, 

then 
1 2 3( , , )OPSM v v v  = 9. 

1 2 3( , , )OPNO n n n indicates the 

contract number corresponding to the optimum value of 

the furnace capacity without exceeding the furnace 

capacity, for example: 1 2 3( , , )OPSM v v v  = 9, 

1 2 3( , , )OPNO n n n =2 , 3. 

We can use the following method to get the optimal value 

and the match of the subproblem with the contract 1 as the 

charge center: 

Step 1: Set , 1n N k= = ; 

Step 2: If n kw T , jump to step 3, otherwise go to step 4. 

Step 3: (2 , ) 0, (2 1, ) 0, 1D n k D n k n n= − = = − . If 0n  , 

jump to step 2, otherwise jump to step 5. 

Step 4: (2 , ) ( , 1, , )D n k OPNO n n N= + , (2 1, )D n k− =  

1( , , , ), 1n n NOPSM v v v n n+ = − , if 0n  , jump to step 2, 

otherwise jump to step 5. 

Step 5: 1k k= + . If k K , set n N= , jump to step 2, 

otherwise stop. 

5 contract numbers are randomly selected as 

{ 1 2 3 4 5}n = ; the contract weight is 

{ 26 26 26 23 23}nw = ; this paper sets the penalty value 

generated by contract 1 and five contract clusters to 

negative. { 100 75 23 55 67}nv = − − − − − , the 

quantization parameter is taken as its absolute value, so 

that it can solve the problem of "what contract can be 

loaded to minimize the total penalty value without 

exceeding the furnace capacity" It is converted into "what 

contract does not exceed the furnace capacity, so that the 

contract is loaded to maximize the quantization parameter"; 

the furnace capacity { 100}KT = . After the optimization, 

the charge loading contracts 1, 2, 4 and 5 can maximize 

the quantization parameter, that is, when the contract 1 is 

the center of the furnace, the combination of the contracts 

2, 4 and 5 can obtain the subproblem optimal value. 

5 TESTING AND SIMULATION RESULTS 

In order to obtain the optimal solution and obtain the best 

performance and running time, we respectively 

experiment on the MRAS algorithm and the traditional 

Lagrangian relaxation algorithm method for different 

problem structures. The comparison of Lagrangian 

multiplier optimization strategy MRAS algorithm and LR 

algorithm iterative Process is given in Fig 1. The near-

optimal solution for different algorithms is shown in Fig 2. 

The remaining number of slabs remaining at the same 

processing time is given in Table 1. The runtime of 

different problem sizes is shown in Fig 3. 

      

Fig 1. Comparison of Lagrangian Multiplier Optimization 

Strategy MRAS and LR algorithm Iterative Process 

As can be seen that the longer the running time is, the 

iterative effect of MRAS is better and gradually stabilizes, 

while the traditional LR algorithm has larger fluctuations 

and the iterative effect is weaker.  

         

Fig 2. Near-optimal solution for MRAS and LR algorithm 
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Fig 3. The runtime of different problem sizes 

We can see from the curve trend, as the scale increases, 

the running time of MRAS algorithm is significantly 

smaller than LR algorithm. 

Table 1. The remaining number of slabs remaining at the 

same processing time 

MRAS algorithm  Traditional LR algorithm 

Charge 
No. 

Slab No. T.W. 
Charge 

No. 
Slab No. T.W. 

1 1\5\9\28 92 1 2\7\35 78 

2 3\18\30 83 2 5\17\29 75 

3 10\12\13\24 98 3 1\4\21\38 90 

4 2\19\23\35 96 4 6\25\28\32 87 

5 15\26\36\39 93 5 3\18\40 69 

6 4\6\8\17 89 6 8\15\33 79 

7 7\29\31\33 90 7 10\23\27\39 91 

8 14\22\37\40 88 8 9\12\26\34 86 

9 20\21\32 82 9 13\24\37 81 

10 11\16\27\34 97 10 11\16\19\31 94 

Residual slab 25\38 Residual slab 14\20\22\30\36 

(T.W. Total weight of slab in the charge) 

From Table 1, we can conclude that under the same 

running time, under the optimization of MRAS algorithm, 

the total weight of slab in the charge is higher, and the 

residual slab is less. 

6. CONCLUSIONS 

In the study of decision support method of steelmaking-

continuous casting charge batch planning, a model reference 

adaptive search algorithm under Lagrangian framework is 

proposed to solve the charge batch planning problem of 

steelmaking-continuous casting. The algorithm is proposed to 

solve the P-median problem. Different from the traditional 

Lagrangian algorithm, the algorithm designs the data matrix 

of the P median problem as an equivalent global optimization 

problem, and then through the search algorithm to lock in the 

corresponding to the original P value problem optimal 

solution of the Lagrange multiplier, namely tectonic order 

clustering matrix of value distribution of punishment , find 

the Lagrange multiplier, and the iterative update, in order to 

adjust the Lagrangian problem optimal solution, this 

algorithm can effectively solve the problem of Lagrange 

original easily plunged into local optimal problem, thus 

effectively solve the steelmaking - continuous casting charge 

batch planning problem. The experimental results show the 

effectiveness of the model and the algorithm. 
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