On a Rank factorisation Problem Arising in Gearbox Vibration Analysis

Elisa Hubert∗ Axel Barrau∗∗ Yacine Bouzidi*** Roudy Dagher†† Alban Quadrat†††

∗ University of Lyon, UJM-St-Etienne, LASPI, 42334 Saint-Etienne, France (e-mail: elisa.hubert@univ-st-etienne.fr).

** Groupe Safran, rue des Jeunes Bois – Châteauroux, 78772 Magny Les Hameaux cedex, France (e-mail: axel.barrau@safrangroup.com).

*** Inria Lille - Nord Europe, Parc Scientifique de la Haute Borne, 40 Avenue Halley, Bat. A - Park Plaza, 59650 Villeneuve d’Ascq, France (e-mail: yacine.bouzidi@inria.fr).

**** Inria Chile - Av. Apoquindo 2837, piso 12, Las Condes, Región Metropolitana, Chili (e-mail: roudy.dagher@inria.fr).

† Inria Paris, Oursagan project, IMJ – PRG, Sorbonne University, France (e-mail: alban.quadrat@inria.fr).

Abstract: Given a field k, r matrices $D_i \in k^{n \times n}$, a matrix $M \in k^{n \times m}$ of rank at most r, in this paper, we study the problem of factoring M as follows $M = \sum_{i=1}^{r} D_i u v_i$, where $u \in k^{n \times 1}$ and $v_i \in k^{1 \times m}$ for $i = 1, \ldots, r$. This problem arises in modulation-based mechanical models studied in gearbox vibration analysis (e.g., amplitude and phase modulation). We show how linear algebra methods combined with linear system theory ideas can be used to characterize when this polynomial problem is solvable and if so, how to explicitly compute the solutions.

Keywords: factorisation methods, linear algebra, modulation, demodulation, vibration analysis.

1. INTRODUCTION

Notation. In what follows, k will denote a field (e.g., $k = \mathbb{Q}, \mathbb{R}, \mathbb{C}$), $k^{n \times m}$ the k-vector space formed by all the $n \times m$ matrices with entries in k,

$$GL_n(k) = \{ U \in k^{n \times n} \mid \det(U) \neq 0 \}$$

generally linear group of invertible $n \times n$ matrices and I_n the unit of $GL_n(k)$, i.e., the identity matrix of $k^{n \times n}$.

Let $A \in k^{r \times s}$ and let us consider the two k-linear maps:

$$A : k^{1 \times r} \rightarrow k^{1 \times s} \quad \lambda \rightarrow \lambda A, \quad \eta \rightarrow A \eta.$$

Then, we can define the finite-dimensional k-vector spaces

$$im_k(A) := \{ \mu \in k^{1 \times s} \mid \exists \, \lambda \in k^{1 \times r} : \mu = \lambda A \}, \quad ker_k(A) := \{ \lambda \in k^{1 \times r} \mid \lambda A = 0 \}.$$

Similarly, we can define the following k-vector spaces:

$$im_k(A) := A k^{s \times 1} = \{ \zeta \in k^{r \times 1} \mid \exists \, \eta \in k^{s \times 1} : \zeta = A \eta \}, \quad ker_k(A) := \{ \eta \in k^{s \times 1} \mid A \eta = 0 \}.$$

We recall that A is full row rank (resp., full column rank) if $\ker_k(A) = 0$ (resp., $\ker_k(A) = 0$) and a full row (resp., column) rank matrix $A \in k^{r \times s}$ admits a right (resp., left) inverse $B \in k^{s \times r}$, i.e., $A B = I_r$ (resp., $B A = I_s$).

Let us state the main problem studied in this paper.

The rank factorisation problem: Let $M \in k^{n \times m} \setminus \{0\}$ and $D_1, \ldots, D_r \in k^{n \times n} \setminus \{0\}$. Determine if they exist -- $u \in k^{n \times 1}$ and $v_1, \ldots, v_r \in k^{1 \times m}$ satisfying:

$$M = \sum_{i=1}^{r} D_i u v_i. \quad (1)$$

Within the framework of vibration analysis applied to gearbox fault surveillance, a new demodulation approach of the gearbox vibration signal was proposed in Hubert et al. (2018); Hubert (2019). It first states that the gearbox spectrum can be represented as a (structured) matrix M and then that separating the time vibration signal into its two main components amounts to estimating vectors u and v set in Problem (1). The exact case of the above mentioned factorisation problem was studied in Hubert et al. (2019) and solved in Hubert et al. (2018) for $r = 1$ and in Hubert et al. (2019) for $r = 2$. In this paper, based on linear algebra, we give a proof of the general case ($r \geq 1$).

Note that Problem (1) corresponds to a polynomial system formed by $n \times m$ equations in the $n + r m$ unknowns $\{u, v_1, \ldots, v_r\}$. Hence, methods from algebraic geometry and symbolic computation (e.g., Gröbner bases, resultants) can be used to study Problem (1). In this paper, exploiting algebraic structures of (1) and combining them with ideas of linear systems theory, we shall show that linear algebra methods are sufficient to solve Problem (1) for the case of rank$_k(M) = r$ and for the case where rank$_k(M) \leq r$ and $v : = (v_1^T \ldots v_r^T)^T \in k^{r \times m}$ is a full row rank matrix. The case of a non full row rank matrix v will be studied in a future publication. Indeed, in this case, it seems that we cannot avoid the use of elimination methods (e.g., Gröbner or Janet bases).
2. THE FACTORIZATION PROBLEM

2.1 Introductory remarks

We first note that if we set
\[A(u) := (D_1 u \ldots D_r u) \in \mathbb{K}^{n \times r}, \]
\[v := (v_1^T \ldots v_r^T)^T \in \mathbb{K}^{r \times m}, \]
then Problem (1) can be rewritten as follows:
\[A(u) v = M. \tag{2} \]

Remark 1. If \((u, v)\) is a solution of (2), then so is \((A u, \lambda^{-1} v)\) for all \(\lambda \in \mathbb{K} \setminus \{0\}\). Hence, if a solution exists, then it is not unique.

If \(M = A(u) v\), then \(M = A(u) (v w)\) for all \(w \in \mathbb{K}^{m \times 1}\), which yields the following inclusion of \(k\)-vector spaces:
\[\text{im}_k(M) \subseteq \text{im}_k(A(u)). \tag{3} \]

Conversely, if there exists \(u \in \mathbb{K}^{n \times 1}\) such that (3) holds, then, denoting by \(M_i\) the \(i\)-th column of \(M\), we have \(M_i \in \text{im}_k(A(u))\) for \(i = 1, \ldots, m\), and thus, there exists \(w_i \in \mathbb{K}^{r \times 1}\) such that \(M_i = A(u) w_i\) for \(i = 1, \ldots, m\), i.e., with the notation \(v := (w_1 \ldots w_m) \in \mathbb{K}^{r \times m}\), we then get:
\[M = (M_1 \ldots M_m) = (A(u) w_1 \ldots A(u) w_m) = A(u) v. \]

Lemma 1. A necessary and sufficient condition for the existence of a solution \((u, v_1, \ldots, v_r)\) of Problem (1), i.e., of (2), is the existence of \(u \in \mathbb{K}^{n \times 1}\) satisfying (3).

In spite of the simplicity of the statement of Lemma 1, as noticed in Introduction, Problem (1) corresponds to a polynomial system in the unknowns \(\{u, v_1, \ldots, v_r\}\). Hence, we cannot hope to get a simple answer for the general case. Since the \(k\)-vector space \(\text{im}_k(A(u)) = \sum_{i=1}^r(D_i u)\) is generated by the \(r\) vectors \(D_i u\), we have:
\[\text{rank}_k(A(u)) := \dim(\text{im}_k(A(u))) \leq r. \]

Hence, using (3) and \(\text{rank}_k(M) = \dim(\text{im}_k(M))\), a necessary condition for the solvability of (1) is then:
\[\text{rank}_k(M) \leq r. \tag{4} \]

If Problem (2) is solvable and if \(v\) has not full row rank, then there exists \((\alpha_1 \ldots \alpha_r) \in \mathbb{K}^{r \times 1}\) with \(\alpha_k \neq 0\) for a certain \(k \in \{1, \ldots, r\}\), such that \(\sum_{i=1}^r \alpha_i v_i = 0\), which yields \(M = \sum_{i=1}^r(D_i - \alpha_i \alpha_k^{-1} D_k) v_i\). Hence, we get \(M = \sum_{i=1}^r(D_i - \alpha_i \alpha_k^{-1} D_k) u(w)\) for all \(w \in \mathbb{K}^{m \times 1}\), where \(v_i \in \mathbb{K}^{r \times 1}\). This sum contains at most \(r - 1\) non-zero vectors which yields \(\text{rank}_k(M) \leq r - 1\). Hence, a necessary condition for the solvability of Problem (2) for a matrix \(M\) of rank \(r\) is that \(v\) has full row rank, i.e., that \(v\) admits a right inverse \(t \in \mathbb{K}^{m \times r}\), i.e., \(v t = I_r\). Then, (2) yields:
\[A(u) = M t. \tag{5} \]

Then, (5) implies the following equality of \(k\)-vector spaces:
\[\text{im}_k(M) = \text{im}_k(A(u)). \tag{6} \]

Note that (6) can also be obtained by noticing that \(\text{im}_k(M) \subseteq \text{im}_k(A(u))\), and \(\text{rank}_k(A(u)) \leq r = \text{rank}_k(M)\). Finally, we also note that (6) is equivalent to (2) and (5), which yields \(A(u) (I_r - vt) = 0\), and thus, \(vt = I_r\) since the \(r\) columns of \(A(u)\) are \(k\)-linearly independent.

In what follows, we shall suppose that \(v\) has full row rank since it is a necessary condition for handling the case of \(\text{rank}_k(M) = r\), an important case in practice. If \(\text{rank}_k(M) \leq r\), then the results presented here will only yield solutions with a full row rank matrix \(v\). The case of non full row rank matrix \(v\) will be studied later.

Writing \(t = (t_1 \ldots t_r)\), \(t_i \in \mathbb{K}^{n \times 1}\), \(i = 1, \ldots, r\), (5) yields
\[A(u) = (D_1 u \ldots D_r u) = (M t_1 \ldots M t_r), \tag{7} \]
which shows that necessary conditions for the solvability of Problem (2) are given by:
\[D_i u \in \text{im}_k(M_i), \quad i = 1, \ldots, r. \tag{8} \]

These conditions yield the following inclusion:
\[\text{im}_k(A(u)) \subseteq \text{im}_k(M_i). \tag{9} \]

Moreover, if \(u \in \mathbb{K}^{n \times 1}\) can be chosen such that
\[\text{rank}_k(A(u)) = \text{rank}_k(M_i), \tag{10} \]
then we get (6), which proves the existence of a solution \((u, v)\) by Lemma 1. This is the approach developed in this paper: find \(u \in \mathbb{K}^{n \times 1}\) such that (8) and (10) holds.

Let \(X \in \mathbb{K}^{k 	imes l}\) be a full column rank matrix defining a basis of \(\text{im}_k(M_i)\), where \(l := \text{rank}_k(M_i)\). Now, using \(\text{im}_k(M_i) = \text{im}_k(X)\) and the fact that \(X\) has full column rank, there exist a unique matrix \(Y \in \mathbb{K}^{l \times n}\) and a (non necessarily unique) matrix \(T \in \mathbb{K}^{k \times l}\) such that:
\[\begin{cases} M = XY, \\ X = MT. \end{cases} \tag{11} \]

Since \(X\) has full column rank, \(M \eta = X(Y \eta) = 0\) yields \(Y \eta = 0\), and thus \(\ker_2(M) = \ker_2(Y)\). Moreover, combining the two identities of (11), we get \(X = XY T\), i.e., \(X Y T - I_l = 0\), which yields \(Y T = I_k\) since \(X\) has full column rank. Hence, we have \(\text{im}_k(Y) = \mathbb{K}^{l \times 1}\).

We have \(\ker_2(X) = 0\) since \(\lambda (X Y T) = 0\) for all \(\lambda \in \text{ker}_2(Y)\), which shows that \(Y\) is a full row rank matrix. Hence, if \(\mu \in \ker_2(M)\), then \(\mu(X) Y = 0\), which yields \(\mu X = 0\) and shows that \(\ker_2(M) \subseteq \ker_2(X)\) and proves \(\ker_2(M) = \ker_2(X)\). Finally, since \(X\) has full column rank, there exists a left inverse \(Z \in \mathbb{K}^{l \times n}\) of \(X\), i.e., \(ZX = I_l\). Hence, we have \(\text{im}_k(X) = \mathbb{K}^{1 \times l}\) and \(\text{im}_k(M) = \text{im}_k(X Y) = \text{im}_k(Y)\).

If \(M = X' Y'\) with \(X' \in \mathbb{K}^{k \times l}, Y' \in \mathbb{K}^{l \times m}\) and \(\text{im}_k(M) = \text{im}_k(X')\), then there exists \(V \in \mathbb{K}^{l \times k}\) such that \(X = X' Y'\). Hence, the conjugate transposed of \(U\) and \(V\) the conjugate of \(U\), and \(\Sigma \in \mathbb{K}^{k \times m}\) is a diagonal matrix whose diagonal entries are the singular values \(\sigma_i(M)\) of \(M\) listed in descending order. Then, \(l\) is the number of non-zero singular values, i.e.,
\[\sigma_i(M) \neq 0, \quad i = 1, \ldots, l, \quad \sigma_i(M) = 0, \quad i > l + 1. \]

Let \(U = (U_1 \ U_2)\), where \(U_1 \in \mathbb{K}^{n \times l}\) and \(U_2 \in \mathbb{K}^{n \times (n-l)}\), \(V = (V_1^T \ V_2^T)^T\), where \(V_1 \in \mathbb{K}^{l \times m}\) and \(V_2 \in \mathbb{K}^{m \times (m-l)}\), and \(\sigma \in \mathbb{K}^{l \times l}\) be the diagonal matrix formed by the non-zero singular values of \(M\). Then, we have
\[M = (U_1 \ U_2) \begin{pmatrix} \sigma & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = U_1 \sigma V_1, \]
which shows that we can take:
\[X = U_1 \in \mathbb{K}^{n \times l}, \quad Y = \sigma V_1 \in \mathbb{K}^{l \times m}. \tag{12} \]
Any factorisation $M = X'Y'$ with $\text{im}_k(M) = \text{im}_k(X')$ is then of the form $X' = XW$, $Y' = W^{-1}Y$ for $W \in \text{GL}_l(k)$.

2.2 Necessary and sufficient solvability condition

Before stating an effective necessary and sufficient condition for Problem (1) and an explicit characterization of the solutions, we introduce matrices derived from M and D_i.

Let $L \in k^{p \times n}$ be a matrix whose rows generate a basis of $\ker_k(M)$, i.e., L is a full row rank matrix satisfying

$$\ker_k(M) = \text{im}_k(L) = k^{1 \times p}L,$$

where $p := \dim_k(\ker_k(M))$. Using

$$l := \text{rank}_k(M) = \dim_k(\text{im}_k(M)) = \dim_k(\ker_k(M)),$$

we then obtain:

$$p = \dim_k(\ker_k(M)) = n - \dim_k(\ker_k(M)) = n - \text{rank}_k(M).$$

(13)

Remark 2. With the notations of the end of Section 2.1, $U^{-1} = U^* = \begin{pmatrix} U_1^* & U_2^* \end{pmatrix}$ is of the form $U_1^* = (U_1, U_2) = I_n$, which shows that $\ker_k(U_1) = \text{im}_k(U_2^*) = k^{1 \times (n-l)}U_2^*$. Hence, using (12), we get

$$\ker_k(M) = \ker_k(X) = \ker_k(U_1) = \text{im}_k(U_2^*),$$

which shows that we can take $L := U_2^*$.

Let us now consider the following linear system:

$$\begin{cases} LD_1x = 0, \\ LD_ix = 0. \end{cases}$$

(14)

Computing a basis of the k-vector space (14), i.e., of

$$V := \ker_k \begin{pmatrix} LD_1 \\ LD_i \end{pmatrix},$$

(15)

we obtain a full column rank matrix $Z \in k^{n \times d}$, where $d := \dim_k(V)$, such that $V = \text{im}_k(Z)$. All solutions $x \in k^{p \times 1}$ of (14) are then of the form:

$$\forall \psi \in k^{d \times 1}, \quad x = Z\psi.$$

(16)

Example 1. Let us consider the following matrices:

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad D_1 = I_3, \quad D_2 = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}.$$

(12)

We can check that $\ker_k(M) = kL$ with $L = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$. Then, (14) is of the form

$$\begin{cases} x_1 - x_3 = 0, \\ d_1x_1 - d_3x_3 = 0. \end{cases}$$

(14)

- If $d_1 \neq d_3$, then $x_1 = 0$ and $x = (0 \ x_2 \ 0)^T$ for $x_2 \in k$, i.e., we have $Z = (0 \ 1 \ 0)^T$ and $\psi = x_2 \in k$.
- If $d_1 = d_3$, then $x = (x_1 \ x_2 \ x_1)^T$ for $x_1, x_2 \in k$:

$$Z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \psi = x_1.$$

By definition of the matrix $L \in k^{p \times n}$, its rows define a basis of $\ker_k(M)$. Hence, L has full row rank, which shows that $\text{im}_k(L) = k^{p \times 1}$, where p satisfies (13), and $LM = 0$. Thus, we have $\text{im}_k(M) \subseteq \ker_k(L)$. Using (13), we obtain

$$\dim_k(\ker_k(L)) = n - \text{rank}(L) = n - p = \text{rank}_k(M) = \dim_k(\text{im}_k(M)),$$

which proves $\ker_k(L) = \text{im}_k(M)$. Then, using the factorisation of $M = XY$ defined in Section 2 (see (11)), we obtain $\ker_k(L) = \text{im}_k(M) = \text{im}_k(X)$.

Substituting (16) into (14), we get $LD_iZ\psi = 0$ for all $\psi \in k^{d \times 1}$, i.e., $D_iZ\psi \in \ker_k(M)$ for all $\psi \in k^{d \times 1}$ and $i = 1, \ldots, r$. Since X has full column rank, there exists a unique matrix $W_i \in k^{d \times r}$ such that

$$D_iZ = XW_i, \quad i = 1, \ldots, r,$$

(17)

and let us note:

$$\forall \psi \in k^{d \times 1}, \quad B(\psi) := (W_1 \psi \ldots W_r \psi) \in k^{l \times r}.$$

(18)

If $l := \text{rank}_k(M) = r$, then $B(\psi) \in k^{l \times r}$, i.e., B is square.

Example 2. We continue Example 1. We first can check that we have the factorisation $M = XY$, where:

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then, using (17), we obtain:

- If $d_1 \neq d_3$, then we have:

$$W_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad W_2 = \begin{pmatrix} 0 \\ d_2 \end{pmatrix}, \quad B(\psi) = \begin{pmatrix} 0 & 0 \\ \psi & d_2 \psi \end{pmatrix}.$$

- If $d_1 = d_3$, then we have:

$$W_1 = I_2, \quad W_2 = \begin{pmatrix} d_1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B(\psi) = \begin{pmatrix} \psi_1 & d_1 \psi_1 \\ \psi_2 & d_2 \psi_2 \end{pmatrix}.$$

Example 3. Let us consider the case where $D_i := D_i^{-1}$ for $i = 1, \ldots, r$, where $D \in k^{n \times n}$ satisfies $D^2 = I_n$. As explained in Hubert (2019), this case corresponds to a so-called *planetary gearbox*. Clearly, if x is a solution of (14), then so is Dx, i.e., we have the following map:

$$D : V \hookrightarrow V \quad x \mapsto Dx.$$

Hence, if $x = Z \psi \in V$, then there exists $\psi' \in k^{d \times 1}$ such that $Dx = Z \psi'$, i.e., $(DZ)\psi' = Z \psi$ for all $\psi \in k^{d \times 1}$. Thus, there exists $D' \in k^{d \times d}$ such that $DZ = Z D'$. Then, we get $D Z \in k^{d \times d}$, which yields:

$$D' Z = D D' = Z D' Z,$$

whence:

$$D_i' Z = Z D_i' Z, \quad i = 0, \ldots, r = 1.$$

Moreover, using $D' = I_n$, then $Z = Z D'^r$, which yields $D'^r = I_d$.
Theorem 3. Let k be a field, $D_i \in k^{n \times n} \setminus \{0\}$, $i = 1, \ldots, r$, and $M \in k^{n \times m} \setminus \{0\}$ be such that $l := \text{rank}_k(M) \leq r$.

Let us introduce the following matrices:

1. Let $X \in k^{n \times l}$ a full column matrix whose columns form a basis of $\text{im}_k(M)$ and $Y \in k^{l \times m}$ a full row rank matrix such that $M = XY$ (see Section 2).

2. Let $L \in k^{(r-l) \times m}$ be a full row rank matrix whose rows define a basis of $\ker_k(M)$.

3. Let $Z \in k^{n \times d}$ be a full column rank matrix whose columns define a basis of:

$$\ker_k \left(\begin{bmatrix} L D_1 \\ \vdots \\ L D_r \end{bmatrix} \right).$$

4. Let $W_i \in k^{d \times d}$ be the unique matrix satisfying:

$$D_i Z = X W_i, \quad i = 1, \ldots, r.$$

5. Let $B(\psi) = (W_1 \psi \ldots W_r \psi) \in k^{d \times r}$ for all $\psi \in k^{d \times 1}$.

Then, Problem (2) admits a solution (u, v), where v has full row rank, iff there exists $\psi \in k^{d \times 1} \setminus \{0\}$ such that

$$\text{rank}_k(B(\psi)) = l, \quad (20)$$

i.e., such that $B(\psi)$ admits a right inverse $E(\psi) \in k^{l \times f}$.

If we consider the following set

$$\mathcal{P} := \left\{ \psi \in L^{d \times 1} \setminus \{0\} \mid \text{rank}_k(B(\psi)) = l \right\},$$

then solutions of Problem (2) are of the form

$$\forall \psi \in \mathcal{P}, \quad \forall z \in k^{(r-l) \times m}, \quad \begin{align*}
 u &= Z \psi, \\
 v &= (E(\psi) C(\psi)) \begin{bmatrix} Y \\ z \end{bmatrix},
\end{align*}$$

where $C(\psi) \in k^{r \times (r-l)}$ is a full column rank matrix whose columns define a basis of $\ker_k(B(\psi))$. Then, v has full row rank iff z is chosen such that so has $(Y^T \quad z^T)^T \in k^{r \times m}$.

Finally, if $l = r$, then we have $E(\psi) = B(\psi)^{-1}, C(\psi) = 0$, and all the solutions of Problem (2) are given by

$$\begin{align*}
 u &= Z \psi, \\
 v &= B(\psi)^{-1} Y,
\end{align*}$$

for all $\psi \in \mathcal{P} = \left\{ \psi \in k^{d \times 1} \setminus \{0\} \mid \det(B(\psi)) \neq 0 \right\}$.

Proof. Let us first suppose that there exists a solution (u, v) of Problem (2), where v has full row rank. Then, multiplying (2) by L, we get:

$$L A(u) v = L M = 0.$$

Since v has full row rank, (23) is equivalent to $L A(u) = 0$, i.e., u satisfies the linear system (14), i.e., u is of the form $u = Z \psi$ for a certain $\psi \in k^{d \times 1} \setminus \{0\}$. Since Z has full column rank, ψ is unique. Now, using (17), we get:

$$A(Z \psi) = (D_1 Z \psi \ldots D_r Z \psi) = X (W_1 \psi \ldots W_r \psi) = X B(\psi).$$

Hence, we have $A(Z \psi) v = X B(\psi) v = M = X Y$ which, using the fact that X has full row rank, yields:

$$B(\psi) v = Y.$$

(24)

Since both v and Y have full row rank, so is $B(\psi)$, i.e., $\text{ker}_k(B(\psi)) = 0$, which yields $\text{rank}_k(B(\psi)) = l$, which proves (20). This condition is equivalent to the existence of a right inverse $E(\psi) \in k^{l \times 1}$ of $B(\psi)$. Then, we have

$$B(\psi)(E(\psi) Y) = Y,$$

and thus, $B(\psi)(v - E(\psi) Y) = 0$, which shows that $v - E(\psi) Y \in \ker_k(B(\psi)) = \text{im}_k(C(\psi))$, i.e., we have $v = E(\psi) Y + C(\psi) z$ for a unique $z \in k^{(r-l) \times m}$ which shows (21) for a certain $z \in k^{(r-l) \times m}$. Note that the matrix

$$U(\psi) := \left(E(\psi) \quad C(\psi) \right) \in k^{l \times r}$$

satisfies $U(\psi) \in \text{GL}_r(k)$ for all $\psi \in \mathcal{P}$ and $U(\psi)^{-1} = (B(\psi)^T \quad F(\psi)^T)^T$, where $F(\psi) \in k^{r \times (r-l)}$ is a left inverse of $C(\psi)$. Hence, we get $z = F(\psi) v$. Finally, if $l = r$, then $E(\psi) = B(\psi)^{-1}$ and $\ker_k(B(\psi)) = 0$, i.e., $C(\psi) = 0$, which proves (22).

Conversely, let us suppose that $\mathcal{P} \neq \emptyset$ and let $\psi \in \mathcal{P}$. Let us define (u, v) as (21) if $l < r$ or as (22) if $l = r$. Then, using (17), $B(\psi)(E(\psi) Y + C(\psi) z) = X Y = M$, which proves that (u, v) is a solution of Problem (2). Finally, using $U(\psi) \in \text{GL}_r(k)$, v defined by (21) has full row rank iff $(Y^T \quad z^T)^T \in k^{r \times m}$ has full row rank.

Remark 4. The fact that (21) gives solutions (u, v) such that the matrix v has not necessarily full row rank comes from the fact that u is chosen such as $L A(u) = 0$, which automatically yields $L A(u) v = 0$ independently of v.

The next remark proves that Theorem 3 does not depend on arbitrary choices of the matrices X, Y, L and Z.

Remark 5. If $M = X' Y'$, then it was shown in Section 2.1 that $X = X' V$ and $Y' = Y V$ for a certain $V \in \text{GL}_d(k)$, which yields $D_i Z = X' (V W_i)$ and shows that $W_i' = V W_i$ satisfies $D_i Z = X' W_i$ since W_i' is unique, and thus,

$$B'(\psi) = (V W_1 \psi \ldots V W_r \psi) = V B(\psi),$$

which yields $\text{rank}_k(B'(\psi)) = \text{rank}_k(B(\psi))$ and proves that (20) does not depend on arbitrary choices for X and Y.

If $L' \in K^{(n-l) \times n}$ is a full row rank matrix whose rows define a basis of $\ker_k(M)$, then there exists $U \in \text{GL}_{n-l}(k)$ such that $L' = U L$, which yields

$$\begin{bmatrix} L' D_1 \\ \vdots \\ L' D_r \end{bmatrix} = U \begin{bmatrix} L D_1 \\ \vdots \\ L D_r \end{bmatrix},$$

and shows that the k-vector space \mathcal{Y} defined by (15) does not depend on an arbitrary choice for L.

If $Z' \in k^{n \times d}$ defines another basis of (14), then there exists $U \in \text{GL}_d(k)$ such that $Z' = Z U$. Then, (17) yields $D_i Z' = D_i Z U = X (W_i U)$ and shows that $W_i' = W_i U$ is the unique matrix which satisfies $D_i Z' = X W_i'$ for $i = 1, \ldots, r$, which yields $B'(\psi) = (W_1' \psi \ldots W_r' \psi) = B(U \psi)$, and thus, $\text{rank}_k(B'(\psi)) = \text{rank}_k(B(\psi))$ and (20) does not depend on a particular choice of a basis of (14).

Example 4. Let $M \in k^{n \times m}$ be of rank 1 and $D_1 = I_n$. Let $M = X Y$ be a factorisation defined by (11), where $X \in k^{n \times 1}$ and $Y \in k^{1 \times m}$. Then, we get $Z = X$, and thus $u = X \psi$, where $\psi \in k \setminus \{0\}$, $W_1 = 1$, which yields $B(\psi) = \psi$. Hence, we have $\mathcal{P} = k \setminus \{0\}$ and $u = X \psi$ and $v = \psi^{-1} Y$ define a solution of Problem (2) for all $\psi \in \mathcal{P}$. The factorisation $M = X Y$ is a solution of Problem (2).

Example 5. We continue Examples 1 and 2.

- If $d_1 \neq d_3$, then $\det(B(\psi)) = 0$ for all $\psi \in k \setminus \{0\}$, which proves that Problem (2) is not solvable.
- If $d_1 = d_3$, then $\det(B(\psi)) = (d_1 - d_2) \psi_1 \psi_2$, which proves that Problem (2) is solvable iff $d_1 \neq d_2$ and
ψ_1 \neq 0 \text{ and } ψ_2 \neq 0. \text{ If so, using } Z = X, \text{ then we get:}
\begin{align*}
u &= Xψ = (ψ_1 \ ψ_2 \ ψ_3)^T, \\
v &= B(ψ)^{-1} Y = \frac{1}{d_1 - d_2} \begin{pmatrix}
\frac{d_2}{v_1} & d_1 & \frac{d_2}{v_2} \\
1 & ψ_2 & -1 \\
\frac{1}{v_1} & -1 & -1
\end{pmatrix} \cdot
\end{align*}

Example 6. Let us consider the following matrices:
\[M = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 0 & -2 \\ 1 & 0 & 1 \end{pmatrix}, \quad D_1 = I_3, \quad D_2 = \begin{pmatrix} 1 & -3 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}. \]

We can easily check that rank_k(M) = 1 and:
\[X = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \quad Y = (1 \ 0 \ 1), \quad Z = X, \quad W_1 = 1, \quad W_2 = 0. \]

Hence, we obtain \(B(ψ) = (ψ \ 0), \) \(P = k \setminus \{0\} \) and \(E(ψ) = ψ^{-1} (1 \ 0)^T \) is a right inverse of \(B(ψ) \) for all \(ψ \in P \). Since ker_k(B(ψ).) = (0 \ 1)^T, the solutions of Problem (2) for a full row low matrix \(v \) are of the form:
\[u = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} ψ, \quad ∀ ψ \in P, \]
\[v = \begin{pmatrix} ψ^{-1} & 0 & ψ^{-1} \end{pmatrix}, \quad ∀ \psi = (z_1 \ z_2 \ z_3) \in k^{1 \times 3}. \]

Finally, the matrix \(v \) has full row rank iff the matrix \((YT^{-1}Z)^T \) has full row rank, i.e., if \(z_1 \neq z_3 \) or \(z_2 \neq 0 \).

Example 7. We continue Example 3. By Theorem 3, Problem (2) is solvable iff the matrix \(B(ψ) = W_1 \ F(ψ) \) admits a right inverse, where the matrix \(C \) is defined by (19).

If \(f : E \to F \) and \(g : F \to G \) are two \(k \)-linear maps between finite-dimensional \(k \)-vector spaces with \(g \) injective, then we can prove that \(f \circ g \) is surjective iff so are \(f \) and \(g \) (and \(g \) is invertible). Hence, using the fact that \(W_1 \) has full column rank, i.e., ker_k(W_1) = 0, we obtain that rank_k(B(ψ)) = \(l \) iff rank_k(F(ψ)) = \(d \) and rank_k(W_1) = \(l \), i.e., iff rank_k(F(ψ)) = \(d \) and \(W_1 \in GL_k(k) \). We obtain that Problem (2) is solvable iff the following 3 conditions hold:
\begin{itemize}
\item[(1)] \(d := \dim_k(V) = l := \dim_k(M) \),
\item[(2)] \(W_1 \) is invertible, i.e., det(W_1) \(\neq 0 \),
\item[(3)] there exists \(ψ \in k^{d \times 1} \setminus \{0\} \) such that rank_k(F(ψ)) = \(l \).
\end{itemize}

In particular, if \(l = r \), then \(F(ψ) \in k^{r \times r} \) and the above Condition 3 is reduced to the existence of \(ψ \in k^{r \times 1} \setminus \{0\} \) such that \(F(ψ) \) is invertible, i.e., det(F(ψ)) \(\neq 0 \).

For instance, if we consider the following matrices
\[M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad D^2 = I_3, \]
then we obtain \(L = LD = (1 \ -2 \ 1) \) and
\[Z = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 12 \\ 45 \\ 78 \end{pmatrix}, \quad Y = \begin{pmatrix} 10 & -1 \\ 0 & 1 \ 2 \end{pmatrix}, \]
\[W_1 = \begin{pmatrix} 2 & -5 \\ 8 & -4 \end{pmatrix}, \quad W_2 = \begin{pmatrix} 2 & -5 \\ 7 & -4 \end{pmatrix}, \quad D' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}. \]

We can check that \(D'^2 = I_2 \) and det(W_1) \(\neq -1/3 \).

Remark 6. Let \(ψ \in P \), then \(B(ψ) \) admits a right inverse \(E(ψ) \). Then, using \(B(λψ) = λB(ψ) \) for \(λ \in k \setminus \{0\} \), \(B(λψ) \) admits a right inverse \(E(λψ) \) (e.g., \(λ^{-1}E(ψ) \)), i.e., \(B(λψ) E(λψ) = I_l \) for \(λ \in k \setminus \{0\} \). Hence, we get \(B(ψ) (E(λψ) - E(ψ)) = 0 \), which shows that there exists a unique \(q(ψ, λ) ∈ k^{r \times l} \) such that:
\[λE(λψ) = E(ψ) + C(ψ) q(ψ, λ). \]

Hence, we obtain \(E(λψ) = λ^{-1} E(ψ) + C(ψ) λ^{-1} q(ψ, λ) \).

In particular, setting \(λ = 1 \), we get \(C(ψ) q(ψ, 1) = 0 \). Now, for \(λ \in k \setminus \{0\} \) and \(ψ \in P \), let us consider a solution
\[u = Z ψ, \quad v = E(ψ) Y + C(ψ) z \] of Problem (2). We get:
\[\begin{pmatrix} λ & u \\ λ^{-1} & v \end{pmatrix} = \begin{pmatrix} A(λψ) & λ^{-1} v \\ λ & λ^{-1} \end{pmatrix} Y \]
\[= X B(ψ) (E(λψ) Y + λ^{-1} C(ψ) (z - q(ψ, λ) Y) = X Y, \]
which shows that the solutions (21) and (22) of Problem (2) are stable under the following transformations:
\[∀ λ ∈ k \setminus \{0\}, \quad ϕ_λ : (u, v) → (λ u, λ^{-1} v). \]

We explicitly find again a result stated in Remark 1. This result comes from the bilinear structure of Problem (2), which is a multi-homogeneous polynomial system and whose natural geometric framework is multi-projective algebraic geometry. The geometric structures of Problem (1) will be studied in a forthcoming publication.

Finally, let us study how (20) can be effectively checked. Let \(A = [a_{i1}, \ldots, a_{ir}] \) denote the commutative polynomial ring in \(ψ_1, \ldots, ψ_r \) with coefficients in \(k \). Then, \(B(ψ) \) can be considered as an element \(B ∈ A^{r \times r} \). We note that (20) is equivalent to the existence of \(ψ \in k^{d \times 1} \) such that ker_k(B(ψ)) = \(0 \). Using elimination methods, we can test whether or not ker_A(B) = \(\lambda \in A^{1 \times 1} \mid \lambda B = 0 \) is 0. We can use the command SYZYGVMODULE of the OREMODULES package. If ker_A(B) = \(0 \), then (20) is never satisfied and Problem (1) is not solvable. If ker_A(B) = \(0 \), the A-module N := coker_A(B) = A^{r \times 1}/(B A^{r \times 1}) is a torsion A-module, i.e., for all \(n \in N \), there exists \(0 \neq a ∈ A \) such that \(an = 0 \). We can compute its annihilator
\[\text{ann}_A(N) := \{a ∈ A \mid a N = 0\}, \]
compute \(g_1, \ldots, g_r \in A \) such that \(\text{ann}_A(N) = \{ \sum_{i=1}^r a_i g_i \mid a_i ∈ A \} \). We can use the command PIPOLYMOMIAL of the OREMODULES package. Considering the ring \(S_g^{-1} A := \{a/g \mid r ∈ Z_2\} \), we have \(S_g^{-1} N = 0 \), i.e., \(B(ψ)(S_g^{-1} A)^{r \times 1} = (S_g^{-1} A)^{r \times 1} \), which shows that \(B \) admits a right inverse \(E ∈ (S_g^{-1} A)^{r \times 1} \).
Hence, \(\text{ann}_A(N) \) defines the obstructions for (20), i.e., (20) is not satisfied for all \(\psi \in k^{d \times 1} \) satisfying \(g_i(\psi) = 0 \). For instance, if \(l = r \), then \(\text{ann}_A(N) = A g_1 \) and \(g_1 = \det(B) \).

3. A FEW MORE RESULTS

Using the factorisation (24), i.e., \(A(Z \psi) = X B(\psi) \), where \(X \) has full column rank, we obtain:

\[
\forall \psi \in k^{d \times 1}, \quad \ker_k(A(Z \psi).) = \ker_k(B(\psi)).
\]

Hence, for \(\psi \in k^{d \times 1} \), we have:

\[
dim_k(\ker_k(A(Z \psi).)) = dim_k(\ker_k(B(\psi).)) = r - \text{rank}_k(B(\psi)).
\]

Using (20) of Theorem 3, we obtain the following corollary.

Corollary 7. Problem (2) is solvable with a full row rank matrix \(V \) iff there exists \(\psi \in k^{d \times 1} \setminus \{0\} \) such that:

\[
dim_k(\ker_k(A(Z \psi.))) = r - l.
\]

Corollary 7 is a generalization of a result obtained in Hubert et al. (2019) for \(r = 2 \).

To end this section, we focus on the particular case \(\text{rank}_k(M) = r = 2 \), \(D_1 = I_2 \), which is interesting in practice (Hubert (2019)). Using \(D_1 = I_n \), we get \(V \subseteq \ker_k(L) \), which, using (13), yields:

\[
\text{dim}_k(V) \leq \text{dim}_k(\ker_k(L)) = n - p = \text{rank}_k(M) = 2. \quad (27)
\]

Moreover, (26) is equivalent to \(\ker_k(A(Z \psi)) = 0 \), where:

\[
\ker_k(A(u.)) = \{ (a_1, a_2)^T \in k^{2 \times 1} \mid u a_1 + D_2 u a_2 = 0 \}.
\]

If \(a_1 = 0 \), then \(D_2 u = 0 \), i.e., \(u \) is an eigenvector of \(D_2 \) with 0 as associated eigenvalue. If \(a_2 \neq 0 \), then \(D_2 u = (-a_1/a_2) u \), i.e., \(u \) is an eigenvalue of \(D_2 \) with \(-a_1/a_2\) as associated eigenvalue.

Corollary 8. If \(\text{rank}_k(M) = r = 2 \) and \(D_1 = I_2 \), then Problem (2) is solvable iff there exists \(\psi \in k^{d \times 1} \setminus \{0\} \) such that \(u = Z \psi \) is not an eigenvalue of the matrix \(D_2 \).

Example 8. We consider again Example 1. If \(d_1 \neq d_3 \), then \(u = (0 \psi 0)^T \) is an eigenvector of \(D_2 \) for all \(\psi \in k \setminus \{0\} \), which proves that Problem (2) is not solvable. If \(d_1 = d_3 \), then \(D_2 u = (d_1 \psi_1 d_2 \psi_2 d_3 \psi_3)^T \), where \(u = (\psi_1 \psi_2 \psi_3)^T \). If \(d_2 = d_3 \), then \(u \) is an eigenvalue of \(D_2 \), which proves that Problem (2) is not solvable. If \(d_2 \neq d_3 \), then \(u \) is not an eigenvalue of \(D_2 \) and Problem (2) is solvable. We find again the results obtained in Example 5.

Example 9. We consider again Example 7. The vector \(u = (2 \psi_1 - \psi_2 \psi_1)^T \) is an eigenvector of \(D \) iff

\[
\exists \lambda \in k, \quad D u = \begin{pmatrix} \psi_2 \\ \psi_1 \\ 2 \psi_1 - \psi_2 \end{pmatrix} = \lambda \begin{pmatrix} 2 \psi_1 - \psi_2 \\ \psi_1 \\ 2 \psi_1 - \psi_2 \end{pmatrix},
\]

i.e., iff \(\lambda = 1 \) and \(\psi_2 = \psi_1 \) (compare with Example 7).

Example 10. We consider the case of a diagonal matrix \(D_2 = \text{diag}(d_1, \ldots, d_n) \) whose diagonal elements are the \(d_i \)'s. Then, using (27), \(u \in k^{n \times 1} \setminus \{0\} \) must belong to the solution space of the linear system (14) of dimension less than or equal to 2. According to Corollary 8, to solve Problem (2), we must find \(0 \neq u \in k^{n \times 1} \) satisfying (14) and such that \(u \) is not an eigenvector of \(D_2 \). Let \(\{ f_j \}_{j \in J} \) be a basis of \(V \), where \(J = \{1\} \) if \(\text{dim}_k(V) = 1 \) and \(J = \{1, 2\} \) if \(\text{dim}_k(V) = 2 \). The vectors \(e_i \)'s of the standard basis of \(k^{n \times 1} \) — where \(e_i \) is the column vector with 1 at the \(i^{th} \) position and 0 elsewhere — are the eigenvectors of \(D_2 \) with \(d_i \) as an associated eigenvalue.

If all the \(d_i \)'s are distinct, then Problem (1) is solvable iff

\[
\forall j \in J, \quad \exists \gamma_j \in k : \quad u := \sum_{j \in J} \gamma_j f_j \notin k e_i, \quad i = 1, \ldots, n,
\]

i.e., iff there exists a \(k \)-linear combination of the \(f_i \)'s with at least two non-zero components.

If the multiplicity of certain of the \(d_i \)'s is strictly larger than 1, denoting by \(\{d'_1, \ldots, d'_l\} \) the set of distinct \(d_i \)'s and by \(\mathcal{E}_i \) the \(k \)-vector space generated by the \(e_j \)'s whose indices \(j \) correspond to the position \(j \) of \(d'_i \) in the set \(\{d'_1, \ldots, d'_l\} \), then a solution of Problem (1) exists iff:

\[
\forall j \in J, \quad \exists \gamma_j \in k : \quad u := \sum_{j \in J} \gamma_j f_j \notin \mathcal{E}_i, \quad i = 1, \ldots, r.
\]

In other words, Problem (1) admits a solution iff there exists a \(k \)-linear combination of the \(f_i \)'s with a non-zero entry at a position different from the \(j \)'th positions corresponding to the \(e_j \)'s defining the \(\mathcal{E}_i \)'s for \(i = 1, \ldots, r \).

Example 11. If \(u = D_2 u \) can be chosen to be orthogonal, then they cannot be collinear, and thus, \(u \) is not an eigenvector of \(D_2 \) and Problem (2) is solvable.

4. CONCLUSION

In this paper, we give an effective necessary and sufficient condition for the solvability of the factorisation problem \(M = \sum_{j=1}^r D_j u v_j \) in the case where \(\text{rank}_k(M) \leq r \) and \(v := (v_1^T \ldots v_r^T)^T \) is a full row rank matrix. Moreover, we give an explicit form of all the solutions.

In future works, we shall study the case of non full row rank matrices \(v \) as well as the (multi-projective) geometric structures of Problem (1) based on the use of the multihomogeneity of the corresponding polynomial system.

Finally, the following minimization problem

\[
\min_{u \in k^{n \times 1}, v \in k^r} \left\| \sum_{i=1}^r D_i u v_i - M \right\|_{\text{Frob}}, \quad (28)
\]

where \(\| \cdot \|_{\text{Frob}} \) is the Frobenius norm, will be studied, particularly based on symbolic-numeric methods for \(k = \mathbb{R} \). As shown in Hubert (2019), the demodulation problem corresponds to (28) where the matrices \(M, D_1, \ldots, D_r \) are centrohermitian and the vectors \(u \) and \(v_1, \ldots, v_r \) are centrohermitian. Using Hubert et al. (2020), this problem can be transformed into (28) for \(k = \mathbb{R} \). This study corresponds to the demodulation problem for noisy data.

REFERENCES

