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Abstract: Fluidized bed layering granulation has found application in a wide range of industrial
processes, e.g. food, pharmaceutical or fertilizer manufacturing. The quality of the produced
granules is a critical factor for subsequent processing steps and depends on individual particle
properties like characteristic size, porosity or mechanical stability. Therefore, these properties
have to be monitored closely during the process to enable accurately timed intervention by plant
operators or the application of suitable feedback control algorithms. In case certain properties
are not measurable due to financial or technical limitations, observer techniques can fill the
gap and provide reliable estimates for these properties. In this manuscript, observer design is
demonstrated and validated for a fluidized bed layering granulation process model represented
by a complex set of partial and ordinary differential equations. Furthermore, an inferential
integral state feedback controller is designed and applied to the complex nonlinear model.

Keywords: Distributed parameter systems, continuous fluidized bed layering granulation, state
estimation, model-based control

1. INTRODUCTION

Fluidized bed layering granulation (FBLG) represents an
established particle formation process which has found
broad industrial application, e.g. food, pharmaceutical
or fertilizer manufacturing, for the production of high
quality granules (Mörl et al., 2007; Litster and Ennis,
2004). Therein, a solid-containing liquid is sprayed on an
ensemble of fluidized particles forming droplets or a liquid
layer on the particle surface. As the fluidization medium is
heated, the liquid part is removed by evaporation resulting
in a layer wise growth of the granules. The obtained
particles are generally easier to handle than their liquid
equivalent and specific particle properties may be required
for subsequent processing steps. Furthermore, operation in
continuous mode, e.g. by using sieve-mill recycle streams
(see Fig. 1) enables high throughput.

It is well known that the product quality is signifi-
cantly affected by operating conditions (Neugebauer et al.,
2018), motivating application of feedback-control algo-
rithms (Bück et al., 2016; Cotabarren et al., 2015) to guar-
antee constant product quality. Those generally require
online-measurement of the corresponding particle prop-
erties, e.g. characteristic particle size, using sophisticated
sensor techniques which rely on assumptions on the parti-
cle shape, e.g. sphericity. If these assumptions do not hold,
e.g. in case of non spherically shaped particles, the mea-
surements become unreliable. Moreover, measurements of
particle properties of interest may not even be available
due to financial or safety restrictions. In such cases, the
desired information can be inferred from available or more
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Fig. 1. Scheme of spray fluidized bed layering granulation
(FBLG) process with sieve-mill recycle

reliable measurements using a model of the process, which
is also known as observer approach (Mohd Ali et al., 2015;
Dürr and Waldherr, 2018).

In this contribution, we will present design and evaluation
of observers and observer-based (inferential) controllers for
a continuously operated spray FBLG process. In the fol-
lowing, process modeling, observer and controller design,
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as well as numerical evaluation of the methods will be
presented subsequently.

2. PROCESS MODELING

Fluidized-bed layering granulation in the described oper-
ation mode represents a complex process which is affected
by the coupling of the particle phase to the fluidization
medium. A sophisticated mathematical model accounting
for mass and heat transfer phenomena as well as evolution
of the heterogeneous particle ensemble in the fluidization
chamber is found in Neugebauer et al. (2018) and roughly
consists of two major parts: The first part is a population
balance model (Ramkrishna, 2000), which characterizes
the dynamics of the particle size number density distri-
bution

∂n(t, L)

∂t
+G

∂n(t, L)

∂L
= ṅrec(t, L)− ṅout(t, L) . (1)

Here, the particle size number density distribution n(t, L)
describing the density of particles within a infinitesimal
size-class, changes by growth of particles, represented by
growth rate G, reflux of milled oversized and undersized
particles ṅrec as well as withdrawal of particles from the
chamber ṅout. The disperse solid (particle) phase is cou-
pled to a system of ordinary differential equations repre-
senting the temporal evolution of thermal properties such
as particle and fluidization gas temperature, θp and θf ,
particle and fluid moisture, X and Y via coupled mass
and enthalpy balances of the solid and gas phase. Bidi-
rectional coupling of both parts, disperse solid (particle)
phase and thermal conditions becomes obvious in Fig. 2.
The interested reader is referred to the original publication
(Neugebauer et al., 2018) for the detailed model. The
overall surface of the particles

Abed = π

∞∫

0

L2n(t, L)dL (2)

affects heat transfer Q̇fp and thereby evaporation of the
solvent. The latter is modelled with a tri-stage evaporation
model (van Meel, 1958) in the presented model formula-
tion. Heat and mass transfer affect the moistures of the
particles and fluid X and Y as well as the fluid and
particle temperatures θf and θp. Moreover, the thermal
states affect the average particle shell porosity εshell and
drying potential

η =
Ysat − Y
Ysat − Yin

. (3)

Therein, the saturated moisture content of the fluid Ysat
directly depends on the current fluid temperature. Milling
degree and drying potential directly affect the milling
process and the growth velocity, thereby coupling the
thermal properties to the disperse phase.

From the industrial side of view there is usually more
interest in a few characteristic quantities of the hetero-
geneous particle ensemble instead of information on the
full distribution n(t, L) itself. In industrial practice, the
Sauter mean diameter

d32 =

∫∞
0
L3n(t, L) dL∫∞

0
L2n(t, L) dL

(4)

is commonly used as a characteristic integral property of
the particle ensemble. Furthermore, Rieck et al. (2015)

showed that η is directly related to the average parti-
cle porosity. In the following, Sauter mean diameter and
drying potential will therefore represent the quality of
manufactured granules. It was also shown in Neugebauer
et al. (2018) that both can be influenced by manipulation
of the average milling degree µmill and the fluidization gas
inlet temperature θf,in. It was furthermore demonstrated
that specific operation regions of those parameters give
rise to complex nonlinear phenomena, e.g. sustained os-
cillations, which are undesired in practice. Hence, those
process variables can be viewed as appropriate potential
manipulated variables for a feedback control scheme that
aim to ensure stable process operation and desired product
properties.

3. PROCESS OBSERVER AND CONTROL DESIGN

As an alternative to complex nonlinear infinite-dimensional
control design, linear design techniques can be applied to
the process in the vicinity of an operation point. In a pre-
vious publication (Neugebauer et al., 2020), the complex
process model described above is linearized numerically
around the operation point

µOPmill = 0.8 mm , θOPf = 80◦C (5)

to describe the effects of the manipulated variables µmill
and θf,in on the Sauter mean diameter d32(t) and the
drying potential η(t). The resulting state-space-system
obtained after model reduction by balanced truncation
(Skogestad and Postlethwaite, 2007) comprises eight states
given as

ẋ(t) = A x(t) +B u(t) ,

y(t) = C x(t) +D u(t) ,

u(t) = [∆µmill(t), ∆θf,in(t)]
T
,

y(t) = [∆d32(t), ∆η(t)] ,

A ∈ Rn×n , B ∈ Rn×m , C ∈ Rp×n , D ∈ Rp×m , (6)

where the ∆-variables describe the deviation from the
operation point and

D = [Dd23 , Dη]
T

= 0 . (7)

For the remainder of the publication it is assumed that d32
can not be measured reliably and thus the output equation
is given as

y(t) = ∆η = Cη x(t) . (8)

It can furthermore be shown that the resulting linear
system is observable and controllable.

3.1 State estimation

In order to apply sophisticated control methods, the cur-
rent value of d32 has to be reconstructed from the avail-
able measurement of η using a convenient technique like
Kalman filtering (Simon, 2006), Luenberger or Sliding
mode observers (Shtessel et al., 2014).

In this work a linear quadratic Luenberger observer

˙̂x(t) = A x̂(t) +B u(t) + L (y(t)− ŷ(t))

ŷ(t) = Cη x̂(t) (9)

was designed with dynamics of estimation error x̃ =
x − x̂ Here, the observer feedback gain L minimizes the
quadratic cost function
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• dn(t,L)/dt = G ∂n/∂L− ṅout + ṅrecycle

• Abed = π
∫∞
0
L2n (t, L) dL

• θp (t) , X (t) ,mp,dry (t)

• θf (t) , Y (t),mf,dry (t)

PBM n (t, L) system of ODEs

• Q̇fp = αfpAbed (θp − θf)

• tri-stage evaporation model

heat & mass transfer

• η = Ysat−Y/Ysat−Yin

• εshell = −∆εshellη + εshell,0

drying potential

• G = xinjṁinj/(1−εshell)ρinjAbed

• Lmill = Lmill,0 + ∆Lmill (εp)

growth & milling

Fig. 2. Scheme of Model realising coupling between particulate phase (PBM) and thermal conditions (ODEs) via
heat/mass transfer and effect of drying potential on particle growth rate

J =

∞∫

0

x̃T (t) Q x̃(t) + (y(t)− ŷ(t))T (t) R (y(t)− ŷ(t))dt

(10)

and is computed from the solution of the associated alge-
braic Riccati equation. To obtain uniform fast convergence
of the states the weighting matrices are chosen as

QLue = 100 · I(8×8)

RLue = 0.001 . (11)

It is well known that output estimates from Luenberger
type observers may fail to converge in presence of distur-
bances and plant-model-mismatch. Alternatively, Sliding
mode observers (Shtessel et al., 2014) apply nonlinear
(switching) output errors estimation feedback and force
the the output estimation error to zero in finite time. This
could prove advantageous in case of modeling errors or
disturbances. The design is described in more detail in the
following. Given the system (6) the following coordinate
transform is considered

z = TC x =

[
NT
C
C

]
x (12)

with the transformation matrix TC ∈ Rn×(n−p) and NC
spanning the nullspace of C. The sliding mode observer is
now designed in the transformed coordinates with dynam-
ics given by

d

d t

[
ẑ1(t)
ẑ2(t)

]
= Ā

[
ẑ1(t)
ẑ2(t)

]
+ B̄ u(t) +GSMO ν(t)

ŷ(t) = C̄η

[
ẑ1(t)
ẑ2(t)

]
. (13)

Here, the matrices are defined as

Ā = TCAT
−1
C =

[
Ā

(n−p)×(n−p)
11 Ā

(n−p)×p
12

Ā
p×(n−p)
21 Āp×p22

]

B̄ = TCB =

[
B̄

(n−p)×m
1

B̄p×m2

]
,

C̄η = Cη · T−1C =
[
0p×(n−p)), Ip×p

]
, (14)

GSMO =

[
L(n−p)×p

−Ip×p .

]
(15)

Further, the state estimation and output errors are defined
as

e = ẑ − z , ey = ŷ − y (16)

and the nonlinear discontinuous output error injection is
approximated by an arctan function

νi(t) = ρ sign (ey,i(t)) = ρ
ey,i(t)

|ey,i(t)|
≈ ρ arctan ey,i(t) ,

i = 1, . . . , p (17)

For the reduced dynamics on the sliding surface ey(t) = 0,

d

d t
(ẑ1 − z1) = ė1(t) = (A11 + L A21) e1(t) (18)

with a linear quadratic Luenberger observer with gain L is
designed. As for the general Luenberger observer described
previously, fast and uniform convergence of the states is
desired. The nonlinear gain and the weighting matrices
are chosen as

ρ = 6.389 · 10−5

QobsSMO = 100 · I(7×7)

RobsSMO = 0.001 . (19)

3.2 Output feedback

First, the performance is assessed for output feedback con-
trol of the Sauter mean diameter d32 and drying potential
η(t) using either direct measurement or an observer-based
reconstruction of the former. The controller proposed by
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Neugebauer et al. (2020) represents a cascade of two indi-
vidual PI-controllers given as

µmill(t) = KP,1 · (d32,ref (t)− d32(t))

+KI,1

t∫

0

(d32,ref (τ)− d32(τ)) dτ ,

θf (t) = KP,2 · (ηref (t)− η(t))

+KI,2

t∫

0

(ηref (τ)− η(τ)) dτ . (20)

3.3 Integral state feedback

As an alternative to frequency domain-based feedback
control design for the spray FBLG process (Neugebauer
et al., 2020), integral state-feedback can be considered
(Aström and Murray, 2010) with the controller output
given as

u(t) = −Ks x̂(t)−Ki

t∫

0

e(τ) dτ +Kr r(t) . (21)

Therein, r(t) denotes the desired value of the output
variable vector y(t) and the control error is given as
e(t) = r(t)− y∗(t) with

y∗(t) =
[
d̂32(t) , η(t)

]T
. (22)

In this manuscript, prefilter gain matrix Kr was set to
zero as the manipulated variables showed tendencies of
increased oscillating behavior. State feedback Ks as well
as integral feedback gain Ki are determined by linear
quadratic regulator design for the augmented state-space-
system. The weighting matrices are chosen as

Qcon = 5 · diag ([1, 1, 1, 1, 1, 1, 1, 1, 1, 5])

Rcon = diag
([

107106
])

(23)

to prevent manipulated and systems variables from over-
and undershooting maximum and minimum values de-
scribed in the full nonlinear model formulation as well as
to keep the system in a valid operation region.

4. RESULTS

In this section, observers and feedback algorithms are
applied to the nonlinear model (Neugebauer et al., 2018).
Therefore, the partial differential equation characterizing
the dynamics of the particle size density distribution (1)
is transformed into a set of ordinary differential equa-
tions using a finite volume scheme. The resulting system
comprising the latter as well as the ODEs describing the
thermal conditions in the fluidization chamber have been
solved numerically in MATLAB 2018a using the routine
ode15s for numerical solution of the ordinary differential
equation system. Furthermore, it is assumed that mea-
surement noisy measurements are smoothed with a con-
venient technique before being processed further. For the
design of the observer gains and integral state feedback the
MATLAB function lqr was applied. In contrast, numerical
studies using pole-placement in MATLAB via place have
shown to to result in unstable estimation and control error
dynamics.
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Fig. 3. Performance of Luenberger and sliding mode ob-
server for test scenarios: (left) change of milling di-
ameter, (right) change of gas temperature

4.1 Estimator performance

Performance of both observers is shown in Fig. 3 for two
scenarios. In the first scenario on the left, the process is
run in the nominal operation point of the manipulated
variables (5). Afterwards, at t = 2 (24) h the milling
diameter is varied to µmill = 0.85 (0.78) mm while
the drying gas temperature θf is kept constant. It is
seen that the Luenberger observer is able to provide
a good reconstruction of the unmeasured Sauter mean
diameter. In comparison, the performance of the sliding
mode observer is slightly worse, but the estimation error

e(d32) = d32 − d̂32 is still within a rather small range.
On the right side of Fig. 3 the results for the second
scenario are depicted. Here, the milling diameter µmill is
kept constant while the temperature of the fluidization
gas is changed at t = 2 (24) h to θf = 85 (75) ◦C. In
contrast to the first scenario, it is seen that the Luenberger
observer performs worse compared to the sliding mode
observer and is not able to deliver a reliable reconstruction
of the unmeasured system output. One possible reason for
this behavior could lie in the validity of the linearization
within a close range around the operation point. For larger
perturbations, the linear system is not able to account
for the interaction between the outputs of both systems
described in the full nonlinear model.

4.2 Inferential output feedback control

Performance of the PI-controller for both cases, based on
direct measurement of d32 and based on its reconstruction
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Fig. 4. Output feedback based on measurement (Mea)
or reconstruction of Sauter-mean-diameter d32 with
sliding mode observer (SMO) / Luenberger observer
(Lue)

d̂32 by Luenberger- and sliding mode observers is shown in
Fig. 4. At t = 2 h the reference value of the Sauter mean
diameter is increased while the drying potential reference
is kept constant. It is seen that control using the observer
estimate of the Sauter mean diameter allow nearly the
same performance as using full measurement information.
This comes rather unsurprisingly taking into account the
estimation quality discussed in the previous section.

4.3 Inferential integral state feedback control

In Fig. 5 results are shown for integral state feedback
control. Compared to output feedback based on measure-
ments, the LQ-regulator drives the Sauter mean diameter
faster to the desired reference value. Performance with
respect to the drying potential is worse than under output
feedback, yet the maximum errors are still relatively small.

5. SUMMARY

Close monitoring of specific particle properties is an im-
portant prerequisite for the production of high quality
granules in particle formulation processes like fluidized bed
layering granulation. It has to be emphasized that model-
based concepts, in particular for FBLG processes, are far
from being an everyday standard in industrial application:
Here, heuristic control concepts based on years of trial-
and-error experience which also require experienced tech-
nicians are still common practice. The aim of this study
has been to show the general feasibility of model-based
estimation and inferential control to such processes to (I)
Obtain reliable information on non-measurable character-
istics which are crucial for the process operation as well as
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Fig. 5. Output feedback using full measurement (OF-Mea)
and integral state feedback control based on reconstruc-
tion of Sauter-mean-diameter d32 with sliding mode
observer (SF-SMO) / Luenberger observer (SF-Lue)

product quality and (II) Actively use the gained model-
based information online for efficient manipulation of the
process.

In this manuscript, observers were formulated and evalu-
ated for a nonlinear model of fluidized bed layering granu-
lation presented by Neugebauer et al. (2018). The designed
Luenberger and sliding mode observers were based on
a numerical linearization of the complex nonlinear dis-
tributed plant dynamics. It was shown for two different
scenarios that a sliding mode observer is able to accurately
reconstruct the unmeasured particle property while the
Luenberger observer fails in the second scenario. The simu-
lation results thereby indicate that the linearized dynamics
which were used for the observer/controller design, does
only accurately represent the nonlinear process dynamics
in a very narrow region around the nominal operation
point. In the second scenario, the system seem not to
be in this vicinity, explaining the worsened performance
of Luenberger observer due to the resulting plant-model
mismatch. The simulations on the other hand also suggest
that the sliding mode observer is more robust with respect
to such errors and thus represents the better option to cope
with those. Though, the plant-model mismatch for the
presented case results from linearization of the complex
model, a comparable behavior of both observers is con-
jectured for general modeling errors. However, this rather
general statement will have to be analyzed and specified in
more detailed studies in future research for specific FBLG
processes. Another important point for further analysis
is concerned with the effects of measurement noise: So
far, it was assumed that any noise in the measurements
is smoothed out before further use for estimation/control.
Obviously, in a more general approach convenient tech-
niques, e.g. Extended or Unscented Kalman Filtering,
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could be applied to directly process noisy measurements.
However, the simulation results show that both observers
are a sound base for the application of general output
feedback controllers and (linear) integral state feedback
controllers to obtain a desired product quality in terms of
the product particles’ Sauter mean diameter.

Future work will also focus on validation of the presented
model-based observers for a pilot-scale-plant as described
by Neugebauer et al. (2019) and application to related
particle formation processes like spray fluidized bed spray
agglomeration (Golovin et al., 2018). Of course, applica-
tion of state observers facilitate implementation of ad-
vanced state-space control methods such as linear model
predictive control (Bück et al., 2016), which may prove
beneficial. Moreover, application of distributed parameter
state estimation methods to the full nonlinear complex
model will be researched (Dürr and Waldherr, 2018; Küper
et al., 2019). Reconstruction of full number density distri-
bution from available and reliable measurements enables
application of advanced nonlinear distributed parameter
control approaches (Palis and Kienle, 2014).
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