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Abstract: In this work we introduce two novel maximum entropy based clustering algorithms
to address the problem of Edge Controller Placement (ECP) in wireless edge networks. These
networks lie at the core of the fifth generation (5G) wireless systems and beyond. Our algorithms,
ECP-LL and ECP-LB, address the dominant leader-less and leader-based controller placement
topologies and have linear computational complexity in terms of network size, number of clusters
and dimensionality of data. Each algorithm places controllers close to edge node clusters and not
far away from other controllers to maintain a reasonable balance between synchronization and
delay costs. While the ECP problem can be expressed as a multi-objective mixed integer non-
linear program (MINLP), our algorithms outperform state of the art MINLP solver, BARON
both in terms of accuracy and speed. Our proposed algorithms have the competitive edge
of avoiding poor local minima through a Shannon entropy term in the clustering objective
function. Most ECP algorithms are highly susceptible to poor local minima and greatly depend
on initialization.

Keywords: Clustering, deterministic annealing, 5G networks, software-defined networks,
wireless edge networks, edge controller placement.

1. INTRODUCTION

Wireless networks are of high importance in modern
telecommunication systems and in order to enhance these
systems, Software-Defined Networks (SDN) have been in-
troduced as an emerging paradigm whose primary advan-
tage is giving network administrators greater control over
the network traffic and administration (Alshamrani et al.,
2018). Traditionally wireless networks have played both
the role of administration and relay of data within the
same infrastructure. One of the limitations of this archi-
tecture is that modifying these networks requires manually
re-configuring nodes of the network to accommodate the
new changes. Softwarization is a new trend in wireless
communication networks that helps to automate this type
of manual work.

One of the most studied research problems, on which SDN
itself heavily relies, is the so-called edge controller place-
ment problem (ECP) (Alshamrani et al., 2018). Controller
placement is one of the most important components of
software-defined networks (Kuang et al., 2018). This prob-
lem was first introduced in Heller et al. (2012) and is in
general NP-hard (Singh and Srivastava, 2018). Controllers
are network nodes which are designated to control other
nodes of a network. ECP in an edge network essentially
reduces to determining how many and which nodes in the
network need to be designated as the controllers. This
placement induces several costs including delays between
edge nodes and the controllers they are assigned to, and

synchronization delay between the controllers themselves
which we refer to as delay and synchronization costs re-
spectively throughout the paper. Our approach here to
study ECP is based on viewing this problem in a data
clustering sense. Many clustering based approaches in lit-
erature are hindered by naive initialization and are thus
prone to poor local optima (He et al., 2004). This leads to
multiple optimization attempts with varied initializations
that increase total computation time needed to find an
optimal placement. These approaches are also restricted
to a single objective value which prevents the decision
maker from simultaneously considering multiple criteria.
In this paper, we leverage properties of the deterministic
annealing (DA) algorithm (Rose, 1998), which is tailored
to avoid these shortcomings, and introduce algorithms that
iteratively minimize the costs associated with ECP. In
order to evaluate our algorithms we compare the final costs
incurred with those of the MINLP formulation.

We identify the core competences of our algorithms as
being (1) scalable and fast, due to linear computational
complexity in terms of problem size and number of con-
trollers, (2) high quality in terms of near optimal solutions,
(3) initialization independent as we always start with one
controller in the mass center of dataset, (4) excellent at
avoiding poor local minima due to the use of a Shannon
entropy term in the clustering objective function and (5)
able to address a multi-objective scheme.
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The rest of the paper is organized as follows. In Section
2 we overview ECP and SDN related works from recent
years. In Section 3 we formally define ECP and explain
the subtleties of this problem. In Section 4 we describe our
approach to the problem and explain how we adapt the DA
to the ECP problem. The reader may refer to Section 5
to see the results of the simulations and finally Section 6
shows conclusions and avenues for future research.

2. LITERATURE REVIEW

The controller placement problem for SDN’s was first
introduced in Heller et al. (2012). Li and Xu (2018)
implement the Cuckoo search algorithm for the problem
of controller placement in SDN’s. Lu et al. (2019) identify
the main function of SDN’s as decoupling the data plane
and control plane and identify controller placement as one
of the hottest topics in SDN literature.

Liao et al. (2017) propose a density based controller place-
ment which uses a clustering algorithm to split the network
into multiple sub-networks. Papa et al. (2018) consider
ECP in the context of satellite networks and design an
integer linear program to address this problem. Focusing
on reliability aspects of ECP, Alshamrani et al. (2018)
address maximizing fault-tolerance aspects of controller
placement rather than performance. They show sacrificing
latency for reliability is generally not a good trade-off
except in special scenarios.

Das and Gurusamy (2018) use a multi-objective optimiza-
tion model to derive a multi-period roll-out plan for con-
troller placement. A similar problem to ECP, the satellite
gateway placement problem, is addressed in detail in Liu
et al. (2018). Zhiyang Su and Hamdi (2015) propose a
novel scheme to minimize measurement overhead, and
formulate the Measurement-aware Distributed Controller
Placement (MDCP) problem as a quadratic integer pro-
gramming problem.

Zhang et al. (2018) design a multi-objective controller
placement scheme that simultaneously addresses reliabil-
ity, load balance and latency. They use the heuristic adap-
tive bacterial foraging optimization to solve this problem.

Dvir et al. (2018) study the wireless controller placement
problem using a multi-objective optimization problem and
measure the sensitivity of this placement to a variety of
metrics.

In this paper we present the first maximum entropy based
clustering algorithm to address ECP in wireless edge net-
works. A tutorial on deterministic annealing for the un-
familiar reader may be found in Rose (1998). We distin-
guish our algorithms from previous clustering approaches
in that it is the first multi-objective clustering approach
to the ECP problem and it does not require initialization.
We found previous algorithms in literature that typically
enjoy a fast speed such as Cuckoo search, GA, BFO, and
other heuristics suffer from susceptibility to poor local
optima solutions. On the other hand exact approaches
like quadratic integer programming are too slow to be
practical for real-world scenarios. Our algorithms address
these shortcomings by leveraging their ability to sense and
escape poor local minima and at the same time enjoy fast

speed due to linear computational complexity in terms of
parameters of the problem.

3. PROBLEM STATEMENT

Wireless networks can be illustrated by a graph as shown
in Figure 1, in which the vertices are the network nodes
and the edges represent the connection between them. One
or multiple numbers of these vertices can be designated
as a controller and ECP reduces to finding the optimal
placement, and assignment of these controllers.

Leader-less and leader-based topologies are two popular
schemes for placement of controllers (Qin et al., 2018). The
distinction between the two is that in the former all pairs of
controllers in the network directly communicate with each
other while in the latter controllers only communicate with
a leader controller.

Fig. 1. Leader-based (left) and leader-less (right) schemes.
Solid and dashed lines are respectively controller and node
connections.

To cast this problem as a mathematical program we define
N as the set of all edge nodes with Card(N ) = N and
Nh as the set of edge nodes that can serve as controllers
with Nh ⊆ N . Additionally, X = (xi ∈ Rd, i ∈ N )
determines the position of edge nodes in the wireless
network. We use X = (xi ∈ {0, 1}, i ∈ Nh) to represent
the controller placement policy. If we choose node i to
be a controller then xi = 1 otherwise xi = 0. Similarly
Q = (qij ∈ {0, 1}, i ∈ N , j ∈ Nh) determines the
controller assignment policy where qij = 1 if node i is
assigned to controller j otherwise qij = 0. Z = (zj ∈
{0, 1}, j ∈ Nh) determines the leader assignment policy
in the leader-based scheme. zj = 1 if controller j is the
leader and zj = 0 otherwise. dij = d(xi, xj) encodes
the communication delay between nodes i and j which
we assume to be proportional to the squared Euclidean
distance, i.e. dij = ‖xi − xj‖22.

3.1 Leader-less Case

In this setting all controllers communicate not only with
edge nodes but also with each other. Thus we incur
a controller synchronization cost between all pairs of
controllers. We can express the optimal assignment as the
solution of the following integer program:

min
Q,X

∑
i∈N

∑
j∈Nh

qijdij + γ
∑

i,j∈Nh

xixjdij
∑
k∈N

qkj (1)

s.t.
∑
j∈Nh

qij = 1 ∀i ∈ N (2)

qij ≤ xj ∀i, j ∈ N (3)

xi ∈ {0, 1}, i ∈ Nh (4)

qij ∈ {0, 1}, i ∈ N , j ∈ Nh, (5)
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The first term in the objective function corresponds to
communication delay across all node-controller pairs. The
second term shows the synchronization delay between con-
trollers. Note that synchronization delay also depends on
how many nodes are assigned to a certain controller. Con-
straint (2) ensures that each edge node is only assigned to
one controller and constraint (3) ensures node assignments
to a controller are only made to designated controller
nodes. Parameter γ ≥ 0 shows the relative importance
of synchronization cost compared to delay cost.

3.2 Leader-based Case

The leader-based case is similar to the previous one, except
that controllers synchronize only with the leader. We can
express the optimal assignment in this setting as the
solution to the following integer program:

min
(Q,X ,Z)

∑
i∈N

∑
j∈Nh

qijdij + γ
∑
i∈Nh

∑
j∈Nh

xizj (Ndij) (6)

s.t. constraints (2)-(5)∑
j∈Nh

zj = 1 (7)

zj ∈ {0, 1}, j ∈ Nh. (8)

Constraint (7) ensures that there is exactly one leader
controller in the network. Finding globally optimal solu-
tions for leader-less and leader-based cases is an NP-hard
problem (Singh and Srivastava, 2018).

4. SOLUTION APPROACH

In the deterministic annealing clustering setting, the ex-
pected distortion 1 can be defined as

D =

N∑
i=1

p(xi)

m∑
j=1

p(yj | xi)D(xi, yj).

X = {xi}Ni=1 are the data points and Y = {yj}mj=1

are cluster centroids. p(yj | xi) is called the association
probability 2 of point xi with centroid yj and D(xi, yj)
is the distortion measure which is typically chosen to be
the squared Euclidean distance. We interpret p(xi) as the
relative importance given to ith node and assume, if not
otherwise indicated that p(xi) = 1

N . System entropy can

be defined as H = −
∑N
i=1 p(xi)

∑m
j=1 p(yj | xi) log p(yj |

xi). We also define the system free energy as F = D −
TH where T is the system’s so-called temperature. 3 Note
that F can be viewed as the Lagrangian for the primary
objective of minimizing D, with T being the Lagrange
multiplier. The central iteration of DA can be summarized
as sequentially optimizing F with respect to association
probabilities and centroid locations.
1 Distortion is an average weighted distance term, between nodes
and centroids, that serves as our basic cost function.
2 The weighting indicating that a node belongs to a particular
centroid. For each node the sum of these associations over all
centroids must equal one.
3 A coefficient scaling the entropy term which indicates how im-
portant the entropy term is compared to the distortion term. We
typically reduce this coefficient from a high value to a value close to
zero.

4.1 Leader-less Case

For the purpose of adapting the DA clustering to the
leader-less ECP problem we define the distortion measure
as D(xi, yj) = d(xi, yj) + γ

∑m
j′=1 d(yj , yj′). In order to

observe the relation to integer program (1)-(5) notice we
can write total distortion as

D =

N∑
i=1

m∑
j=1

p(yj | xi)d(xi, yj) (9)

+γ

m∑
j′=1

m∑
j=1

(
d(yj , yj′)

N∑
i=1

p(yj | xi)

)

This is objective function (1) with hard assignments qij re-
placed by the soft association probabilities. Setting partial
derivatives of the free energy term with respect to associ-
ation probabilities to zero and solving, yields solution:

p(yj | xi) =
exp

(
−D(xi,yj)

T

)
Zi

, Zi =

m∑
j=1

exp

(
−D(xi, yj)

T

)
Thus association probabilities have the celebrated Boltz-
mann distribution. Similarly setting derivatives with re-
spect to the centroids yj to zero leads to the following
linear system of equations:

ηyj − γ
∑
j′ 6=j

yj′ = Cj , j = 1, . . .m (10)

where η = γ(m − 1) + 1 and Cj =
∑N
i=1 p(xi | yj)xi. We

may compute p(xi | yj) using Bayes’ rule. This gives us a
linear system of md variables and md equations with m
and d being respectively the number of centroids and the
dimensionality of data. It is essential for the convergence
of our clustering algorithm that this linear system of
equations always has a solution.

Theorem 1. Given the linear system of equations in (10)
with η and Cj defined as above, if γ 6= 1

n−m ,
1

n−2m
then there always exists a unique solution {yj}mj=1,
where the coefficient matrix associated with the sys-
tem of the equations is non-degenerate with determinant(

(γm+1)m(γ(n−m)−1))
γ(n−2m)−1

)d
.

Proof. 1 We can write the coefficient matrix associated
with (10) as the block matrix Θ ∈ Rmd×md with diagonal
blocks equal to ηI and non-diagonal blocks equal to −γI
such that I ∈ Rd×d. Dividing all rows by constant −γ we
get det(Θ) = (−γ)md det(Θ̄). Θ̄ is a block diagonal matrix
with diagonal elements equal to αI and non-diagonal
blocks equal to I with α = − ηγ . Using straightforward

linear algebra we can transform Θ̄ to an upper triangular
matrix:

Θ̄×


I 0 . . . 0
−1

α+n−2I I . . . 0
...

...
. . .

...
−1

α+n−2I
−1

α+n−3I . . . I

 =


β1I × . . . ×
0 β2I . . . ×
...

...
. . .

...
0 0 . . . βmI


Where βi = α − n−i

α+n−i−1 and det(Θ̄) =
∏m
i=1 (βi)

d
. We

can use telescoping to further simplify the product to(
(α−1)m(α+n−1)
α+n−(m+1)

)d
. This will give:
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det(Θ) =

(
(γm+ 1)m (γ(n−m)− 1))

γ(n− 2m)− 1

)d
which is nonzero for γ 6= 1

n−m and well defined for

γ 6= 1
n−2m .

The resulting DA clustering algorithm for this case is given
in Algorithm 1.

Algorithm 1: ECP-LL

Set max # of clusters Kmax and min temperature
Tmin;

Initialize: T ←∞,K = 1, y1 =
∑N
i=1 xip(xi);

while Convergence test do
p(yj | xi)←

exp

(
−
d(xi,yj)+γ

∑m

j′=1
d(yj ,yj′ )

T

)
/Zi, ∀i, j;

Solve:
ηynewj − γ

∑
j′ 6=j y

new
j′ =

∑N
i=1 p(xi | yj)xi, ∀j;

Update: yj ←− ynewj , ∀j;
if T ≤ Tmin then

break;
else

Annealing: T ←− αT, α ∈ (0, 1);
Perturb yj , ∀ j;

end
end
yj ←− arg minxi∈Nh

d(xi, yj), ∀j;

For the convergence test we stop at iteration τ if
‖Fτ − Fτ−1‖ < δ for some predetermined tolerance level
δ > 0. At perturbation step we replace yj with yj + ε
and yj − ε for some small and random perturbation vector
ε ∈ Rd. Perturbed centroids will automatically merge back
together if codebook Y needs not to expand, otherwise
they separate further away (Rose, 1998). In the last line
of Algorithm 1 we designate the closest valid node to each
centroid as a controller.

The iteration complexity for this algorithm depends on (a)
calculation of mutual squared Euclidean distances between
xi, yj for i ∈ {1, . . . , N}, j ∈ {1, . . . ,m}, (b) similar calcu-
lation of mutual distances between centroids, (c) calcula-
tion of association probabilities and (d) solving the linear
system of equations. The complexities for these operations
are respectively, O(NKmaxd), O(K2

maxd), O(KmaxN) and
O(K3

maxd
3). For large N these terms are dominated by

O(NKmaxd), thus for a maximum number of iterations τ
the algorithmic computational complexity for the leader-
less case is O(τNKmaxd) which is linear in data size,
maximum number of clusters and dimensionality of data.

4.2 Leader-based case

In order to adapt DA to the leader-based ECP problem
we define an appropriate distortion measure by:

D(xi, yj) = d(xi, yj) + γ min
j∈{1,...,m}

m∑
j′=1

d(yj , yj′) (11)

Similarly we can consider the weighted total distortion as:

D =

N∑
i=1

m∑
j=1

p(yj | xi)d(xi, yj) + γ min
j∈{1,.,m}

m∑
j′=1

Nd(yj , yj′)

In order to observe its relation to MINLP objective func-
tion, notice (6) is equivalent to the following objective
function:

min
(Q,X)

∑
i∈N

∑
j∈Nh

qijdij + γ min
j∈{1,...,m}

∑
i∈Nh

xi (Ndij)

To establish this equivalence, we used the relationship
that for Z = {zj ∈ {0, 1} |

∑m
j=1 zj = 1} then

minZ
∑m
j=1 zjψj = minj∈{1,...,m} ψj where ψj ∈ R ∀j ∈

{1, 2, . . . ,m}.
Following the steps in the leader-less case we obtain
the association probabilities and centroid update rules as
follows:

p(yj | xi) =
exp

(
−d(xi,yj)

T

)
Zi

, Zi =

m∑
j=1

exp

(
−d(xi, yj)

T

)

yj =
γNyj∗ +

∑N
i=1 p(yj | xi)xi

γN +
∑N
i=1 p(yj | xi)

yj 6= yj∗ (12)

yj∗ =
γN

∑
j′ 6=j∗ yj′ +

∑N
i=1 p(yj∗ | xi)xi

(m− 1)γN +
∑N
i=1 p(yj∗ | xi)

(13)

where j∗ = arg minj∈{1,...,m}

m∑
j′=1

d(yj , yj′) is the index

of the leader centroid. The resulting maximum entropy
based clustering algorithm for the leader-based topology is
similar to the leader-less case in Algorithm 1 except that
update rules for association probabilities and centroids is
replaced with equations above.

Using a similar procedure the computational complexity
can be found as O(NKmaxd) + O(K2

maxd) + O((N +
Kmax)d) + O(NKmax). For a maximum of τ iterations
and large N this is again dominated by O(τNKmaxd).

5. RESULTS

In order to evaluate the performance of our algorithms we
compare their final costs with the integer programs (1)-
(5) and (6)-(8). We use the state of the art MINLP solver
BARON to draw this comparison (Sahinidis, 1996). We
used Gaussian distribution to generate our data with K
as the number of Gaussian clusters within the data.

(a) (b)

Fig. 2. (a) ECP-LL vs. MINLP (b) ECP-LB vs. MINLP

Superior performance of our clustering algorithms can be
observed even in small problem instances like in Figure
2. While BARON is stuck in a poor local optimum with
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an excessive number of controllers, ECP-LL has managed
to achieve a considerably lower objective value with fewer
controller placements. The slightly fatter markers in (b)
indicate the leader controllers.

In Figure 3, as an immediate result of avoiding controller
synchronization cost, placements become more packed as
γ increases.

Figure 4 shows sensitivity to different hyper-parameters
for ECP-LL algorithm. (a) shows as γ increases the op-
timal objective value also increases and stays relatively
constant for very large values of γ. (b) also shows a
similar pattern that as γ increases ECP-LL places fewer
controllers in the network. (c) shows the optimal value
for hyper-parameter Kmax. We validate that the optimal
value of Kmax is the number of inherent clusters in the
dataset. (d) Shows the the values of non-projected and
projected 4 solutions versus the number of iterations. The
projected solution is obtained by making association prob-
abilities hard and then projecting the solution centroids
onto the data set. We observed that the two converge to
the same value across most scenarios.

Table 4 compares performance of ECP algorithms against
BARON. While the former by far outperforms the latter
in terms of total run time, the difference in accuracy is
emphasized as problem size increases. Figure 5 illustrates
how run time grows linearly as a function of data size and
number of clusters.

6. CONCLUSION

In this work we introduced two multi-objective maximum
entropy based clustering algorithms for the problem of
Edge Controller Placement in wireless communication net-
works. Our algorithms address the shortcoming of current
approaches in the SDN literature that are either fast at the
expense of sub-par solution quality or provide high quality
solutions with run times that are impractical for real-world
scenarios. ECP-LL and ECP-LB each address a different
controller placement topology, and their design is inspired
by a Mixed Integer Nonlinear Program. We show that
our algorithms outperform state of the art MINLP solver,
BARON in both speed and accuracy. The iteration com-
putational complexity for these algorithms is O(NKmaxd)
which is linear in data size, maximum number of clusters
and dimensionality of data.
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Fig. 3. Controller placement sensitivity to parameter γ

(a) (b) (c) (d)

Fig. 4. (a) γ vs. optimal objective value, (b) γ vs. optimal number of controllers, (c) hyper-parameter Kmax vs. optimal
objective value and (d) Iteration number vs. projected and non-projected solutions objective function values

Table 1. Tuples (ECP vs. BARON) include run time (sec.), obj. value and number of controllers
triplets as a function of size of dataset N and number of clusters K with γ = 0.1

LB N=20 N=60 LL N=20 N=60

K=2 (0.9,1.9,5), (2.1,6.2,4) (2.3,6.2,2), (906.8,15.2,3) K=2 (0.3,7.1,2), (622.2,15.3,4) (0.7,17.50,2), (627.5,585,55)
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K=10 (3.4,3.1,8), (68.9,4.9,4) (10.1,7.3,12), (607.6,12.2,5) K=10 (1.1,6.8,2), (602,10.3,5) (2.5,19.5,4), (621.6,81.9,15)

Fig. 5. ECP algorithms run time vs. # of clusters and data size.
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