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Abstract: This paper presents an adaptive, two-level control structure that makes it possible
to implement a numerical optimization algorithm for eco-driving in real time. The reference
governor in the higher level is characterized by a low, flexible sampling rate and adopts a
receding horizon for preview and optimization. The optimization algorithm thereby finds the
energy-minimizing solution, based on Pontryagin’s minimum principle (PMP), for traveling the
selected route segments without colliding with the preceding vehicle. The tracking control in the
lower level compensates for errors due to modeling inaccuracies and unmodeled disturbances.
The hierarchical structure can accommodate different types of numerical solvers and control
schemes that apply to various vehicle powertrain configurations. A large-scale simulation study
using real-world route data with high-fidelity powertrain models validates the proposed control
structure and its online implementation.
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1. INTRODUCTION

In recent years, the system integration of computing units
onto onboard vehicle systems has been developing at a fast
pace, providing vehicles with sufficient computing capabil-
ity to carry out advanced driver assistance functions and
even fully automated driving. Given advanced connectivity
to numerous data sources, such as road infrastructure
and neighboring vehicles, these connected and automated
vehicles (CAVs) possess an unprecedented potential to
optimize their decisions and behaviors on the road. Re-
searchers are harnessing these advances such that energy
efficiency is increasingly taking its place beside safety
and comfort as the focus of the automotive control realm
(Vahidi and Sciarretta, 2018).

Much research has been conducted on solving the optimal
control problem (OCP) of eco-driving. An exhaustive list
of related papers is presented in Sciarretta et al. (2015). By
linearizing the system and using quadratic cost functions,
the OCP could be simplified into quadratic programming
(Dollar and Vahidi, 2018; Schwickart et al., 2014), or
converted into a boundary value problem with solutions
in closed-form expressions (Dib et al., 2014; Han et al.,
2018). The low computation time that results from these
simplifications makes these approaches easy to implement
online in a model predictive control (MPC) framework.

? This report and the work described were sponsored by the U.S.
Department of Energy (DOE) Vehicle Technologies Office (VTO)
under the System and Modeling for Accelerated Research in Trans-
portation (SMART) Mobility Laboratory Consortium, an initiative
of the Energy Efficient Mobility Systems (EEMS) Program.

However, these simplifications may lead to loss of modeling
accuracy in nonlinear factors such as aerodynamic drag,
road grade, and transmission viscosity, which could lead
to suboptimal control policies.

In order to gain more confidence in the optimization
results, researchers need to incorporate nonlinearity. For
example, Xu et al. (2015) and Khalik et al. (2018) adopt
direct methods and convert the OCP into nonlinear pro-
gramming, whereas the research of Passenberg et al. (2009)
falls into the category of indirect methods and applies
a multiple shooting algorithm. A few of these numerical
methods have been evaluated online in closed-loop simula-
tions using an MPC framework. Generally, the time needed
for a single optimization is about 1 s, which makes the real-
time implementation of these methods questionable.

In our previous works (Shen et al., 2018a,c), we adopt
a Pontryagin’s minimum principle (PMP)-based approach
to solving the OCP. The approach establishes a mapping of
the solution trajectories to the target steady-state speed.
For free-flow cruising scenarios, the method is able to
yield the solution in one step, which runs within 20 ms.
However, it requires iterations, as with numerical methods,
to adapt the solution to time constraints in car-following
and traffic-light-crossing scenarios. Compared to other
nonlinear optimal control algorithms, our approach is
faster but not sufficient for a direct closed-loop application.

In this paper, we introduce a two-level control structure
to accommodate the nonlinear optimization algorithm
without compromising real-time capability (see Fig. 1).
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Fig. 1. Overview of control structure.

In the higher-level reference governor that is executed in a
low average sampling rate, the numerical solver repeats the
optimization calculation according to updated information
on the receding horizon. The lower-level tracking control,
running in a fast sampling rate, adopts a two-degrees-
of-freedom scheme that keeps track of the optimization
solution while suppressing disturbances and errors.

2. PROBLEM FORMULATION

The task of ecological longitudinal vehicle guidance is
to minimize energy consumption, for a defined travel
distance, by a connected and automated vehicle (CAV).
A CAV is defined as a vehicle provided with look-ahead
information and fully governed by the controller on board.

2.1 Longitudinal Vehicle Dynamics

The vehicle’s movement is a complex model that includes
nonlinearities in tires and steering. The majority of energy
consumption occurs in the longitudinal movement of road
vehicles, so we can focus on the longitudinal dynamics.
The longitudinal vehicle dynamics are depicted in Fig. 2.

Fig. 2. Vehicle longitudinal dynamics

The longitudinal vehicle model can be described in the
following equations (Guzzella and Sciarretta, 2007):

ẋ =

[
v̇
ṡ

]
=

[
m̂−1 ·

(
Tmγη

sgn(Tm) − Fb − Fres

)
v

]
, (1)

where s and v are the traveled distance and speed of the
vehicle, respecively, and m̂ is the total inertia, including
the vehicle mass and equivalent mass of all rotating parts.
The motor torque Tm multiplied by the transmission ratio
γ and the efficiency η comprises the traction force Ft. The
mechanical brake force and resistance force are denoted
by Fb and Fres, respectively. Fres is the sum of the wheel
rolling friction, the aerodynamic drag, and the uphill force.
Thus, Fres is expressed as a quadratic polynomial of v with
coefficients c0, c1, and c2,

Fres(v) = c0 + c1 v + c2 v
2 +mg sinα, (2)

where g is the gravitational acceleration, α is the road
grade, and m denotes the vehicle mass (excluding the
rotational inertia).

2.2 Optimal Control Problem Formulation

The optimal trajectory is generated by solving an eco-
driving OCP. The OCP is formulated as follows:

min
u∈U

J =

∫ tf

t0

φ(x,u) dt (3a)

subject to

ẋ = f(x,u), (3b)

x(t0) = x0, (3c)

g(x(tf), tf) = 0, (3d)

g̃(x(ti), ti) = 0, (3e)

h(x,u) ≤ 0. (3f)

The OCP is to minimize the overall energy consumption
J that integrates the running cost φ from an initial time
t0 to a final time tf , subject to the system dynamics (3b)
given in (1). Boundary conditions at the initial and final
time are stated in (3c) and (3d); interior-point boundary
conditions are presented by (3e). Inequality conditions are
summarized in (3f) (see Section 3.2). The running cost φ
approximates the energy consumption rate with a quartic
piecewise function of v and Tm, with the two groups of
coefficients c{m,g},ij associated with the motor (Tm ≥ 0)
and generator (Tm < 0) modes,

φ(v, Tm) =

2∑
i=0

2∑
j=0

c{m,g},ij (γv)i T j
m.

The state vector is x = [v, s]T, and the control vector is
u = [Tm, Fb]T.

We assume that before the passenger starts the driving
mission, a certain route with a destination is selected,
either by the passenger or by the navigation computer.
That allows us to convert the continuous slope data ob-
tained from a digital map into piecewise-constant profiles
(Shen et al., 2018a). The converted slope profile and the
speed limit are inherently piecewise constants. These two
piecewise constant profiles are expressed in a discrete form:

slope: α(s) = αi, for s ∈ [ss,i, ss,i+1),

speed limit: vl(s) = vl,j , for s ∈ [sl,j , sl,j+1),

with the slope starting positions ss,i ∈ SS and the speed
limit starting positions sl,j ∈ SL. In addition, the positions
of pointwise road traits such as stop signs s ∈ SP and
traffic lights s ∈ STL must be considered for route
segmentation. Consequently, in a preprocess the route is
divided into a series of segments at positions s ∈ SRS =
(SS ∪ SL ∪ SP ∪ STL).

3. RECEDING-HORIZON REFERENCE GOVERNOR

The structure of the reference governor is shown in Fig. 3.
A refresh trigger is introduced to conditionally renew the
OCP (3) in previewer and to re-calculate a new solution
by optimizer.

3.1 Refresh Trigger

In contrast to a typical MPC speed control, such as
those described in Passenberg et al. (2009) and Asadi and
Vahidi (2011), the proposed reference governor refreshes
the receding horizon not on a fixed sampling rate but on a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14040



Receding-Horizon Reference Governor

Previewer

Optimizer

��������	�


��������

���������	�
���	

�
	��
�������	���

�����	�����

Refresh Trigger

���������

�����

������

�����

������

�����

��

Fig. 3. Block diagram of the receding horizon reference
governor.

non-regular, route-segment-based interval. In addition to
triggering at segment junction points, a refresh request is
triggered if the planning or prediction error is too large,
as shown in the left block in Fig. 3. This refresh is to keep
the OCP formulation accurate and maintain the system
within a confidence band around the planned trajectory.

3.2 Previewer: Update Problem Formulation

The initial condition (3c) is updated with the current
position and speed. The preview horizon of a fixed time
length Th moves along as the vehicle moves forward, as
shown in Fig. 4. The horizon length lh is thus a linear

SPEED 
LIMIT

40

SPEED 
LIMIT

55

SPEED 
LIMIT

30

Fig. 4. Preview horizon of route information.

function of the initial vehicle speed v0:

lh = Th v0. (4)

The maximum number of route segments within the pre-
view horizon is limited to nhs.

1 Let the vehicle position
at the triggering of the renewed preview be on the irs-th
segment, s(t) ∈ [srs,irs−1, srs,irs). In (3d), the final position
s(tf) = x2(tf) is definitive:

s(tf) = min(lh, srs,irs+nhs−1). (5)

The final speed v(tf) is left free; except for a stop sign,
v(tf) = 0. In general, the final time tf is free due to its
ambiguity in the middle of the entire travel.

Control and state inequality constraints (3f) are detailed
as follows:

1 In this work, we set nhs = 3.

h =


h1

h2

h3

h4

h5

h6

 =


Tm,min − Tm

Tm − Tm,max

0− Fb

Fb − Fb,max

v − vl(s)
s− sb(t)

 ≤ 0. (6)

Constraints on the control variables Tm and Fb resulting
from physical limitations of the powertrain parts are
represented by h{1,2,3,4}. Constraints h{5,6} are constantly
updated by the preview horizon. The speed limit vl is
enforced by h5, and collisions are avoided by h6, where
the position-bound sb takes into account the front vehicle
position sobj and the safety headway rule as a linear
function of the front vehicle speed ṡobj (Ioannou and
Chien, 1993),

sb = sobj − (ch,1ṡobj + ch,0),

where ch,{0,1} are the coefficients of the safety headway
rule. The front vehicle’s movement in the future is un-
certain. In this paper, we apply a well-established car-
following model, the ideal driver model (IDM) (Treiber
and Kesting, 2013, Ch. 11), to predict how the front vehicle
reacts to the traffic-regulating devices that appear in the
preview horizon. An example is shown in Fig. 5.

STOPego preceding

Fig. 5. Prediction of the front vehicle using IDM.

The condition (3e) is used to describe the interior-point
constraints pursuant to the traffic-light-crossing strategy

g̃i = s(ttl,i)− stl,i = 0, i = 1, ..., ntlh, (7)

where ntlh denotes the number of traffic lights within the
preview horizon. 2 The crossing times ttl,i at each traffic
light position stl,i ∈ SP are calculated by a near-optimal
decision algorithm inspired by De Nunzio et al. (2013) each
time the receding preview horizon is triggered. 3

2 Due to the maximum segment number of the preview horizon,
ntlh ≤ nhs − 1.
3 The algorithm (1) determines the feasible s-t-region based on
speed limits, (2) identifies the green windows within the feasible
region and simplifies them as vertices, (3) finds the passing path
with the lowest energy cost using Dijkstras’s algorithm, and finally
(4) refines the crossing times in the selected green windows by solving
a static optimization problem. See De Nunzio et al. (2013) for more
details.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14041



STOP

segm.  

junction points

SPEED 
LIMIT

40

SPEED 
LIMIT

55

segm. 

Traj. depending on  

Optimized crossing times 

as interior points 

SPEED 
LIMIT

40

SPEED 
LIMIT

55

Divide into sub-OCPs 

w/ end time constr.

front obj. t-s-
traj.

collision!!!

Final time unconstrained optimization

• Adapt         if collisions 

occur

• Create new sub-OCPs 

at collision points

• Iterate until no collision  

FnSolveUnconstr(   ,∙)

STOP

Fig. 6. Workflow of the proposed algorithm for solving a CAV eco-driving OCP.

3.3 Optimizer: Renew Solution Trajectories

In three previous papers (Shen et al., 2018a,b,c), the
authors have presented the PMP-based algorithm to solve
the OCP in the form of (3). PMP transforms the OCP (3)
into the Hamiltonian,

H(x,u,λ,µ) = φ(x,u) + λTf(x,u) + µTh(x,u),

with an appended co-state λ = [λv, λs]
T and a Lagrangian

multiplier µ.

Analysis in Shen et al. (2018a,c) shows that the Hamilto-
nian H has a constant optimal value H between interior
points. It incentivizes us to divide the OCP (3) into sub-
OCPs, whose connections are subject to the interior-point
conditions. λs is inherently constant in each route segment
(of a constant slope and constant speed limit). Thus, the
local minimum condition in PMP,

u∗ = arg min
u∈U

H(x,u,λ),

leads to the control policy, which is a function of vehicle
speed v parameterized with constants H and λs,

u∗ = Υ(v |H, λs). (8)

Through a steady-state analysis at a speed vss, that is,
by letting v̇(u∗) = v̇[Υ(vss |H, λs)] = 0, a mapping is
established, π : R → R2 : vss 7→ [H, λs] (see Shen et al.,
2018b,c). It is obvious that this mapping π is dependant
on the slope α as evident in (1) and (2). Let vset be the
vss for the general case α = 0, which corresponds to a
certain pair [H, λs] according to the mapping. Because
H = H remains constant (in each sub-OCP), the mapping
π parameterized by α is used again to derive vss for each
slope segment. In other words, once vset is chosen, vss is
determined for all of the route segments within the sub-
OCP; and by extension, the state and control trajectories
of acceleration, deceleration, and constant-speed for all of
the route segments are determined. The unknown junction
speeds between neighboring segments are found by satis-
fying the continuity in λv. The above process is packaged

as a function in Matlab, FnSolveUnconstr(vset,x0,xf),
as illustrated in the middle column of Fig. 6. It can yield
the optimal solution in one step with a desired vset defined
by the passenger.

To fulfill the interior-point constraints (7) due to traffic
lights, within each sub-OCP, we adapt the input vset of
the function FnSolveUnconstr() iteratively to approach
the required crossing time (see the first column of Fig. 6).
The optimization of junction speeds between sub-OCPs
(at traffic lights) is relaxed by assuming that they are the
arithmetic means of the average speeds within the two
adjacent route segments just before and after the traffic
lights. 4 The values of the average speeds can be directly
obtained from the calculation for the traffic light crossing
strategy (7).

The resulting trajectories then must be validated by the
inequality condition h6 to ensure a safe distance to the
front vehicle (in a predicted way). 5 The numeric method
of solving the OCP (3) with an active h6 is introduced in
Shen et al. (2018c). As illustrated in the right column of
Fig. 6, first a new interior point is created at the position
where h6 is most violated and the affected OCP (or sub-
OCP) is split in two; then in the two newly created sub-
OCPs, vset is adapted in FnSolveUnconstr() to meet the
interior time points. Then these steps are repeated until
no violation is detected.

As a consequence of solving the OCP (3) through the
algorithm described above, the trajectories of both states
and co-states (including the Hamiltonian) are computed.
In the next section, we explain how to utilize the two
groups of trajectories.

4 Because v is not concerned in (7), junction speeds should be co-
optimized along with vset for all sub-OCP together to reach a global
optimum. The sub-optimal approach in this paper is adopted in light
of computation efficiency for online-control.
5 The rest of the inequality constraints h{1∼5} are already consid-
ered in FnSolveUnconstr().
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4. CONTROL SCHEME

The output signals of the receding-horizon reference gov-
ernor are the optimal trajectories of the vehicle speed v
and the traveled distance s as well as of the parameter
pair, [H, λs]. The control scheme adopts a two-degrees-
of-freedom design as shown in Fig. 7. That is, an adap-
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Fig. 7. Block diagram of the tracking control.

tive feedforward controller with the speed feedback and a
tracking controller to compensate errors are both used to
obtain the desired longitudinal dynamics.

4.1 Adaptive Feedforward Controller

The feedforward controller is based on the parameterizable
control policy u∗, which is dependent on the vehicle speed
v, as shown in (8). The parameter pair [H, λs], as stated in
Section 3.3, is piecewise constant and jumps only at route
segment junctions. Thus, [H, λs] is indexed with position
marks. In the absence of modeling errors and disturbances,
the feedforward controller should ensure exact tracking of
the generated trajectory.

4.2 Tracking Controller

The tracking controller reduces the error between the cur-
rent state and the reference state according to the gener-
ated optimal trajectory. A proportional-integral-derivative
(PID) controller is applied in this paper to demonstrate the
control structure. 6 The feedback is the sum of the error
gains of acceleration, speed, and position, in reference to
the state trajectory x∗ in the time domain.

4.3 Fail-Safe Braking

Because of inevitable prediction errors and unpredictable
disturbances, the reference-tracking controller may still
fail to prevent the vehicle from violating safety-critical
constraints, such as running red lights or colliding with
the preceding vehicle. As a fail-safe for braking the vehicle
to a full stop in extreme cases, we apply the intelligent
braking strategy of IDM (Treiber and Kesting, 2013); this

6 Of course, more sophisticated controllers like MPC could be
implemented in its place.

produces feedback afs according to the distance gap (sobj−
s) between the vehicle and the front object, which could
be either a vehicle or a red traffic light,

afs = min
(
0, a0 (1− z2)

)
, (9a)

with

z =
1

sobj − s

[
pd0 + max

(
0, v pT +

v (v − ṡobj)

2
√
papb

)]
. (9b)

The pa, pb, pT, and pd0 are model parameters of IDM, rep-
resenting comfortable acceleration, deceleration, time gap,
and minimum distance gap, respectively. For a standing
vehicle or a red light, ṡobj = 0.

The output afs is added to the sum of the tracking feedback
atc and the feedforward portion a∗. Here, when the fail-
safe braking comes into play, its dominance needs to be
assured. Thus, the contribution of the sum (atc + a∗) is
throttled down by multiplying an exponential function of
afs, namely exp(kfs afs), with a coefficient kfs > 0. The
resulting value aΣ for the longitudinal acceleration request
is then limited for comfort and safety reasons. The control
demand fed to the powertrain is obtained by converting
that adjusted acceleration request.

5. SIMULATION RESULTS

The control system presented herein was validated on
RoadRunner, a multi-vehicle energy consumption and per-
formance simulation platform (Kim et al., 2018). In Road-
Runer, the emulated interaction interfaces that exist be-
tween vehicles and road infrastructure allow us to evaluate
the merits of the proposed control in a simulation envi-
ronment backed by real-world route data. For each single
vehicle, RoadRunner deploys the high-fidelity powertrain
and longitudinal vehicle dynamics models of Autonomie
(Argonne National Laboratory, 2019), which provide us
with an accurate estimation of the energy impact.

In this paper, we compare three control strategies: (1)
a human driver model as baseline (BSL), (2) speed-only
eco-driving (Eco-Spd), and (3) our proposed control (Eco-
SpdPT). The human-driver BSL was developed and vali-
dated using on-road testing data (Han et al., 2020b). Eco-
Spd uses an MPC framework to implement online closed-
form optimization solutions that minimize acceleration
energy subject to the state constraints imposed by speed
limits and the preceding vehicle (Han et al., 2020a). 7

Note that the strategies of horizon length choice on Eco-
Spd and Eco-SpdPT are different: Eco-Spd previews a
fixed-length distance and considers only one traffic light
ahead, whereas Eco-SpdPT’s preview horizon varies with
vehicle speed and is dependent on the route segmentation,
as shown in (4) and (5), thereby considering up to two traf-
fic lights ahead. Moreover, the sampling rate of the MPC
frames on Eco-Spd and Eco-SpdPT are very different: It
is fixed at 10 ms with Eco-Spd, and it is floating with an
average of about 1 s with Eco-SpdPT (see Section 3.1).
Therefore, the results shown in the following are by no
means meant for a performance contest but only as a
quality control for the proposed concept.

7 Aerodynamic drag, road grade, and powertrain factors are not
considered.
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5.1 Simulation Setup

A large-scale study was executed for the three control
strategies on 33 real-world routes extracted from HERE
maps, as shown in Fig. 8. In the study, the same electric

Fig. 8. Routes extracted from HERE digital maps: 6 urban,
8 suburban, 5 mixed (urban + suburban + highway),
and 14 highway routes.

vehicle plant was used, the configuration of which is shown
in Table 1. Each test case involved two vehicles, one

Table 1. Vehicle parameters

Parameter Value Unit

Total Mass 1784 kg
Motor Max. Power 123.9 kW
Motor Max. Torque 393.7 N m
Wheel Radius 0.301 m
Battery Energy 59.89 kW h
Gear Ratio 1.6 -
Final Drive Ratio 3.5 -

leading and one following. We named the vehicle position
arrangement: LF 00, LF 01, LF 10, and LF 11, where L
refers to leading, F to following, the digit 0 to BSL,
and 1 to an advanced strategy, either Eco-Spd or Eco-
SpdPT. Through permutation of the control strategy and
the vehicle position (leading/following), there are in total
10 cases. 8

The BSL and the Eco-Spd strategies both use the de-
fault rule-based supervisory controller for an electric ve-
hicle with a single-speed gear transmission (in the Au-
tonomie library). The acceleration/pedal-position signal
output from BSL and Eco-Spd is interpreted by the su-
pervisory controller and converted into detailed demands
for the motor and the brake. On the other hand, the Eco-
SpdPT strategy is a self-contained online implementation
approach to vehicle speed and powertrain control. The
error-compensated demand output for the motor torque
and brake force is directly fed to the vehicle plant.

8 The cases with different eco-driving strategies (Eco-Spd and Eco-
SpdPT) in the leading and following vehicles are not considered.

5.2 Analysis of Results

The relative energy and travel time differences for the
leading vehicle and the following vehicle are displayed in
Figs. 9 and 10, respectively, where the comparisons are in
reference to case LF 00. Fig. 9 is for analysis in a free-
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Fig. 9. Overview of relative energy and travel time differ-
ences for the leading vehicle.
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Fig. 10. Overview of relative energy and travel time
differences for the following vehicle.

flow condition, and Fig. 10 is for analysis in a car-following
condition. The circles in different colors represent different
routes, and the red lines indicate the average value in each
cell.
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At first glance across the route type row from highway to
urban in both Figs. 9 and 10, the results show a general
trend that the energy-saving potential grows as the in-
tersection occurrence density increases without sacrificing
travel time.

In highway LF 10, where other constraint factors (e.g., the
preceding vehicle) play no role, Eco-SpdPT outperforms
Eco-Spd in terms of energy savings (−4.21 % vs. −3.83 %)
because it considers the system complexity (e.g., aero-
dynamic drag, road grade). The energy savings gap be-
tween Eco-SpdPT and Eco-Spd becomes larger in subur-
ban routes as a result of different preview strategies. The
preview length of Eco-SpdPT floats between about 100
and 2000 m depending on the speed in suburban routes,
whereas Eco-Spd previews at maximum 250 m ahead and
not beyond the first intersection in sight. The performance
advantage of Eco-SpdPT over Eco-Spd decreases in urban
routes due to the fact that shorter intersection distances
lead to shorter preview length in Eco-SpdPT, which is
comparable to the one in Eco-Spd.

We now take a closer look at an urban route in Atlanta.
The simulation results of Eco-SpdPT on the leading and
the following vehicles are displayed in Fig. 11 and Fig. 12,
respectively.
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Fig. 11. Speed and time traces over position for the leading
vehicle with Eco-SpdPT.
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Fig. 12. Speed and time traces over position for the
following vehicle with Eco-SpdPT.

The reference governor was triggered 47 times for the
leading vehicle (in LF 10) and 66 times for the following
vehicle (in LF 01), as marked by cyan ×s. The additional
triggerings in LF 01 occurred between about 0 and 4 km,
where the preceding vehicle (BSL) was within the pre-
view horizon length. Because of errors in predicting the

preceding vehicle’s movement, it was necessary for the
reference governor to be engaged more often and to renew
the optimization (see Section 3.1).

To aid in evaluating the method’s real-time capability, the
statistics of the time intervals T∆ between each triggering
event and the execution time Texe of the reference governor
are displayed in Fig. 13. For LF 10, all Texe are less than
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Fig. 13. Statistics of triggering intervals T∆ and execution
time Texe. a) Scattered data points of (T∆, Texe). b)
Box plots T∆ of and Texe in case LF 01 (above) and
LF 10 (below).

1/10 of T∆; and about half of the Texe are less than 1/100
of T∆. For LF 01, in 3 out of the 66 instances, Texe are
over 1/10 of T∆; in the worst case, Texe = 0.35 s and
T∆ = 0.73 s. The extra iterations for collision avoidance in
the numerical optimization (see Fig. 6) contributed to the
additional amount of execution time. Overall, the proposed
control concept could be considered as being real-time
capable with tolerance to a few extreme cases.

6. CONCLUSIONS

Herein we have presented the design and strategies of an
online-implementable, powertrain-aware eco-driving con-
trol approach. The proposed modular design separates
the longitudinal vehicle guidance into two levels. In the
higher-level reference governor at a low sampling rate,
the eco-driving OCP is numerically solved. The lower-level
tracking control at a high sampling rate compensates for
disturbances and/or errors due to modeling inaccuracies.
Through a large-scale simulation study, it was demon-
strated that the two-level approach accommodates the
time-consuming numerical optimization in the reference
generation well, and the online implementation is real-time
capable.

The control concept is applied to electric vehicles in this
paper. Future work will expand its application to vehicles
with other powertrain types. Of course, due to mode
selections, the OCP becomes hybrid; thus, it requires
further investigation to guarantee obtaining the global
optimum in the solution in the planning level and to ensure
robustness and stability in the lower tracking level.
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