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Abstract: We propose a sequence of pedagogical steps for introducing the Youla-Kučera
parametrization, starting from the internal model principle, and introducing the control
structures of disturbance observer and internal model control along the way. We provide some
background on the concepts and a brief survey of their treatment in textbooks on control.
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1. INTRODUCTION

The Youla-Kučera parametrization (YKP) of all stabiliz-
ing controllers for a given linear time-invariant system is
an important result in control theory and often appears in
courses on the subject. For stable plants, the YKP takes
on a particularly simple form, and it is therefore often
first introduced to students in that setting. For unstable
plants, the formulations become more involved and the
transition from the stable case can be perceived as difficult
to follow by some students. Especially the multivariable
case, where the concept of coprime matrix factorization is
an important tool, can pose difficulties.

The aim of this paper is to a) propose a line of reasoning
that we hope can provide inspiration for teaching the YKP,
and b) to draw attention to some useful perspectives on
the related control structures.

The proposed line of reasoning, illustrated in Fig. 1, takes
as point of departure the internal model principle (IMP),
which can be a useful conceptual tool for students when
reasoning about control. Then two alternative controller
structures, both using a model of the plant, are introduced;
internal model control (IMC) and disturbance observer
(DOB). These two structures are used to introduce a more
general structure, based on factorization, which provides
a natural bridge to the general formulation of the YKP.

The paper is structured as follows: In Section 2 we sum-
marize the concepts to be introduced, and briefly survey
how they are presented in control textbooks. In Section
3 we present the procedure, in Section 4 we discuss the
pedagogical merits of the proposed line of reasoning and
in Section 5 we present some possible extensions.

2. PRELIMINARIES

2.1 The internal model principle

The internal model principle (IMP) is the idea that in
order to control a system and compensate for disturbances,
the controller needs to have an understanding, i.e. an
internal model, of how the system works and the nature of

Fig. 1. The internal model principle (IMP) is used to in-
troduce internal model control (IMC) and disturbance
observer (DOB). Comparing these control structures
naturally leads to the concept of factorization, which
is a bridge to the general Youla-Kučera parametriza-
tion (YKP) of all stabilizing controllers.

the disturbances. Intuitively this seems like a reasonable
proposition, and it agrees with everyday experience.

The concept has been formalized for multivariable linear
systems by Francis and Wonham (1975), and generalized
to a setting of abstract automata by Wonham (1976).

An interesting paper by Conant and Ashby (1970) derives
a general principle using a broad concept of mappings and
an argument based on entropy. The title of that paper,
Every good regulator of a system must be a model of that
system, succinctly summarizes the internal model principle
even though the paper does not refer to it by that name.

The internal model principle does not seem to figure
prominently in textbooks on automatic control. Åström
and Murray (2008) for example mentions it in passing
when discussing observer-based state feedback, and Cor-
riou (2004) calls it ”a recommendation of general interest”,
briefly giving a frequency description and referencing the
work of Francis and Wonham (1975). Of the surveyed text-
books, Goodwin et al. (2001) most prominently features
the IMP. There, the internal model principle is discussed
in relation to disturbance rejection and reference tracking,
as those require the controller to incorporate models de-
scribing how disturbances and references are generated. It
is also mentioned in relation to achieving integral action
in LQ control.

In some literature, e.g. Åström and Wittenmark (1984),
Maciejowski (1989), Chen (1999), Franklin et al. (2002),
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Skogestad and Postlethwaite (2005), Dorf and Bishop
(2008), the IMP is only used to refer to the principle
that in order to compensate for a persistent disturbance,
the controller needs to contain a model of the the system
generating the disturbance. Doyle et al. (1992) does not
refer to an IMP by name, but talks of ”an elementary
principle” required for asymptotic tracking.

2.2 Internal model control

Internal model control (IMC) as introduced in Garćıa
and Morari (1982) refers to a particular control structure
that uses an ”internal model to predict the effect of the
manipulated variables on the output”. The book by Morari
and Zafiriou (1989) is a widely cited reference in which
IMC is the basis for a robust design procedure.

Brosilow and Tong (1978) introduces the same concept
under a different name, inferential control, and focuses on
the estimation aspect, making the connection between the
IMC and DOB ideas clear.

The main idea is that only the deviation from the pre-
dicted output, which can be interpreteted as an output

disturbance estimate d̂y, is fed back to the controller.

IMC is commonly presented with the block-diagram in Fig.
2, although Garćıa et al. (1989) 1 observes that the two-
degree-of-freedom (2-DOF) structure presented in Fig. 3
is preferable. They also give a brief historical summary of
how the concepts leading up to IMC control developed.

Horowitz (1963) discusses how 2-DOF structures are all
equivalent, and among the examples one can find the IMC
structure under the name of model feedback (Ch. 6, figure
6.1-1f). The book also offers the following illuminating
quote relating to the equivalence of 2-DOF controllers:

”... it destroys the mystique of structure which seems to
some to be of great importance in feedback theory. The
designer need not fear that, if he were only clever enough,
he could find some exotic structure with new and wonderful
properties. ”

Frank (1974) describes how the model feedback idea
evolved, and provides an experimental IMC design pro-
cedure (section 2.7.1) that nicely illustrates the relation
between control and modeling.

There is a one-to-one correspondence between an error
feedback controller C, as shown in Fig. 4, and an IMC
controller Q such as in Fig. 2, given by

C =
Q

1− P̂Q
, Q =

C

1 + P̂C
. (1)

In case of a perfect model P̂ = P , the transfer functions
characterizing the closed loop system (the so-called Gang
of Four, see e.g. Åström and Murray (2008)) takes on a
particularly simple form[

y
u

]
=

[
PQ P (1− PQ)
Q −PQ

] [
r
du

]
(2)

making them easy to analyze.

1 The title uses Model predictive control, a term that has taken
on a slightly different meaning in modern control terminology. The

Fig. 2. IMC is often introduced using a 1-degree-of-freedom
(1-DOF) structure.

Fig. 3. Garćıa et al. (1989) advocates using a 2-DOF IMC
structure. This structure illustrates the interpretation
of error feedback as feedforward combined with dis-
turbance estimation and rejection.

Fig. 4. A common 1-DOF feedback controller structure.

2.3 Disturbance observer

Another, less widespread, controller structure that also
uses an internal model is the disturbance observer struc-
ture (DOB), where an inverse model of the system is used
to estimate an input disturbance du and try to cancel that
disturbance. The concept is illustrated in Fig. 5, where the
filter H(s) should ideally be equal to 1, but has to have
sufficient relative degree to ensure realizablility.

The term disturbance observer is introduced in Nakao
et al. (1987), and Oboe (2018) gives a contemporary as
well as enthusiastic introduction.

2.4 The Youla-Kučera parametrization

The idea behind the Youla-Kučera parametrization (YKP)
was presented independently in papers by Youla et al.
(1976) and Kučera (1975).

The YKP describes the set of all controllers that stabilize
a given linear system, and parametrizes that set by a
stable transfer function, often denoted Q. It is therefore
sometimes referred to as Q-parametrization. The fact that

process control oriented text Marlin (2000) uses it in the same sense
as Garćıa et al. (1989) for IMC-like control.
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Fig. 5. The disturbance observer controller structure uses
the model to estimate an input disturbance du, in-
stead of an output disturbance dy like IMC does.

the closed loop transfer functions become linear in Q
makes the YKP a powerful tool for optimization-based
synthesis of controllers. The textbooks Doyle et al. (1992)
and Skogestad and Postlethwaite (2005) both use the this
parametrization to discuss stabilizing controllers.

3. PROPOSED PROCEDURE

3.1 Introduce the internal model principle

Introduce the idea that to control something, the controller
needs knowledge about the process to be controlled. Ap-
peal to everyday experience to show that this proposition
is reasonable.

Mention that this intuitive principle can be formalized in
different theoretical settings, one of which is linear time-
invariant systems.

Note that in our field, system knowledge often takes the
form of a mathematical model. And that the power of
feedback control is that often a simple approximation can
suffice as model, in some cases as simple as knowing the
sign of the steady state gain.

3.2 Introduce IMC and DOB

Explain that one way of using a model in a controller, is to
compare the actual system behaviour with the behaviour
predicted by the model, and then using only the difference,
i.e. the unexpected behaviour, to make an adjustment.

Introduce the IMC structure in Fig. 3 as an example of the
above, and mention that here all unexpected behaviour is
in a sense interpreted as an output disturbance dy. Note
that ideally, we would like to use a perfect model inverse,
as in Fig. 6, but that this is rarely possible.

Now, explain that it is also possible to regard all unex-
pected behaviour as an input disturbance, and that this
perspective is beheind the DOB structure in Fig. 5. Note
that we would ideally like to achieve the structure in Fig.
7, but that this, again, is generally not possible.

3.3 Demonstrate equivalence between IMC and DOB

Note that the structure in Fig. 5 can easily be turned
into Fig. 3 by ”pulling” the block with the inverse model
P̂−1 down through the summation junction and choosing
H = QP̂ .

Fig. 6. Ideal IMC, where the estimated output disturbance
is fed through an inverse of the model.

Fig. 7. Ideal DOB, where the estimated input disturbance
is cancelled directly.

Fig. 8. A general 2-DOF IMC-like controller structure,
similar to what Chen (1999) calls the controller-
estimator or plant-input-output-feedback structure.

Table 1. Parameter choices to achieve equiva-
lent controllers in different formulations.

Structure Qv N M

IMC Q P̂ 1

DOB QP̂ 1 P̂−1

PF QÂ−1 B̂ Â

IPF QCÂ−1 B̂C−1 ÂC−1

3.4 Interpret in terms of factorization

Introduce Fig. 8 as a way of describing both structures,
and remark that between IMC and DOB, one invariant is
that NM−1 = P̂ , i.e. that N and M−1 is a factorization
of P̂ . Remark that this might lead a curious mind to ask if
other interesting controller structures might be obtained
by different factorizations.

3.5 Introduce the polynomial factorization

Note that since we are dealing with a rational transfer

function P̂ = B̂
Â

, one natural choice to investigate would be
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to simply factorize P̂ into its numerator and denominator
polynomials, choosing N = B̂ and M = Â. Remark that
this gives us two stable transfer functions in the structure
in Fig. 9, as by definition polynomials have no poles.

Admit that of course, polynomials are not proper transfer
functions, and if we would like to use the structure in Fig.
8 for implementation we can instead choose a factorization

N = B̂C−1, M = ÂC−1 (3)

where C is a polynomial without roots in the right half
plane and of sufficient degree to make both N and M
proper and thus realizable. Illustrate this by Fig. 10.

If suitable, show Table 1 to illustrate how a given IMC
controller translates to the DOB, the polynomial factor-
ization (PF) and the implementable PF (IPF).

Fig. 9. For a rational SISO system, factorization by the
numerator and denominator polynomials yields stable
transfer functions.

Fig. 10. To keep the factorized structure in implementa-
tion, a filter polynomial C can be introduced to ensure
properness, without restricting design choices.

3.6 Introduce the concept of YKP using IMC

Signal a change in perspective by clarifying that the pre-
vious discussion was about choosing controller structures
based on the intuition of the IMP, but that we will now
use the same structures to describe all controllers that
stabilize a given system. To do this we consider the purely
theoretical case of a perfect model, P̂ = P .

Derive, or simply introduce, the transfer functions (2)
characterizing the closed loop system when using an IMC
controller with a perfect model. Note that if P is stable,
the ”Gang of Four” (2) will be stable for any stable Q.

Note, or prove (e.g. Morari and Zafiriou (1989)), that not
only does every stable Q give a stable closed loop system
for a stable P , but every stabilizing feedback controller C
can be obtained by a stable Q and the expression (1).

3.7 Extend to the unstable case

Return to the transfer functions (2) and note that if P is
unstable, it is sufficient to find a stable Q that stabilizes
the critical transfer functions

PQ, P (1− PQ) (4)

to achieve internal stability for the closed loop system.
Remark that we would like a parametrization without such
constraints on the parameter.

Demonstrate how this can be achieved by choosing

Q = Q0 + A2Q1 (5)

and inserting into the critical transfer functions (4) to
obtain

PQ0 + ABQ1, P (1− PQ0)−B2Q1, (6)

using the fact that P = B
A . Note that if Q0 is chosen to

stabilize (4), we are free to choose any stable Q1 since B
and A are stable by definition. Compare to homogeneous
and particular solutions of a differential equation.

Note, or prove (e.g. Morari and Zafiriou (1989)), that
given a stabilizing Q0 all stabilizing controllers are then
parametrized by the choice of a stable Q1.

3.8 Block-diagram representations and interpretations

Choose Q in the IMC controller as (5) and show, by
inserting into Fig. 9, that the corresponding controller can
be described as in Fig. 11, illustrating that the YKP can
be interpreted as two IMC-loops.

Now remark, or if suitable show, that the block diagram
in Fig. 11 can by some block diagram manipulation be
turned into the one depicted in Fig. 12, thus illustrating
another interpretation of the YKP as first applying an
IMC-loop for disturbance rejection and then applying an
outer, stabilizing, feedback loop.

Regarding the reciproval, Goodwin et al. (2001) notes that
it is sometimes, but not always, possible to describe the
YKP as an inner, stabilizing, feedback loop and an outer
IMC-loop.

Since Fig. 12 does not seem to be common in textbooks
a few remarks are in order. C is the feedback controller
obtained from inserting Q0 into (1), and Q∗

1 and F ∗ can
be chosen as stable transfer functions of sufficient relative
degree, but are not the same as Q1 and F in Fig. 11. In
deriving Fig. 12 it is helpful to observe that the stability of
(4) implies that Q0 can always be factorized as Q0 = Q∗

0A
where Q∗

0 is stable, and that (1−Q0P ) can be factorized
in a similar manner.

4. PEDAGOGICAL MERITS

The concepts introduced above are standard fare in control
theory, and we do not pretend that our way of presenting
the material is really novel. We have however in our brief
survey of textbooks not found quite the same way of
linking the concepts together.

While we have not had the opportunity of trying this
procedure in teaching, we would like to highlight what we
think are the pedagogical strengths.
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Fig. 11. The general YKP can be interpreted as two IMC-
loops, where one is freely parametrized.

Fig. 12. An alternative interpretation of the YKP is as
an inner disturbance rejection, or ”model following”,
loop combined with an outer stabilizing loop.

The IMP is quite an intuitive idea, and we believe that ex-
posing students to it early and stressing its generality can
help develop in understanding the fundamental connection
between modelling, estimation and control.

Introducing the DOB structure alongside IMC can be a
good opportunity to illustrate how block diagram ma-
nipulations reveal different interpretations of the same
controller, and that control can be seen as estimation and
compensation of disturbances.

Minimizing the differences between the block diagrams for
the stable and unstable case YKP could aid students in
connecting both cases, and the use of Fig. 9 and Fig. 12
could be advantageous in this regard compared to using
Fig. 2 combined with e.g. Fig. 13 or Fig. 14.

Introducing factorization as a natural tool for investigating
control structures SISO case can hopefully facilitate the
transition to the MIMO case and the use of coprime
transfer-function matrix factorization.

5. ADDITIONS

We would like to note two illustrative examples that can
easily be integrated into the proposed procedure.

5.1 PID derivation from DOB

Using the DOB structure in with a second order model

P̂ =
1

s2 + as + b
, (7)

and choosing a first order low-pass filter

Fig. 13. Åström and Murray (2008) uses a similar block-
diagram to illustrate the general YKP. The transfer
functions G0 and F0 are obtained from a coprime fac-
torization of a stabilizing controller. C is a polynomial
with roots in the LHP.

Fig. 14. Goodwin et al. (2001) illustrates the general
YKP using this structure. The polynomials K and L
constitute a polynomial factorization of a stabilizing
controller, and the roots of the polynomial E is part of
the closed-loop poles. Note that E can be eliminated
from the block-diagram.

H =
1

1 + sT
, (8)

as depicted in Fig. 15, is equivalent to using a controller

C =
s2 + as + b

sT
, KP + KI

1

s
+ KDs. (9)

for regulation, i.e. when r = 0. If the prefilter F is chosen as

F = s2+as+b
1+sT , then a regular unity feedback PID controller

is obtained.

This example can serve as a good opportunity to elaborate
on the fact that a simple model can often be enough to
achieve acceptable control performance, and that this is
one reason for the success of PID control.

5.2 Cascade control

The notion that IMC and DOB contain estimations of
output/input disturbances can be taken further by not-

Fig. 15. A PID controller in disguise.
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ing that every factorization N and M−1 of the system
corresponds to viewing the system as composed of two
subsystems in series, and to interpreting the signal v in
Fig. 8 as the estimate of a disturbance entering between
these two subsystems.

If the system is indeed composed of two physical sub-
systems, and we have access to a measurement of the
intermediate signal, the IMC/DOB framework can easily
incorporate this measurement, giving rise to a cascade-like
IMC control structure, as illustrated by Fig. 16. A remark
about this is made by Bequette (2003), in section 10.5.

Fig. 16. IMC applied in a cascade control structure.
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Garćıa, C.E., Prett, D.M., and Morari, M. (1989).
Model predictive control: Theory and practice—A sur-
vey. Automatica, 25(3), 335–348. doi:10.1016/0005-
1098(89)90002-2.

Goodwin, G.C., Graebe, S.F., and Salgado, M.E. (2001).
Control system design. Prentice Hall, Upper Saddle
River, NJ.

Horowitz, I.M. (1963). Synthesis of Feedback Systems.
Academic Press, New York.
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